JPH05176568A - Starting method of rotary electric machine - Google Patents

Starting method of rotary electric machine

Info

Publication number
JPH05176568A
JPH05176568A JP34439891A JP34439891A JPH05176568A JP H05176568 A JPH05176568 A JP H05176568A JP 34439891 A JP34439891 A JP 34439891A JP 34439891 A JP34439891 A JP 34439891A JP H05176568 A JPH05176568 A JP H05176568A
Authority
JP
Japan
Prior art keywords
starting
damper
field winding
superconducting
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34439891A
Other languages
Japanese (ja)
Inventor
Yasuomi Yagi
恭臣 八木
Kazuhiro Nakanishi
一裕 中西
Miyoshi Takahashi
身佳 高橋
Kiyoshi Yamaguchi
潔 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34439891A priority Critical patent/JPH05176568A/en
Publication of JPH05176568A publication Critical patent/JPH05176568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor And Converter Starters (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To simplify the starter of a superconducting synchronous machine by a method wherein damper start is applied in a low speed range in which the liquid surface of coolant is not formed and thyristor start is applied in a high speed range in which the liquid surface is formed. CONSTITUTION:A superconducting rotor is housed inside stator windings 7. The superconducting field windings 5 of the superconducting rotor and coolant are provided inside a normal temperature damper 1. The damper start of the rotor is performed by the rotary magnetic field 8 of the windings 7 and a magnetic field induced by an eddy current in the normal temperature damper 1 which is induced by the rotary magnetic field 8. With this constitution, the construction of a starter can be simplified and a shaft length can be reduced significantly, so that the size of a building can also be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転電機の始動方法及び
その装置、特に、超電導同期機のサイリスタ始動に好適
な始動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a rotary electric machine and an apparatus therefor, and more particularly to a method suitable for starting a thyristor of a superconducting synchronous machine.

【0002】[0002]

【従来の技術】超電導回転電機を、同期調相機・同期発
電機として使用する場合、問題となるのはその始動方法
である。
2. Description of the Related Art When a superconducting rotating electric machine is used as a synchronous phase modulator / synchronous generator, it is a starting method that is a problem.

【0003】蒸気タービンのようにボイラーより常に駆
動用蒸気の供給を受けられるものは問題ないが、ガスタ
ービンや、ガスタービンと蒸気タービンをあわせたコン
バインドサイクルのように、ガスタービンの点火回転数
まで駆動力の得られないもの、更には、同期調相機のよ
うに全く駆動源をもたないシステムにとっての始動方法
は、大きな問題となる。
There is no problem with a steam turbine that can be constantly supplied with driving steam from a boiler, but as with a gas turbine or a combined cycle in which a gas turbine and a steam turbine are combined, up to the ignition rotational speed of the gas turbine. A starting method for a system that cannot obtain a driving force, and further, for a system having no driving source such as a synchronous phase shifter becomes a serious problem.

【0004】ガスタービンおよびコンバインドサイクル
では、図5(a)に示すように起動モータとトルクコン
バータにて定格回転数までもっていくトルクコンバータ
始動(トルコン始動)が現在、主流であり、また、同期
調相機では図6(a)に示すインダクションモータとA
VAF装置をあわせたインダクション始動が現在よく使
用されている。
In a gas turbine and a combined cycle, as shown in FIG. 5 (a), torque converter starting (torque converter starting), which brings a starting motor and a torque converter to a rated rotation speed, is currently the mainstream, and a synchronous adjustment is performed. In the phase machine, the induction motor and A shown in FIG.
Induction start with a VAF device is now commonly used.

【0005】しかし、トルクコンバータ始動やインダク
ション始動においては、始動用に起動モータ,トルクコ
ンバータ,インダクションモータを付加しなければなら
ず、軸系が長くなりすぎる。また、トルクコンバータの
大型化ができないなどの問題が生じる。
However, in starting the torque converter or starting the induction motor, a starting motor, a torque converter, and an induction motor must be added for starting, and the shaft system becomes too long. In addition, there is a problem that the torque converter cannot be upsized.

