JPH05176474A - Overcharge control circuit - Google Patents

Overcharge control circuit

Info

Publication number
JPH05176474A
JPH05176474A JP34421591A JP34421591A JPH05176474A JP H05176474 A JPH05176474 A JP H05176474A JP 34421591 A JP34421591 A JP 34421591A JP 34421591 A JP34421591 A JP 34421591A JP H05176474 A JPH05176474 A JP H05176474A
Authority
JP
Japan
Prior art keywords
charging
battery
voltage value
circuit
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34421591A
Other languages
Japanese (ja)
Inventor
Yoshihiro Arai
義博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34421591A priority Critical patent/JPH05176474A/en
Publication of JPH05176474A publication Critical patent/JPH05176474A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an overcharge control circuit for rechargeable battery built in an appliance in which adverse effect of ambient temperature or charging voltage is suppressed and overcharge is prevented from sustaining. CONSTITUTION:An appliance incorporates a rechargeable power supply battery 12 which is fed with a charging current from a constant current circuit 13a comprising a -DELTAV detecting control circuit for detecting the battery voltage drop DELTAV at the end of charging operation of the rechargeable battery 12 and terminating the charging operation. The appliance further incorporates a thermister 28 for sequentially converting the temperature of the rechargeable battery 12 into a voltage value thus detecting a battery temperature voltage value, a voltage reference generating circuit 32 for converting a temperature at the time of overcharge of the rechargeable battery 12 into a voltage value thus outputting a voltage reference, and a circuit 31 for comparing the battery temperature voltage value with the voltage reference, wherein a switching circuit 33 interrupts a circuit for feeding the charging current from an external charger when the battery temperature voltage value exceeds the voltage reference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電電池の過充電制御
回路に関し、特に充電電池が内蔵された電子機器などに
外部充電器を接続して充電を行う過充電制御回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overcharge control circuit for a rechargeable battery, and more particularly to an overcharge control circuit for connecting an external charger to an electronic device having a built-in rechargeable battery for charging.

【0002】[0002]

【従来の技術】近年、例えばファクシミリ装置などのよ
うな電子機器が小型、軽量化されるに伴って、商用電源
の他に充電電池を内蔵し、これを作動電源として持ち運
びが容易で使用場所が制約されない、携帯に便利な電子
機器が開発されている。従来、このような電子機器に
は、機器内に商用電源(AC)を一定の直流電源(D
C)に変換する電源回路が配設され、その電源回路から
本体回路に電源供給したり、内蔵された充電電池を充電
したりするようにしていた。
2. Description of the Related Art In recent years, as electronic devices such as facsimile machines have become smaller and lighter, a rechargeable battery has been built in in addition to a commercial power source, which is used as an operating power source and is easy to carry and easy to use. Unconstrained, portable electronic devices have been developed. Conventionally, in such electronic devices, a commercial power supply (AC) is installed in the device and a constant DC power supply (D) is used.
A power supply circuit for converting into C) is provided, and the power supply circuit supplies power to the main body circuit and charges the built-in rechargeable battery.

【0003】一般に、電源回路は、例えばトランスや電
解コンデンサなど他の回路部品に比べて重量や形状の大
きい部品を使用する。これらの部品は、電源回路の出力
電流の大きさに応じて大きいものが必要になる。このた
め、上記した携帯可能な電子機器の場合は、外部から電
源を供給すると共に、内部に携帯用の電源としての充電
電池が内蔵された電源供給方式が提案されている。
Generally, the power supply circuit uses a component having a larger weight and shape than other circuit components such as a transformer and an electrolytic capacitor. These components need to be large according to the magnitude of the output current of the power supply circuit. For this reason, in the case of the portable electronic device described above, a power supply system has been proposed in which a power supply is supplied from the outside and a rechargeable battery as a portable power supply is built therein.

