JPH0517682Y2 - - Google Patents

Info

Publication number
JPH0517682Y2
JPH0517682Y2 JP5312584U JP5312584U JPH0517682Y2 JP H0517682 Y2 JPH0517682 Y2 JP H0517682Y2 JP 5312584 U JP5312584 U JP 5312584U JP 5312584 U JP5312584 U JP 5312584U JP H0517682 Y2 JPH0517682 Y2 JP H0517682Y2
Authority
JP
Japan
Prior art keywords
target
flying object
angle
constant
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5312584U
Other languages
Japanese (ja)
Other versions
JPS60165875U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5312584U priority Critical patent/JPS60165875U/en
Publication of JPS60165875U publication Critical patent/JPS60165875U/en
Application granted granted Critical
Publication of JPH0517682Y2 publication Critical patent/JPH0517682Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 この考案は例えば比例航法を行い、目標を追尾
する飛翔体の目標追尾装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a target tracking device for a flying object that performs, for example, proportional navigation and tracks a target.

〔考案の技術的背景〕[Technical background of the invention]

第1図は比例航法により目標を追尾する飛翔体
の追尾状況を示す図である。図に於いて、11は
飛翔体であり、12は目標である。Xは飛翔体1
1の機体軸であり、Yは飛翔体11に設けられた
目標検出部の光軸である。Lは飛翔体11の飛行
方向と光軸Yとのなす見越角であり、Gは機体軸
Xと光軸Yとのなす角度である。VMは飛翔体速
度である。Zは目標12の飛行経路である。
FIG. 1 is a diagram showing a tracking situation of a flying object tracking a target using proportional navigation. In the figure, 11 is a flying object and 12 is a target. X is flying object 1
1, and Y is the optical axis of a target detection section provided on the flying object 11. L is an expected angle between the flight direction of the flying object 11 and the optical axis Y, and G is an angle between the aircraft axis X and the optical axis Y. V M is the projectile velocity. Z is the flight path of target 12.

比例航法を行う飛翔体は、従来、第2図に示す
ような目標追尾装置を有し、次式(1)に従うような
誘導則に従つて目標12の追尾を行なつていた。
A flying object that performs proportional navigation has conventionally had a target tracking device as shown in FIG. 2, and has tracked the target 12 according to a guidance law such as the following equation (1).

γM=N・λ …(1) ここで、γM:飛翔体経路角変化率 N :航法ゲイン λ :目視線角変化率 第2図に於いて、13は目標検出部であり、例
えば、赤外線により目標を検出する。そして、検
出出力に基づいて目視線角変化率λを得る。14
は経路角変化率検出部であり、上記式(1)の演算を
行い、経路角変化率γMを算出する。15は機体
特性補償部であり、経路角変化率検出部14で得
られた経路角変化率γMを機体特性に合つたもの
に補正する。
γ M =N・λ...(1) Here, γ M : Projectile path angle change rate N : Navigation gain λ : Line of sight angle change rate In FIG. 2, 13 is a target detection unit, and for example, Detects targets using infrared rays. Then, the eye gaze angle change rate λ is obtained based on the detection output. 14
is a path angle change rate detection unit, which calculates the path angle change rate γ M by calculating the above equation (1). Reference numeral 15 denotes an aircraft characteristics compensator, which corrects the path angle change rate γ M obtained by the path angle change rate detector 14 to match the aircraft characteristics.

なお、比例航法を成功させるには、次式(2)で示
されるような有効航法定数N′をある一定の範囲
(比例航法によつて飛翔体を目標に命中させるた
めに必要な実用上の範囲)に収める必要がある。
In addition, in order to succeed in proportional navigation, the effective navigation constant N′ as shown by the following equation (2) must be within a certain range (the practical range required for the projectile to hit the target using proportional navigation). range).

N′=N・cosL・VM/VC …(2) ここで、VC:目標と飛翔体との接近速度 この有効航法定数N′の設定範囲については、
「Principle of Guided Missile Design」シリー
ズ(1960年、D.VAN NOSTRAND
COMPANY,INC発行)の「Systems
Preliminary Design」(Joseph J.Jager著)の第
188頁から第200頁にかけて、その詳細が説明され
ている。
N′=N・cosL・V M /V C …(2) Here, V C : Approach speed between the target and the flying object Regarding the setting range of this effective navigational number N′,
"Principle of Guided Missile Design" series (1960, D.VAN NOSTRAND
“Systems” by COMPANY, INC.
Preliminary Design” (written by Joseph J. Jager)
The details are explained from pages 188 to 200.