【0006】その為、最近、同期発電機,同期調相機
を、始動時には同期電動機として使用するサイリスタ始
動方式が注目されてきている。図5(b),図6(b)
に示されるようにサイリスタ始動は、発電機,調相機の
固定子にAVAF装置よりなるサイリスタ始動電源17
にて可変周波数の回転磁界を発生させ、回転子の界磁電
流の作る回転子磁界と同期させ起動トルクを発生させる
方法であり、起動モータ,トルクコンバータ,インダク
ションモータが不要となり軸長が大幅に短縮される。
Therefore, recently, a thyristor starting system using a synchronous generator and a synchronous phase shifter as a synchronous motor at the time of starting has attracted attention. 5 (b) and 6 (b)
As shown in FIG. 3, the thyristor starting is performed by a thyristor starting power supply 17 including an AVAF device on the stator of the generator and the phase shifter.
This is a method of generating a rotating magnetic field with a variable frequency and generating a starting torque in synchronization with the rotor magnetic field created by the field current of the rotor. The starting motor, torque converter, and induction motor are not required, and the shaft length is significantly increased. Shortened.

【0007】超電導同期機においても、このサイリスタ
始動を適用すれば、超電導機のコンパクト性と、相まっ
て、軸長が大幅に短縮され、建屋の小型化,構成機器の
簡素化に大いに役だつものと考えられる。
Even in the superconducting synchronous machine, if this thyristor start is applied, it is considered that, in combination with the compactness of the superconducting machine, the axial length is greatly shortened, which is very useful for downsizing of the building and simplification of the components. Be done.

【0008】[0008]

【発明が解決しようとする課題】さて、サイリスタ始動
を超電導同期機に適用する場合、問題となるのは低速回
転時の回転子内の超電導界磁巻線の冷却である。界磁巻
線に通電する為には、界磁巻線が超電導となっていなけ
ればならず、界磁巻線が液体ヘリウム等の冷媒中に浸漬
している必要がある。
When the thyristor start is applied to the superconducting synchronous machine, the problem is cooling of the superconducting field winding in the rotor during low speed rotation. In order to energize the field winding, the field winding must be superconducting, and the field winding needs to be immersed in a refrigerant such as liquid helium.

【0009】超電導回転子5の場合、図4に示すように
遠心力で液体ヘリウム16を回転子内面に付着させ、回
転子の外径側に配置された界磁巻線が液体ヘリウムに浸
漬され充分冷却された後、励磁電流を流す事ができる。
液体ヘリウムが回転子内面にへばりつく遷移回転数Nc
は、定格回転数Noが3000/3600(RPM)
(50/60(Hz))に対して、約500(RPM)程
度である。
In the case of the superconducting rotor 5, the liquid helium 16 is attached to the inner surface of the rotor by centrifugal force as shown in FIG. 4, and the field winding arranged on the outer diameter side of the rotor is immersed in the liquid helium. After sufficiently cooled, an exciting current can be passed.
Transition speed Nc where liquid helium clings to the inner surface of the rotor
Is the rated speed No. 3000/3600 (RPM)
It is about 500 (RPM) with respect to (50/60 (Hz)).

【0010】Nc以上の回転数の場合は、励磁電流が通
電できるのでサイリスタ始動は可能であるが、Nc以下
の回転数においては、回転子の励磁がむずかしく、サイ
リスタ始動が困難となる。
When the rotational speed is higher than Nc, an exciting current can be passed, so that the thyristor can be started. However, when the rotational speed is lower than Nc, the excitation of the rotor is difficult and the thyristor start becomes difficult.

【0011】この為、液体ヘリウムの液面が形成される
回転数Ncまでは、始動用電動機にてたちあげ、その
後、サイリスタ始動に切りかえる事が考えられるが、容
量は小さくて良いものの始動用の電動機等の構成要素が
増え、軸長がのびるので、せっかくのサイリスタ始動の
メリットが生かせない。尚この種の回転電機としては特
開平3−128663 号公報を挙げることができる。
For this reason, it is conceivable that the starting electric motor is used up to the number of revolutions Nc at which the liquid surface of liquid helium is formed, and then the thyristor is started, but the capacity is small, but it is for starting. Since the number of components such as the electric motor increases and the shaft length extends, the merits of starting the thyristor cannot be utilized. As a rotary electric machine of this type, there is JP-A-3-128663.

【0012】本発明の目的は、始動用電動機のような補
助的な設備を付加せずにサイリスタ始動が可能な回転電
機の始動方法を提供することにある。
An object of the present invention is to provide a method for starting a rotary electric machine that can start a thyristor without adding auxiliary equipment such as a starting electric motor.