【0004】そして、この機器内に内蔵された充電電池
を充電する場合は、充電電池の使用状況に応じて充電条
件を制御しながら充電する必要があり、特に、大きな電
流を使って短時間で充電を行うには外部に制御回路を設
ける必要があった。そこで、従来の充電制御方式として
は、電池電圧検出方式、電池温度検出方式、−ΔV検出
制御方式及びタイマー方式などがある。
When charging the rechargeable battery built in this equipment, it is necessary to charge the rechargeable battery while controlling the charging conditions according to the usage condition of the rechargeable battery. In particular, a large current is used for a short time. To charge the battery, it was necessary to provide a control circuit outside. Therefore, as conventional charging control methods, there are a battery voltage detection method, a battery temperature detection method, a -ΔV detection control method, a timer method, and the like.

【0005】図5は従来の電池電圧検出方式を説明する
線図であり、図6は従来の電池温度検出方式を説明する
図で、(a)は回路ブロック図、(b)は制御動作を示
す線図である。図7は従来の−ΔV検出制御方式を説明
する図で、(a)は回路ブロック図、(b)は制御動作
を示す線図である。まず、電池電圧検出方式は、図5に
示すように、充電末期に電池電圧が上昇して一定のカッ
トオフ電圧(Vc)になった場合に、これを検出して充
電電流を制御するものである。ところが、この方式は、
充電時の電池電圧が充電電流や周囲温度などにより変化
し易く、これに対する補償回路を別に要するという問題
がある。また、充電電圧のピーク値よりもカットオフ電
圧(Vc)を低めに設定しなければならないことから、
充電容量が確保できないという問題がある。
FIG. 5 is a diagram illustrating a conventional battery voltage detection method, FIG. 6 is a diagram illustrating a conventional battery temperature detection method, (a) is a circuit block diagram, and (b) is a control operation. It is a diagram showing. 7A and 7B are diagrams for explaining a conventional -ΔV detection control method, FIG. 7A is a circuit block diagram, and FIG. 7B is a diagram showing a control operation. First, in the battery voltage detection method, as shown in FIG. 5, when the battery voltage rises to a certain cutoff voltage (Vc) at the end of charging, it is detected and the charging current is controlled. is there. However, this method
There is a problem that the battery voltage at the time of charging easily changes depending on the charging current, the ambient temperature, etc., and a compensation circuit for this is required separately. Moreover, since the cutoff voltage (Vc) must be set lower than the peak value of the charging voltage,
There is a problem that the charging capacity cannot be secured.

【0006】次に、電池温度検出方式は、図6(a)に
示すように、商用電源などを整流回路を介して直流電源
1とし、この直流電源1を使って充電電池2を充電する
ものである。この充電電池2は、電池ケース3で覆われ
ると共に、電池の外装缶側面には、サーミスタやサーモ
スタットなどの感温素子4が付加されて、充電末期にお
ける陰極でのガス消費反応によって生じる電池発熱が検
出される。そして、感温素子4が検出した温度が図6
(b)のカットオフ温度に達した場合は、スイッチング
回路5を切り換えて充電電流の供給を中止するものであ
る。この方式は、過充電域に入ってから充電電流が制御
されるため、充電する度に充電電池が必ず一定時間過充
電されるという問題がある。充電電池を過充電した場合
の問題は、充電電池の寿命が短くなって不良化し易
く、液漏れを生じたり、複数の充電電池のうち幾つ
かが不良になると、その抵抗が0Ωとなってしまい、正
常に充電しても過充電状態になることなどが挙げられ
る。
Next, in the battery temperature detecting method, as shown in FIG. 6 (a), a commercial power source or the like is used as a direct current power source 1 through a rectifying circuit, and the direct current power source 1 is used to charge a rechargeable battery 2. Is. The rechargeable battery 2 is covered with a battery case 3, and a temperature sensitive element 4 such as a thermistor or a thermostat is added to the side surface of the outer can of the battery to generate heat from the battery due to gas consumption reaction at the cathode at the end of charging. To be detected. The temperature detected by the temperature sensitive element 4 is shown in FIG.
When the cutoff temperature of (b) is reached, the switching circuit 5 is switched to stop the supply of the charging current. This method has a problem that the charging battery is always overcharged for a certain period of time each time it is charged, because the charging current is controlled after entering the overcharge region. The problem of overcharging a rechargeable battery is that the life of the rechargeable battery is shortened and it tends to be defective. If liquid leakage occurs or some of the plurality of rechargeable batteries become defective, the resistance becomes 0Ω. , Even if it is normally charged, it may be overcharged.