上記の文献によれば、目標が旋回せず、直線運
動する場合において、飛翔体(ミサイル)が目標
に命中するために必要な飛翔体の旋回加速度を
種々のN′の数値について求めてみると(文献第
193頁FIG.5−6参照)、N′が2未満のとき、命中
直前に必要な飛翔体の旋回加速度が無限大に発散
し、飛翔体は目標に命中しない。
According to the above literature, when the target does not turn but moves in a straight line, the turning acceleration of the projectile (missile) necessary for it to hit the target is calculated for various values of N′. (Reference No.
(See FIG. 5-6 on page 193), when N' is less than 2, the turning acceleration of the projectile required just before hitting diverges to infinity, and the projectile does not hit the target.

また、目標が一定加速度で旋回する場合におい
て、飛翔体が目標に命中するために必要な飛翔体
の旋回加速度を種々のN′の数値について求めて
みると(文献第198頁FIG.5−7参照)、N′が3以
下のとき、命中直前に必要な飛翔体の旋回加速度
が急速に増大していく傾向がある。
In addition, when the target turns with a constant acceleration, the turning acceleration of the projectile necessary for the projectile to hit the target is calculated for various values of N' (Reference, p. 198, FIG. 5-7 ), when N' is 3 or less, the turning acceleration of the projectile required just before hitting tends to increase rapidly.

以上から、N′は3以上であることが実用上の
必要条件であるといえる。
From the above, it can be said that it is a practical requirement that N' be 3 or more.

しかし、実際にはN′が3以上であればいくら
でも値を大きく設定してもよいというわけにはい
かない。すなわち、N′をあまり大きな値に設定
すると、飛翔体を旋回させるための制御信号を過
度に増幅させることになり、同信号に重畳する雑
音の影響が顕著に現れ、かえつて命中精度を低下
させてしまうことになる。
However, in reality, if N' is 3 or more, it is not possible to set the value as large as desired. In other words, if N′ is set to too large a value, the control signal for turning the flying object will be excessively amplified, and the influence of noise superimposed on the signal will become noticeable, which will actually reduce the accuracy of the shot. This will result in

よつて、実用上のN′の設定範囲には下限値だ
けでなく上限値も存在することになる。従来の経
験からN′は3から6の範囲に設定することが必
要である(文献の第192頁最下行に指摘されてい
る)。
Therefore, the practical setting range of N' has not only a lower limit value but also an upper limit value. From conventional experience, it is necessary to set N' in the range of 3 to 6 (pointed out on the bottom line of page 192 of the document).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記構成の場合、次のような問
題があつた。すなわち、有効航法定数を決める要
因N,cosL,VM,VCのうち、Nは設計段階で決
まる定数であるが、cosL,VM,VCは要撃時の状
況によつて変化する。このように、有効航法定数
N′は多くの変動要因を含むので、要撃時の状況
によつては、予じめ決めたある一定の範囲に収ま
らなくなる可能性がある。そこで、有効航法定数
N′を常に一定の範囲に収める為には、cosL,
VM,VCの変化を見込んで、航法ゲインNを小さ
くしなければならない。その結果、従来の目標追
尾装置では、設計の自由度や追尾可能な範囲の設
定に著しい制限があつた。
However, in the case of the above configuration, the following problems occurred. That is, among the factors N, cosL, V M , and V C that determine the effective navigation coefficients, N is a constant determined at the design stage, but cosL, V M , and V C change depending on the situation at the time of interception. In this way, the effective navigational number
Since N′ includes many variables, it may not fall within a certain predetermined range depending on the situation at the time of the interception. Therefore, the effective navigational law number
In order to keep N′ within a certain range, cosL,
The navigation gain N must be reduced in anticipation of changes in V M and V C . As a result, with conventional target tracking devices, there are significant restrictions on the degree of freedom in design and the setting of the range that can be tracked.

〔考案の目的〕[Purpose of invention]

この考案は上記の事情に対処すべくなされたも
ので、設計の自由度や追尾可能な範囲を大幅に拡
大できる飛翔体の目標追尾装置を提供することを
目的とする。
This invention was made in order to cope with the above-mentioned circumstances, and the purpose is to provide a target tracking device for a flying object that can greatly expand the degree of freedom in design and the range in which tracking can be performed.

〔考案の概要〕[Summary of the idea]

この考案は、目標を検出する手段の光軸と機体
軸とのなす角度がほぼ見越角に等しいことを利用
し、航法ゲインとして定数ではなく、ある定数を
上記角度の余弦で割つたものを用いるようにし、
有効航法定数N′の変動要因から見越角を取り除
けるように構成したものである。
This idea takes advantage of the fact that the angle between the optical axis of the target detection means and the aircraft axis is approximately equal to the anticipation angle, and uses a certain constant divided by the cosine of the above angle as the navigation gain, rather than a constant. use it,
It is constructed so that the anticipation angle can be removed from the variation factor of the effective navigation constant N'.