【0013】[0013]

【課題を解決するための手段】本発明の始動方法では、
冷媒の液面が形状される回転数Ncまでは、超電導回転
子の常温ダンパに誘起されるインダクショントルクによ
るダンパ始動とし、その後、液面が形成されてから界磁
巻線を励磁してサイリスタ始動にて定格回転数Noまで
もっていく始動方法とする。
According to the starting method of the present invention,
Up to the rotational speed Nc at which the liquid level of the refrigerant is formed, the damper is started by the induction torque induced in the room temperature damper of the superconducting rotor, and then the thyristor is started by exciting the field winding after the liquid level is formed. The starting method is to bring the rated speed No. to.

【0014】また、本発明の他の解決手段としては、回
転子の熱曲がりを防止する為に、通常設置されているタ
ーニング装置を使用し5(RPM)程度の低速回転数で
ターニング中に強制的に液体ヘリウム等(液体窒素etc)
の冷媒を注入し、断続的に冷媒に浸漬された状態で定格
電流よりも小さい通電可能な電流で励磁しサイリスタ始
動し、液面が形成されてからは定格電流まで励磁してサ
イリスタ始動にて定格回転数Noまでもっていく始動方
法とする。
As another solution of the present invention, in order to prevent thermal bending of the rotor, a normally installed turning device is used and forced at a low rotational speed of about 5 (RPM) during turning. Liquid helium, etc. (liquid nitrogen etc.)
The refrigerant is injected, and it is intermittently immersed in the refrigerant and excited by a current smaller than the rated current that can be conducted to start the thyristor.After the liquid level is formed, the thyristor starts by exciting to the rated current. The starting method is to bring the rated speed No.

【0015】[0015]

【作用】本発明の始動方法によれば、サイリスタ始動に
必要なAVAF装置等よりなるサイリスタ始動装置以外
に、補助的な始動用電動機等は一切必要とせず、ターニ
ング回転数から定格回転数まで始動する事が可能であ
る。
According to the starting method of the present invention, in addition to the thyristor starting device such as the AVAF device required for starting the thyristor, no auxiliary starting electric motor or the like is required, and the starting speed to the rated speed is started. It is possible to

【0016】すなわち、冷媒の液面の形成される回転数
までは固定子によって発生した回転磁界によって常温ダ
ンパに誘起されるインダクショントルクによって誘導機
として昇速され、液面が形成されてからは、界磁が励磁
され、回転磁界と同期力が働いて定格回転数まで昇速さ
れる。
That is, up to the rotational speed at which the liquid surface of the refrigerant is formed, the rotational magnetic field generated by the stator accelerates the induction torque by the induction torque in the room temperature damper, and after the liquid surface is formed, The field is excited, and the rotating magnetic field and synchronizing force work to increase the speed to the rated speed.

【0017】また別法においては、ターニング時に冷媒
を注入する。冷媒は回転子の下の方にたまるが、界磁巻
線はターニングしているので断続的には冷媒に冷やされ
る。そこで、定格電流よりも小さい電流で可能な限り励
磁し、回転磁界と同期させる。冷媒の液面が形成されて
から定格電流にて励磁して更に強い同期力で定格回転数
まで昇速する訳である。
In another method, a refrigerant is injected during turning. Refrigerant collects in the lower part of the rotor, but the field winding is turning and is therefore intermittently cooled by the refrigerant. Therefore, it is excited as much as possible with a current smaller than the rated current and synchronized with the rotating magnetic field. After the liquid surface of the refrigerant is formed, it is excited by the rated current and the speed is increased to the rated speed with a stronger synchronous force.

【0018】[0018]

【実施例】以下、図面を参照しながら本発明を詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

【0019】図1は、本発明の一実施例を示す超電導回
転子の断面図である。常温ダンパ1,低温ダンパ2を有
し、その中に巻線取付軸3,ウェッジ4で保持された超
電導界磁巻線5を収納するベッセル6がある。
FIG. 1 is a sectional view of a superconducting rotor showing an embodiment of the present invention. There is a vessel 6 having a room temperature damper 1 and a low temperature damper 2 in which a superconducting field winding 5 held by a winding mounting shaft 3 and a wedge 4 is housed.