【0007】次に、−ΔV検出制御方式は、図7(a)
に示すように、定電流電源6からの充電電流によって充
電電池2を充電する際に、充電電池2とスイッチング回
路5との間に充電末期の電池電圧の降下分(ΔV)を検
出する−ΔV検出制御回路7が設けられている。この−
ΔV検出制御回路7は、比較回路8とピーク値記憶回路
9とで構成されており、充電電池2の電池電圧を比較回
路8の一方端子に入力すると共に、電池電圧のピーク値
をピーク値記憶回路9で記憶して比較回路8の他方端子
に入力し、比較回路8で比較しながらピーク値から−Δ
Vだけ電池電圧が下がった時点でスイッチング回路5を
作動させ、充電電流の供給を中止するものである。この
方式は、上記した電圧検知方式の一種であるが、周囲温
度に対する補償が不要である。
Next, the -ΔV detection control method is shown in FIG.
As shown in, when charging the rechargeable battery 2 with the charging current from the constant current power source 6, a drop (ΔV) in battery voltage at the end of charging is detected between the rechargeable battery 2 and the switching circuit −ΔV. A detection control circuit 7 is provided. This-
The ΔV detection control circuit 7 is composed of a comparison circuit 8 and a peak value storage circuit 9, inputs the battery voltage of the rechargeable battery 2 to one terminal of the comparison circuit 8, and stores the peak value of the battery voltage in the peak value. The value is stored in the circuit 9 and input to the other terminal of the comparison circuit 8. While comparing with the comparison circuit 8, from the peak value to −Δ
When the battery voltage drops by V, the switching circuit 5 is activated to stop the charging current supply. This method is a kind of the voltage detection method described above, but does not require compensation for ambient temperature.

【0008】次に、タイマー方式は、タイマーによって
一定時間充電を行うものである。この方式は、充電量を
ほぼ一定にできるが、電池の残存容量が零の状態から充
電する場合には有効であるが、残存容量がある場合は過
充電になる可能性があるという問題がある。
Next, in the timer method, charging is performed for a certain time by a timer. Although this method can make the amount of charge almost constant, it is effective when charging from a state where the remaining capacity of the battery is zero, but there is a problem that it may be overcharged when there is a remaining capacity. ..

【0009】[0009]

【発明が解決しようとする課題】上記したように、従来
の種々の過充電制御回路は、それぞれ一長一短がある中
で、充電電流や周囲温度などの影響を受け難く、過充電
となる可能性の少ない−ΔV検出制御方式が一般的に用
いられている。ところが、この−ΔV検出制御方式は、
図7(b)に示されるように、充電末期のピーク値から
−ΔVだけ下がった時点で図7(a)のスイッチング回
路5が作動して充電電流の供給が一旦中止されるが、充
電器のコンセントを誤って一度抜いてから再び入れる
と、その時点の電池電圧をピーク値としてピーク値記憶
回路9が記憶するため、その後充電電流が供給されても
電池の特性上さらに−ΔVが検出されることはなく、図
7(b)中のハッチングで示す過充電域10のように過
充電が継続して行われる可能性があるという問題があっ
た。
As described above, the various conventional overcharge control circuits have advantages and disadvantages, but are less susceptible to the influence of the charging current and the ambient temperature and may be overcharged. The low-ΔV detection control method is generally used. However, this −ΔV detection control method is
As shown in FIG. 7B, the switching circuit 5 of FIG. 7A operates at the time point when the peak value at the end of charging falls by −ΔV, and the supply of the charging current is temporarily stopped. When the outlet is accidentally unplugged and then plugged in again, the peak voltage storage circuit 9 stores the battery voltage at that time as the peak value, and therefore −ΔV is further detected due to the characteristics of the battery even if the charging current is supplied thereafter. However, there is a problem in that overcharging may continue as in the overcharging area 10 shown by hatching in FIG. 7B.