〔考案の実施例〕[Example of idea]

以下、第3図を参照しながらこの考案の一実施
例を詳細に説明する。
Hereinafter, one embodiment of this invention will be described in detail with reference to FIG.

第3図に於いて、21は目標検出部であり、例
えば、赤外線により目標を検出する。そして、こ
の検出結果に従つて目視線変化率λを得るととも
に、目標を検出する為の光軸Yと機体軸Xとがな
す角度Gを得る。22は経路角変化率検出部であ
る。この経路角変化率検出部22は目標検出部2
1で得られた角度Gの余弦を取り、これである定
数Aを割つたものを航法ゲインとして目視線変化
率λに乗ずることにより、経路角変化率γMを得
る。23は機体特性補償部で、先の第2図に示す
機体特性補償部23と同じように、経路角変化率
検出部22で得られた経路角変化率γMを機体特
性に合つたものに補正する。
In FIG. 3, 21 is a target detection section, which detects a target using, for example, infrared rays. Then, according to this detection result, the line of sight change rate λ is obtained, and the angle G between the optical axis Y and the aircraft axis X for detecting the target is obtained. 22 is a path angle change rate detection section. This path angle change rate detection section 22 is a target detection section 2.
The path angle change rate γ M is obtained by taking the cosine of the angle G obtained in step 1, dividing it by a constant A, and multiplying it by the line of sight change rate λ as a navigation gain. Reference numeral 23 denotes an aircraft characteristics compensation unit, which, like the aircraft characteristics compensation unit 23 shown in FIG. to correct.

以上詳述したようにこの実施例によれば、目標
検出のための光軸Yと機体軸Xとのなす角度Gを
検出し、この角度Gの余弦で、ある定数Aを割つ
た値を目視線角変化率λに乗ずべき航法ゲインと
している。このような構成によれば、有効航法定
数N′は、 N′=A/cosG・cosL・VM/VC …(3) となる。ここで、角度Gと見越角Lとはほぼ等し
いから、cosG≒cosLとなり、有効航法定数N′は N′≒A・VM/VC …(4) となる。
As detailed above, according to this embodiment, the angle G formed between the optical axis Y and the aircraft axis X for target detection is detected, and the value obtained by dividing a certain constant A by the cosine of this angle G is set as the target. The navigation gain should be multiplied by the line-of-sight angle change rate λ. According to such a configuration, the effective navigational constant N' is N'=A/cosG·cosL·V M /V C (3). Here, since the angle G and the expected angle L are almost equal, cosG≒cosL, and the effective navigational constant N' becomes N'≒A·V M /V C (4).

式(4)から明らかなように、この実施例では、有
効航法定数N′を決める要因の中からcosLの要因
が取り除かれ、その変動要因はVMとVCだけとな
る。したがつて、cosLの要因が取り除かれた分
だけ、有効航法定数N′をある一定に範囲に収め
ることが簡単となり、追尾装置の設計の自由度、
追尾可能な範囲を大幅に拡大することができる。
As is clear from equation (4), in this embodiment, the factor of cosL is removed from among the factors that determine the effective navigational constant N', and the only factors that change it are V M and V C. Therefore, by removing the cosL factor, it becomes easier to keep the effective navigational constant N' within a certain range, and the degree of freedom in the design of the tracking device is increased.
The tracking range can be greatly expanded.

〔考案の効果〕[Effect of idea]

このようにこの考案によれば、有効航法定数に
対する見越角の変動の影響を無くすことができる
ので、設計の自由度や追尾可能な範囲の拡大を図
り得る飛翔体の目標追尾装置を提供することがで
きる。
As described above, according to this invention, it is possible to eliminate the influence of fluctuations in the anticipation angle on the effective navigation constant, thereby providing a target tracking device for a flying object that can increase the degree of freedom in design and expand the range of tracking possible. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は飛翔体の追尾状況を示す図、第2図は
従来の飛翔体の追尾装置を示す回路図、第3図は
この考案に係る飛翔体の追尾装置の一実施例を示
す回路図である。 21……目標検出部、22……経路角変化率検
出部、23……機体特性補償部。
Fig. 1 is a diagram showing a flying object tracking situation, Fig. 2 is a circuit diagram showing a conventional flying object tracking device, and Fig. 3 is a circuit diagram showing an embodiment of a flying object tracking device according to this invention. It is. 21...Target detection section, 22...Route angle change rate detection section, 23...Airframe characteristics compensation section.