【0020】超電導回転子は、5RPM程度の低速のタ
ーニング時に、冷却された状態となっている。しかし、
まだ冷媒は注入されておらず、巻線取付軸内部に冷媒は
たまっていないので、界磁も励磁していない。その時、
回転子外部の固定子の3相巻線7に、AVAF装置より
なるサイリスタ始動電源より適当な周波数の始動電流を
流すと、回転子上に回転磁界8が発生する。この回転磁
界8により常温ダンパ1上に渦電流9とそれによる誘起
磁界10が、誘起され、回転磁界8と誘起磁界10との
間にインダクショントルクが働き回転子はダンパ始動さ
れ昇速する。回転数が充分液面のたつ回転数(約500
RPM)となったあと、冷媒を回転子内部に注入して、
界磁巻線を冷媒に浸漬し励磁電流を流す。励磁電流が流
れれば界磁磁界が形成されるから、界磁磁界と回転磁界
8が同期して同期力が生じる。サイリスタ始動電源の周
波数を徐々に上げていき、最終的に定格周波数50/6
0Hzまでもっていけば、それと、同期して、回転子も
定格回転数3000/3600RPMまで昇速されることに
なる。
The superconducting rotor is in a cooled state during low speed turning of about 5 RPM. But,
Since the refrigerant has not been injected yet and the refrigerant has not accumulated inside the winding mounting shaft, the field is not excited. At that time,
When a starting current of a proper frequency is supplied from a thyristor starting power source composed of an AVAF device to the three-phase winding 7 of the stator outside the rotor, a rotating magnetic field 8 is generated on the rotor. The rotating magnetic field 8 induces an eddy current 9 and the induced magnetic field 10 on the room-temperature damper 1, and an induction torque acts between the rotating magnetic field 8 and the induced magnetic field 10 to start the damper and accelerate the rotor. The number of rotations is enough to reach the liquid level (about 500
RPM), then inject the refrigerant into the rotor,
The field winding is immersed in the coolant and an exciting current is passed. When the exciting current flows, a field magnetic field is formed, so that the field magnetic field and the rotating magnetic field 8 are synchronized with each other to generate a synchronizing force. Gradually raise the frequency of the thyristor starting power supply, and finally reach the rated frequency of 50/6.
If it goes up to 0 Hz, the rotor will be speeded up to the rated speed of 3000/3600 RPM in synchronization with it.

【0021】図2に、図1のダンパ始動時、サイリスタ
始動電源より通電される3相電流の周波数に対して、回
転子が静止状態、すなわち、0(Hz)相当の時、発生
するトルク11,常温ダンパのロス(損失)12,界磁
巻線,低温ダンパのロス(損失)13の相対値をプロッ
トしている。
FIG. 2 shows a torque generated when the damper of FIG. 1 is started, when the rotor is in a stationary state, that is, at a frequency corresponding to 0 (Hz) with respect to the frequency of the three-phase current supplied from the thyristor starting power source. The relative values of the loss 12 of the room temperature damper, the field winding, and the loss 13 of the low temperature damper are plotted.

【0022】これで分るように10(Hz)程度の所で
トルク11は最大となり、ダンパや界磁巻線部の損失
(ロス)は、まだ充分に小さい事が分る。
As can be seen from this, the torque 11 reaches its maximum at about 10 (Hz), and it can be seen that the loss of the damper and the field winding portion is still sufficiently small.

【0023】すなわち、サイリスタ同期始動に入る前の
ダンパ始動時には、トルクが最大となり、損失の充分小
さい10(Hz)程度の周波数で駆動するのがよい。も
ちろん、回転数があがって、回転子の回転数が5(H
z)となれば、それをたした15(Hz)で回転磁界を
つくれば、回転子上には15−5=10(Hz)の回転
磁界が生じて最適化される。
That is, at the time of starting the damper before starting the thyristor synchronous start, it is preferable to drive the damper at a frequency of about 10 (Hz) where the torque is maximum and the loss is sufficiently small. Of course, the rotation speed increases, and the rotation speed of the rotor is 5 (H
z), if a rotating magnetic field is generated at 15 (Hz), the rotating magnetic field of 15-5 = 10 (Hz) is generated on the rotor, and optimization is performed.