【0010】本発明は、このような従来の課題に鑑みて
なされたものであり、機器内に内蔵された充電電池を充
電する際に周囲温度や充電電圧による影響が少なく、継
続して過充電が行われる可能性の少ない過充電制御回路
を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and when charging a rechargeable battery incorporated in a device, there is little influence by ambient temperature or charging voltage, and overcharging continues. It is an object of the present invention to provide an overcharge control circuit that is less likely to occur.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
機器内に電源用の充電電池を備え、該充電電池を充電す
る充電電流が定電流回路を備えた外部充電器から供給さ
れると共に、該外部充電器には前記充電電池が発する充
電末期の電池電圧の降下分(ΔV)を検出して充電を終
了する−ΔV検出制御回路が設けられた過充電制御回路
において、前記機器内部には、前記充電電池の温度を逐
次電圧値に変換して電池温度電圧値を検出する電池温度
検出手段と、前記充電電池の過充電時に発生する温度を
電圧値に変換した基準電圧値を出力する基準電圧値出力
手段と、前記検出された電池温度電圧値と前記基準電圧
値とを比較する電圧比較手段と、該電圧比較手段により
電池温度電圧値が基準電圧値以上になった場合に前記外
部充電器からの充電電流の供給回路を切って充電を終了
させるスイッチング手段と、を備えたことを特徴とす
る。
The invention according to claim 1 is
The device has a rechargeable battery for power supply, and a charging current for charging the rechargeable battery is supplied from an external charger having a constant current circuit, and the external charger has a battery at the end of charging generated by the rechargeable battery. In the overcharge control circuit including a −ΔV detection control circuit that detects a voltage drop (ΔV) and terminates charging, the temperature of the rechargeable battery is sequentially converted into a voltage value inside the device. Battery temperature detection means for detecting a temperature voltage value, reference voltage value output means for outputting a reference voltage value obtained by converting a temperature generated when the charging battery is overcharged into a voltage value, and the detected battery temperature voltage value Voltage comparison means for comparing with the reference voltage value, and when the battery temperature voltage value becomes equal to or higher than the reference voltage value by the voltage comparison means, the charging current supply circuit from the external charger is cut off to terminate the charging. Switching Means and are provided.

【0012】請求項2記載の発明は、請求項1記載のス
イッチング手段に代えて、前記電圧比較手段により電池
温度電圧値が基準電圧値以上になった場合に、前記外部
充電器から充電電池へ充電電流を供給する供給回路に対
して並列に疑似負荷抵抗を接続する疑似負荷抵抗接続手
段を備えたことを特徴とする。請求項3記載の発明は、
請求項1または2記載の過充電制御回路において、前記
外部充電器から機器内の充電電池へ充電電流を供給する
供給回路の途中に外部充電器から充電電池方向にのみ電
流を流す逆電流防止ダイオードが設けられ、該逆電流防
止ダイオードのアノード側から機器内の充電制御を行う
前記電池温度検出手段、基準電圧値出力手段、電圧比較
手段、スイッチング手段又は疑似負荷接続手段などに対
して電源を供給するようにしたことを特徴とする過充電
制御回路。
According to a second aspect of the present invention, in place of the switching means of the first aspect, when the battery temperature voltage value becomes equal to or higher than a reference voltage value by the voltage comparing means, the external charger changes to the rechargeable battery. It is characterized in that a pseudo load resistance connecting means for connecting a pseudo load resistance in parallel to a supply circuit for supplying a charging current is provided. The invention according to claim 3 is
The overcharge control circuit according to claim 1 or 2, wherein a reverse current prevention diode that causes a current to flow only from the external charger to the charging battery in the middle of the supply circuit that supplies the charging current from the external charger to the charging battery in the device. Is provided, and power is supplied from the anode side of the reverse current prevention diode to the battery temperature detection means, the reference voltage value output means, the voltage comparison means, the switching means, the pseudo load connection means, etc. An overcharge control circuit characterized by the above.