Claims (1)

【実用新案登録請求の範囲】 有効航法定数に基づく比例航法により飛翔体を
目標に追尾させる飛翔体の目標追尾装置におい
て、 前記目標を検出し、その検出結果から目視線角
変化率を得るとともに、目標検出の為の光軸と機
体軸とのなす角度を得る目標検出手段と、 この目標検出手段で得られた前記角度の余弦
で、ある定数を割つたものを航法ゲインとして前
記目視線角変化率に乗ずることにより、経路角変
化率を得る経路角変化率検出手段とを具備し、 有効航法定数をN′、ある定数をA、飛翔体の
速度をVM、目標と飛翔体との接近速度をVCとし
たとき、 N′=A・VM/VC の関係式から、有効航法定数が比例航法によつて
飛翔体を目標に命中させるために必要な実用上の
範囲に収まるようにある定数を決定するようにし
たことを特徴とする飛翔体の目標追尾装置。
[Scope of Claim for Utility Model Registration] A target tracking device for a flying object that tracks a flying object to a target by proportional navigation based on effective navigational constants, which detects the target, obtains a rate of change in the line of sight angle from the detection result, and A target detection means for obtaining the angle between the optical axis and the aircraft axis for target detection, and a navigation gain obtained by dividing a certain constant by the cosine of the angle obtained by the target detection means, and the change in the line of sight angle. a path angle change rate detection means for obtaining a path angle change rate by multiplying the rate by multiplying the effective navigation constant by N', a certain constant by A, the velocity of the flying object by V M , and the approach between the target and the flying object. When the velocity is V C , from the relational expression N'=A・V M /V C , it is necessary to make sure that the effective navigational constant falls within the practical range necessary for the projectile to hit the target using proportional navigation. A target tracking device for a flying object, characterized in that a certain constant is determined.
JP5312584U 1984-04-11 1984-04-11 Target tracking device for flying objects Granted JPS60165875U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5312584U JPS60165875U (en) 1984-04-11 1984-04-11 Target tracking device for flying objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5312584U JPS60165875U (en) 1984-04-11 1984-04-11 Target tracking device for flying objects

Publications (2)

Publication Number Publication Date
JPS60165875U JPS60165875U (en) 1985-11-02
JPH0517682Y2 true JPH0517682Y2 (en) 1993-05-12

Family

ID=30573691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5312584U Granted JPS60165875U (en) 1984-04-11 1984-04-11 Target tracking device for flying objects

Country Status (1)

Country Link
JP (1) JPS60165875U (en)

Also Published As

Publication number Publication date
JPS60165875U (en) 1985-11-02

Similar Documents

Publication Publication Date Title
Waldmann Line-of-sight rate estimation and linearizing control of an imaging seeker in a tactical missile guided by proportional navigation
CN111351401B (en) Anti-sideslip guidance method applied to strapdown seeker guidance aircraft
US4020324A (en) Weapon delivery system
US5442560A (en) Integrated guidance system and method for providing guidance to a projectile on a trajectory
US4750688A (en) Line of sight missile guidance
US5062583A (en) High accuracy bank-to-turn autopilot
US5355316A (en) Position aided evader maneuvering re-entry vehicle navigator
US5967458A (en) Slaved reference control loop
US4173785A (en) Inertial guidance system for vertically launched missiles without roll control
KR940004647B1 (en) Lightest missile guidance system
KR20200047585A (en) GBIAS for rate-based autopilot
US4189116A (en) Navigation system
US6808139B1 (en) Guidance for missle systems with target tracker and additional manual track point correction
US3718293A (en) Dynamic lead guidance system for homing navigation
JPH0517682Y2 (en)
DE60019251T2 (en) HIGH QUALITY OPTICALLY SUPPORTED INERTIAL RUNNING AIRCRAFT
JPS58501688A (en) Method and apparatus for guiding an aerodynamic object with a homing device
US6293488B1 (en) Coordinate transformation system
KR102252826B1 (en) Device for estimating line of sight rate using acceleration of sight angle and air vehicle including the same
US5848764A (en) Body fixed terminal guidance system for a missile
SE425618B (en) DIRECTION DETERMINATION DEVICE
CN105987652A (en) Attitude angular rate estimation system and ammunition using same
GB2309068A (en) Missile guidance system
Mehra et al. Air-to-air missile guidance for strapdown seekers
US4378918A (en) Quasi-stabilization for line of sight guided missiles