【0024】これを、図にしたのが、図3である。横軸
は回転子の回転数(RPM)、縦軸はサイリスタ始動電
源の周波数である。冷媒の液面が形成される回転数50
0RPMまでは、無励磁でダンパ始動とする。その時の
電源周波数fB は、ロータの回転数fロータ(Hz換
算)に、上記の最適周波数の10(Hz)程度を加えた
ものとする。すなわちfB =fロータ+10(Hz)。
500RPM以降は、界磁が励磁され通常のサイリスタ
始動となる。
This is illustrated in FIG. The horizontal axis represents the rotational speed (RPM) of the rotor, and the vertical axis represents the frequency of the thyristor starting power supply. Number of rotations at which the liquid surface of the refrigerant is formed 50
The damper is started without excitation until 0 RPM. The power supply frequency f B at that time is the number of revolutions f of the rotor (converted to Hz) plus about 10 (Hz) of the optimum frequency. That is, f B = f rotor + 10 (Hz).
After 500 RPM, the field is excited and the normal thyristor starts.

【0025】図2に示した最大トルクを発生する周波数
はダンパの構造・材質である程度、コントロールする事
ができる。この周波数をあまり高くすると損失が大きく
なってしまうので、10(Hz)以下の低周波数にくる
よう選定することが望ましい。
The frequency for generating the maximum torque shown in FIG. 2 can be controlled to some extent by the structure and material of the damper. If this frequency is set too high, the loss will increase, so it is desirable to select a low frequency of 10 (Hz) or less.

【0026】また、図3のように、ダンパ始動時、fB
=fロータ+10(Hz)と最適化して始動せず、電源
周波数fB を、たとえば、10(Hz)一定として始動
してもよい。
Further, as shown in FIG. 3, when the damper is started, f B
= F rotor +10 (Hz) may be optimized and the engine may not be started, but may be started with the power supply frequency f B kept constant at 10 (Hz), for example.

【0027】ところで、この方法では、ターニングもサ
イリスタ始動電源によるインダクショントルクで実施す
る事が可能であり、その時はターニング装置も削除でき
る。次に、上述と異なる方法を説明する。
By the way, in this method, it is possible to perform the turning with the induction torque by the thyristor starting power supply, and at that time, the turning device can be deleted. Next, a method different from the above will be described.

【0028】図4(a)に示されるように回転子が5R
PM程度でターニングしている時に、冷媒1bを強制的
に注入する。図4(a)のように冷媒は回転子内の下部
にたまり、界磁巻線5の一部のみを冷却する。しかし回
転子はターニングしており、1分間に5回程度は必ず、
冷媒に浸漬される。この状態で、定格電流よりも小さ
い、かつ、励磁できる限りの電流で界磁を励磁する。た
とえば、定格の1/2〜1/3程度。そこで発生する回
転子界磁にてサイリスタ同期始動をかける。冷媒が遷移
回転数Ncをへて(図4(b))、回転子の内面にへば
りつき、液面が形成されたら(図4(c))、界磁巻線5
は完全に冷媒に浸漬される。こうなれば、界磁巻線5の
冷却は完全なものとなる為、定格電流まで励磁して、サ
イリスタ同期始動を実施することが可能である。
As shown in FIG. 4A, the rotor is 5R.
During turning at about PM, the coolant 1b is forcibly injected. As shown in FIG. 4A, the refrigerant accumulates in the lower part of the rotor and cools only part of the field winding 5. However, the rotor is turning, and about 5 times a minute,
Immersed in a refrigerant. In this state, the field is excited with a current that is smaller than the rated current and that can be excited. For example, about 1/2 to 1/3 of the rating. The thyristor synchronous start is applied by the rotor field generated there. When the refrigerant has a transition rotational speed Nc (Fig. 4 (b)) and sticks to the inner surface of the rotor to form a liquid level (Fig. 4 (c)), the field winding 5
Is completely immersed in the refrigerant. In this case, since the field winding 5 is completely cooled, it is possible to excite up to the rated current and perform the thyristor synchronous start.

【0029】[0029]

【発明の効果】本発明によれば、超電導同期機の始動時
に、補助的に始動用の電動機や、トルクコンバータ等を
軸系に付加する必要がなく、始動装置の構成の簡素化、
軸系の長さの大幅な低減が可能となる。又同期機を設置
する建物もその分小さくできる。
According to the present invention, at the time of starting the superconducting synchronous machine, it is not necessary to additionally add a starting electric motor, a torque converter, etc. to the shaft system, and the structure of the starting device can be simplified.
It is possible to greatly reduce the length of the shaft system. Also, the building where the synchronous machine is installed can be made smaller accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である超電導回転子の断面図で
ある。
FIG. 1 is a cross-sectional view of a superconducting rotor that is an embodiment of the present invention.