【0013】[0013]

【作用】請求項1記載の発明では、外部充電器の−ΔV
検出制御回路で充電を終了させると共に、機器内で充電
電池の温度を電圧値に変換した電池温度電圧値と、充電
電池の過充電時の温度を電圧値に変換した基準電圧値と
を比較して、電池温度電圧値が基準電圧値以上となって
充電電池が過充電温度に達した時に、外部充電器から充
電電池に供給される充電電流供給回路を開いて充電を終
了させるものである。このため、従来は−ΔV検出制御
回路で充電が終了した後に、誤ってコンセントが抜かれ
てから再び入れられると、再度充電を開始し、過充電状
態が継続する。しかし、本発明の機器内の過充電制御回
路は、誤って再度充電が開始された後も充電電池温度を
監視し、過充電温度に達すると充電を終了させるので、
継続的な過充電が防止される。
According to the first aspect of the invention, the external charger has -ΔV.
The charge is terminated by the detection control circuit, and the battery temperature / voltage value that converts the temperature of the rechargeable battery into a voltage value inside the device and the reference voltage value that converts the overcharge temperature of the rechargeable battery into a voltage value are compared. When the battery temperature voltage value exceeds the reference voltage value and the charging battery reaches the overcharging temperature, the charging current supply circuit supplied from the external charger to the charging battery is opened to terminate the charging. Therefore, conventionally, if the outlet is accidentally unplugged and then re-plugged after the charging is completed by the −ΔV detection control circuit, the charging is restarted and the overcharged state continues. However, the overcharge control circuit in the device of the present invention monitors the charging battery temperature even after the charging is accidentally started again, and terminates the charging when the overcharging temperature is reached.
Continuous overcharging is prevented.

【0014】請求項2記載の発明では、充電電池温度を
監視して過充電状態を検知した時には、外部充電器から
充電電池へ充電電流を供給する供給回路に対して疑似負
荷抵抗が並列に接続される。これにより、外部充電器か
ら充電電池へ供給される充電電流は、疑似負荷抵抗側に
も流れて電流量を増加させようとするが、外部充電器内
の定電流回路によって電流量が一定に保持しようとする
ので、電圧降下を発生させる。このため、外部充電器に
内蔵された−ΔV検出制御回路は、継続的な過充電状態
に陥っていても、電圧降下分(ΔV)を検出して充電が
終了するので、充電電池の過充電が防止される。
According to the second aspect of the present invention, the pseudo load resistor is connected in parallel to the supply circuit that supplies the charging current from the external charger to the charging battery when the charging battery temperature is monitored and the overcharge state is detected. To be done. As a result, the charging current supplied from the external charger to the rechargeable battery will also flow to the pseudo load resistance side to increase the amount of current, but the amount of current is kept constant by the constant current circuit inside the external charger. Attempts to generate a voltage drop. Therefore, the −ΔV detection control circuit built in the external charger detects the voltage drop (ΔV) and terminates the charging even if the continuous overcharge state occurs, so that the charging battery is overcharged. Is prevented.

【0015】請求項3記載の発明では、外部充電器から
機器内の充電電池へ充電電流を供給する供給回路の途中
に外部充電器から充電電池方向にのみ電流を流す逆電流
防止ダイオードが設けられ、その逆電流防止ダイオード
のアノード側から機器内の過充電制御回路へ電源が供給
される。このため、外部充電器から充電電池へ充電する
時には、過充電制御回路に電源が供給されて作動する
が、充電後に充電電池から出力される電流は逆電流防止
ダイオードによって過充電制御回路に供給されないの
で、過充電制御回路が作動せず、無駄な電力消費が防止
される。
According to the third aspect of the present invention, a reverse current prevention diode is provided in the middle of the supply circuit for supplying the charging current from the external charger to the charging battery in the device, and the reverse current preventing diode is used to flow the current only from the external charger to the charging battery. Power is supplied from the anode side of the reverse current prevention diode to the overcharge control circuit in the device. Therefore, when charging the rechargeable battery from the external charger, power is supplied to the overcharge control circuit to operate, but the current output from the rechargeable battery after charging is not supplied to the overcharge control circuit by the reverse current prevention diode. Therefore, the overcharge control circuit does not operate and wasteful power consumption is prevented.