【図2】図1のダンパ始動時の電源周波数とインダクシ
ョントルク・ダンパ部の損失の相対値との関係を示す特
性図である。
FIG. 2 is a characteristic diagram showing a relationship between a power supply frequency at the time of starting the damper of FIG. 1 and a relative value of a loss of an induction torque damper part.

【図3】図1の始動方法を示す特性図である。FIG. 3 is a characteristic diagram showing the starting method of FIG.

【図4】超電導回転子内部の冷媒の挙動を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing the behavior of the refrigerant inside the superconducting rotor.

【図5】従来のコンバインドサイクルの始動方法を示す
説明図である。
FIG. 5 is an explanatory diagram showing a conventional combined cycle starting method.

【図6】従来の同期調相機の始動方法を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a method for starting a conventional synchronous phase modulator.

【符号の説明】[Explanation of symbols]

1…常温ダンパ、2…低温ダンパ、3…巻線取付軸、4
…ウェッジ、5…超電導界磁巻線、6…ベッセル、7…
固定子三相巻線、8…回転磁界、9…誘起電流、10…
誘起磁界、11…インダクション・トルク、12…常温
ダンパ損失(ロス)、13…界磁巻線、低温ダンパ損失
(ロス)、14…電源の周波数、15…回転数、16…
冷媒、17…サイリスタ始動電源(AVAF)。
1 ... Room temperature damper, 2 ... Low temperature damper, 3 ... Winding mounting shaft, 4
… Wedges, 5… Superconducting field windings, 6… Vessels, 7…
Stator three-phase winding, 8 ... rotating magnetic field, 9 ... induced current, 10 ...
Induced magnetic field, 11 ... Induction torque, 12 ... Room temperature damper loss (loss), 13 ... Field winding, low temperature damper loss (loss), 14 ... Power supply frequency, 15 ... Rotation speed, 16 ...
Refrigerant, 17 ... Thyristor starting power supply (AVAF).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 潔 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Yamaguchi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Nitate Manufacturing Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】超電導界磁巻線とそれを収納するベッセ
ル,ダンパ等より構成された超電導同期機の始動方法で
あって、超電導界磁巻線を冷却する冷媒の液面が形成さ
れる回転数までは、界磁巻線を無励磁とし、ダンパ始動
を実施し、冷媒の液面が形成された後は、界磁巻線を励
磁し、サイリスタ始動にて定格回転数まで昇速する事を
特徴とする回転電機の始動方法。
1. A method for starting a superconducting synchronous machine comprising a superconducting field winding and a vessel, a damper, etc. for accommodating the superconducting field winding, wherein the rotation is such that a liquid level of a refrigerant for cooling the superconducting field winding is formed. Up to the rated number of revolutions by thyristor starting, after the liquid level of the refrigerant has been formed, the field winding is excited and the field winding is not excited. A method for starting a rotating electric machine, characterized by:
【請求項2】上記の請求項1において、ダンパ始動時
に、外部始動用電源の周波数をある一定の値に固定する
事を特徴とする回転電機の始動方法。
2. The method of starting a rotating electric machine according to claim 1, wherein the frequency of the external starting power supply is fixed to a certain value when the damper is started.
【請求項3】上記の請求項1において、ダンパ始動時
に、外部始動用電源の周波数と回転子の回転周波数との
差をある一定の値に固定する事を特徴とする回転電機の
始動方法。
3. The method for starting a rotary electric machine according to claim 1, wherein the difference between the frequency of the external starting power source and the rotation frequency of the rotor is fixed to a certain value when the damper is started.
【請求項4】上記の請求項1において、ダンパの材質・
構造を最適化する事によって、ダンパ始動時に発生する
最大トルクを、外部始動用電源の周波数と回転子の回転
周波数との差が、10Hz以下の所で生じるようにした
事を特徴とする回転電機の始動方法。
4. The damper material according to claim 1,
A rotating electric machine characterized by optimizing the structure so that the maximum torque generated at the time of starting the damper is generated when the difference between the frequency of the external starting power supply and the rotation frequency of the rotor is 10 Hz or less. How to start.
【請求項5】上記の請求項1において、ダンパ始動装置
を使用して回転機のターニングも実施する事を特徴とす
る回転電機の始動方法。
5. A method of starting a rotating electric machine according to claim 1, wherein the damper starting device is used to perform turning of the rotating machine.
【請求項6】超電導界磁巻線とそれを収納するベッセ
ル,ダンパ等より構成される超電導同期機の始動方法で
あって、ターニング中に冷媒を回転子の中に注入し、冷
媒の液面が形成される回転数までは、定格電流よりは小
さいが、通電可能な電流にて界磁巻線を励磁してサイリ
スタ始動し、冷媒の液面が形成された後は、界磁巻線を
定格電流まで励磁してサイリスタ始動にて定格回転数ま
で昇速する事を特徴とする回転電機の始動方法。
6. A method for starting a superconducting synchronous machine comprising a superconducting field winding, a vessel for accommodating the superconducting field winding, a damper, etc., wherein a refrigerant is injected into a rotor during turning, and the liquid level of the refrigerant is increased. Is lower than the rated current up to the number of revolutions at which the field winding is formed, but after the field winding is excited by exciting the field winding with a current that can be conducted and the liquid level of the refrigerant is formed, the field winding is turned on. A method for starting a rotating electric machine, characterized by exciting up to the rated current and increasing the speed to the rated speed by starting the thyristor.
JP34439891A 1991-12-26 1991-12-26 Starting method of rotary electric machine Pending JPH05176568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34439891A JPH05176568A (en) 1991-12-26 1991-12-26 Starting method of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34439891A JPH05176568A (en) 1991-12-26 1991-12-26 Starting method of rotary electric machine