【0016】[0016]

【実施例】以下、本発明を図面に基づいて説明する。ま
ず、構成を説明する。図1は本発明の過充電制御回路が
内蔵されたファクシミリ装置の一実施例の構成を示す図
であり、(a)は外観斜視図、(b)は回路ブロック図
である。図2は請求項1記載の発明に係る過充電制御回
路を説明する図であり、(a)は回路ブロック図、
(b)は制御動作を示す線図である。図3は請求項2記
載の発明に係る過充電制御回路を説明する図であり、
(a)は回路ブロック図、(b)は制御動作を示す線図
である。図4は請求項3記載の発明に係る過充電制御回
路の回路ブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. First, the configuration will be described. 1A and 1B are diagrams showing the configuration of an embodiment of a facsimile apparatus incorporating an overcharge control circuit according to the present invention. FIG. 1A is an external perspective view and FIG. 1B is a circuit block diagram. FIG. 2 is a diagram for explaining an overcharge control circuit according to the invention of claim 1, (a) is a circuit block diagram,
(B) is a diagram showing a control operation. FIG. 3 is a diagram for explaining an overcharge control circuit according to the invention of claim 2,
(A) is a circuit block diagram and (b) is a diagram showing a control operation. FIG. 4 is a circuit block diagram of an overcharge control circuit according to a third aspect of the invention.

【0017】図1(a)に示されるように、本実施例に
おけるファクシミリ装置11は、その内部に内蔵された
バッテリーパックなどの充電電池12を、外部充電器1
3を用いて充電するものである。この外部充電器13と
ファクシミリ装置11の充電電池12とは、充電用ケー
ブル14を介してコネクタ15で着脱可能に接続されて
いる。そして、外部充電器13は、コンセントに差し込
んでAC100Vの商用電源を入力し、一定の直流電流
を出力するものであり、ここではトランス、整流回路、
定電流回路及び−ΔV検出制御回路などを備えている。
As shown in FIG. 1A, the facsimile apparatus 11 according to the present embodiment is provided with a rechargeable battery 12, such as a battery pack, which is built in the facsimile apparatus 11 and an external charger 1.
3 is used for charging. The external charger 13 and the rechargeable battery 12 of the facsimile device 11 are detachably connected to each other via a charging cable 14 with a connector 15. The external charger 13 is for inserting a commercial power source of AC 100 V into an outlet and outputting a constant DC current. Here, a transformer, a rectifier circuit,
A constant current circuit and a -ΔV detection control circuit are provided.

【0018】次に、図1(b)は、図1(a)のファク
シミリ装置11の回路ブロック図を示したものである。
図において、16はファクシミリの送信原稿の画像を読
み取って電気的な画像信号に変換するスキャナ部、17
は送信する画情報の符号化及び受信した画情報の復号化
を行う符号化・復号化部、18は画情報を感熱記録紙な
どに記録するプロッタで、ここではサーマルヘッドを有
し、そのサーマルヘッドには多数の発熱体素子が配置さ
れている。19は回線Lとの接続や発信先電話番号であ
る選択信号の送出、着信の検出などにより所定の発着信
動作を行う網制御部、20は画情報を変復調して伝送す
ると共に、伝送制御手順における各種信号を伝送するモ
デム、21はこれら網制御部19とモデム20とを制御
してファクシミリ通信を実行する通信制御部、22はフ
ァクシミリ装置11の動作状態を表示すると共に、オペ
レータが各種動作を指示する操作表示部、23はマイク
ロコンピュータ及び各種電子回路を備え、ファクシミリ
装置内の各部を制御するシステム制御部、24は充電電
池12により電力が供給され、上記各部に対して定電圧
化された出力を供給する安定化電源、25は充電電池1
2の過充電を防止しながら充電動作の制御を行う充電制
御部、26は上記各部を接続してデータや電源を供給す
るデータバス、27は本発明に係る過充電制御回路であ
る。
Next, FIG. 1 (b) is a circuit block diagram of the facsimile apparatus 11 of FIG. 1 (a).
In the figure, reference numeral 16 is a scanner unit for reading an image of a transmission document of a facsimile and converting it into an electric image signal, 17
Is an encoding / decoding unit that encodes image information to be transmitted and decodes the received image information, and 18 is a plotter that records the image information on a thermal recording paper or the like. A large number of heat generating elements are arranged in the head. Reference numeral 19 is a network control unit for performing a predetermined call-out operation by connection with the line L, transmission of a selection signal which is a destination telephone number, detection of an incoming call, and 20. , A communication control unit 21 for controlling the network control unit 19 and the modem 20 to execute facsimile communication, and a display unit 22 for displaying the operating state of the facsimile apparatus 11 and allowing the operator to perform various operations. An operation display section for instructing 23 is provided with a microcomputer and various electronic circuits, a system control section for controlling each section in the facsimile apparatus, 24 is supplied with power from the rechargeable battery 12, and a constant voltage is applied to each section. Stabilized power supply for output, 25 is rechargeable battery 1
2, a charging control unit that controls the charging operation while preventing overcharging, 26 is a data bus that connects the above units to supply data and power, and 27 is an overcharge control circuit according to the present invention.