Publications (1)

Publication Number Publication Date
JPH05176568A true JPH05176568A (en) 1993-07-13

Family

ID=18368944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34439891A Pending JPH05176568A (en) 1991-12-26 1991-12-26 Starting method of rotary electric machine

Country Status (1)

Country Link
JP (1) JPH05176568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204492A (en) * 2003-12-19 2005-07-28 Sumitomo Electric Ind Ltd Superconducting motor device
JP2006238570A (en) * 2005-02-23 2006-09-07 Sumitomo Electric Ind Ltd Superconducting motor device
CN111911256A (en) * 2020-08-12 2020-11-10 哈尔滨理工大学 Liquid cooling circulation system of phase modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204492A (en) * 2003-12-19 2005-07-28 Sumitomo Electric Ind Ltd Superconducting motor device
JP2006238570A (en) * 2005-02-23 2006-09-07 Sumitomo Electric Ind Ltd Superconducting motor device
CN111911256A (en) * 2020-08-12 2020-11-10 哈尔滨理工大学 Liquid cooling circulation system of phase modulator

Similar Documents

Publication Publication Date Title
JP4030997B2 (en) Combustion turbine start method and combustion turbine generator configured to implement the method
CA1074395A (en) Quadrature axis field brushless exciter
US3809914A (en) Starting system for power plants
US7227271B2 (en) Method and apparatus for controlling an engine start system
RU2524537C2 (en) Method and system for turbomachine slow barring
RU99118227A (en) IMPROVEMENTS IN HIGH-CIRCUITING ELECTRIC MOTORS
JPH0946973A (en) Rotor cooling construction for motor
JPH0695840B2 (en) Control device for wire wound induction machine
CN101272115B (en) Electromotor system, control method and permanent magnet synchronous electromotor
Rahman et al. Synchronization process of line-start permanent magnet synchronous motors
JP2007259587A (en) Power generation/regeneration system and excitation method of power generation/regeneration system, and power generation method of power generation/regeneration system
JPH05176568A (en) Starting method of rotary electric machine
JPH0681555B2 (en) Variable speed generator and method
US4300078A (en) Method of constructing models of rotary electrical machines to provide simultaneous similitude of electromagnetic, thermal and mechanical working conditions of the rotor
JP3128282B2 (en) Brushless multi-phase DC motor
US9166456B2 (en) System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque
JP4488896B2 (en) Shaft system start-up method and apparatus for carrying out the method
JP2001314051A (en) Rotor structure of permanent magnet synchronous motor
JPH06159098A (en) Starting method for gas turbine
JPH06319243A (en) Heating apparatus for shrinkage-fitting rotor in electric rotary machine
JPH06185311A (en) Speed control of power generating facility
JPS58123345A (en) Flywheel generator
JP3220721B2 (en) Vacuum pump
Iwanciw et al. Application of a high speed, high power eddy current coupling on a turbine test stand
JP2001085148A (en) Induction heating roller device