【0019】そこで、このファクシミリ装置11におけ
る過充電制御回路27の具体的な構成を図2〜図4に基
づいて説明する。まず、図2(a)に示されるように、
定電流回路13aは上記した外部充電器13に内蔵され
ており、さらに、定電流回路13aには図7の従来例で
示した−ΔV検出制御回路が内蔵されている。また、定
電流回路13aは、コネクタ15を介して過充電制御回
路27に接続され、充電電池12を充電するものであ
る。
Therefore, a specific structure of the overcharge control circuit 27 in the facsimile apparatus 11 will be described with reference to FIGS. First, as shown in FIG.
The constant current circuit 13a is built in the external charger 13 described above, and further, the constant current circuit 13a has the -ΔV detection control circuit shown in the conventional example of FIG. 7 built therein. The constant current circuit 13a is connected to the overcharge control circuit 27 via the connector 15 and charges the rechargeable battery 12.

【0020】そこで、請求項1記載の過充電制御回路2
7は、充電電池12に隣接して温度検出用の感温素子で
あるサーミスタ28が設けられ、そのサーミスタ28の
一端は接地され、他端には定電圧電源29が抵抗(R)
30を介して接続されると共に、比較回路31の一方端
子に入力されている。また、比較回路31の他方端子に
は、充電電池12が過充電時に発生する温度を電圧値に
変換した基準電圧値を発生させる基準電圧発生回路32
が接続されている。そして、比較回路31の出力は、定
電流回路13aから充電電池12に充電電流を供給する
供給回路の途中に設けられたスイッチング回路33に入
力され、スイッチング動作を制御するものである。
Therefore, the overcharge control circuit 2 according to claim 1
7, a thermistor 28, which is a temperature sensing element for temperature detection, is provided adjacent to the rechargeable battery 12, one end of the thermistor 28 is grounded, and a constant voltage power supply 29 has a resistor (R) at the other end.
It is connected via 30 and is input to one terminal of the comparison circuit 31. A reference voltage generation circuit 32 that generates a reference voltage value obtained by converting the temperature generated when the rechargeable battery 12 is overcharged into a voltage value is provided at the other terminal of the comparison circuit 31.
Are connected. The output of the comparison circuit 31 is input to the switching circuit 33 provided in the middle of the supply circuit that supplies the charging current from the constant current circuit 13a to the charging battery 12, and controls the switching operation.

【0021】次に、作用を説明する。図2(b)に示す
ように、電池電圧が充電末期にピーク値を過ぎてΔVだ
け電圧が降下すると、定電流回路13a内の−ΔV検出
制御回路が作動して充電電流の供給を中止する。ところ
が、外部充電器のコンセントを一度抜いた後に再び差し
込んだ場合は、再度充電動作を開始し、その時の電池電
圧をピーク値として記憶するため、充電電池の特性上、
さらに電池電圧がΔVだけ降下することはなく、継続的
な過充電が行われる(図中ハッチングで示す過充電域3
4)。
Next, the operation will be described. As shown in FIG. 2B, when the battery voltage exceeds the peak value at the end of charging and the voltage drops by ΔV, the −ΔV detection control circuit in the constant current circuit 13a operates to stop the supply of the charging current. .. However, when the external charger is unplugged and then plugged in again, the charging operation is restarted and the battery voltage at that time is stored as a peak value.
Further, the battery voltage does not drop by ΔV, and continuous overcharging is performed (the overcharging region 3 indicated by hatching in the figure).
4).

【0022】ところが、本実施例の過充電制御回路27
は、図2(a)に示すように、機器内の充電電池12の
温度をサーミスタ28で逐次検出して電圧値に変換す
る。このサーミスタ28は、温度上昇に伴って抵抗値が
高くなるもので、抵抗30を介して定電圧電源29に接
続されているため、充電電池12の温度によりサーミス
タ28の抵抗値が変化して、抵抗(R)間の電圧が変化
し、比較回路31に入力される電圧が変化する。この電
池温度電圧値と基準電圧発生回路32の基準電圧値とを
比較回路31で比較して、充電電池12が過充電温度
(カットオフ温度)を越えた場合は、比較回路31の出
力によりスイッチング回路31を開にして充電電流の供
給を中止する。このため、図2(b)に示すように、定
電流回路13aの−ΔV検出制御回路により充電が誤っ
て再開されたとしても、機器内の過充電制御回路27が
充電電池12の温度を逐次監視して充電電流をカットオ
フするので、継続して過充電が行われることが無くな
り、過充電による充電電池12の特性劣化を防止するこ
とができる。
However, the overcharge control circuit 27 of this embodiment is
2A, the temperature of the rechargeable battery 12 in the device is sequentially detected by the thermistor 28 and converted into a voltage value, as shown in FIG. The resistance value of the thermistor 28 increases as the temperature rises, and since the thermistor 28 is connected to the constant voltage power supply 29 via the resistor 30, the resistance value of the thermistor 28 changes depending on the temperature of the charging battery 12, The voltage across the resistor (R) changes, and the voltage input to the comparison circuit 31 changes. The comparison circuit 31 compares the battery temperature voltage value with the reference voltage value of the reference voltage generation circuit 32. If the charging battery 12 exceeds the overcharge temperature (cutoff temperature), switching is performed by the output of the comparison circuit 31. The circuit 31 is opened to stop supplying the charging current. Therefore, as shown in FIG. 2B, even if the charging is mistakenly restarted by the −ΔV detection control circuit of the constant current circuit 13a, the overcharge control circuit 27 in the device sequentially changes the temperature of the rechargeable battery 12. Since the charging current is monitored and cut off, overcharging is not performed continuously, and deterioration of the characteristics of the rechargeable battery 12 due to overcharging can be prevented.

【0023】次に、請求項2記載の過充電制御回路27
は、図3(a)に示されるように、基本的な構成は上記
請求項1の場合とほぼ同様であるが、異なる点は、スイ
ッチング回路33の代わりに、定電流回路13aから充
電電池12へ充電電流を供給する電路に疑似負荷抵抗
(R1 )35の一端が接続され、該疑似負荷抵抗35の
他端はトランジスタ36のコレクタに接続されると共
に、比較回路31の出力はトランジスタ36のベースに
接続され、トランジスタ36のエミッタが接地されてい
る。
Next, the overcharge control circuit 27 according to claim 2
As shown in FIG. 3 (a), the basic configuration is almost the same as that of the above claim 1, except that the constant current circuit 13a is replaced by the rechargeable battery 12 instead of the switching circuit 33. One end of the pseudo load resistance (R 1 ) 35 is connected to the electric path for supplying the charging current to the other end, the other end of the pseudo load resistance 35 is connected to the collector of the transistor 36, and the output of the comparison circuit 31 is the output of the transistor 36. It is connected to the base and the emitter of the transistor 36 is grounded.

【0024】次に、作用を説明する。上記したように、
サーミスタ28は充電電池12の温度変化に応じて抵抗
(R O )30の間の電圧が変化し、基準電圧値と比較し
て電池温度がカットオフ温度を越えた場合は、比較回路
31の出力によりトランジスタ36をONして、疑似負
荷抵抗(R1 )35に電流(i1 )が流れるようにす
る。これにより、定電流回路13aから供給される電流
は、i1 分だけ増加し、充電電池12へ流れる電流(i
0 )と合わせて(i1 +i0 )となる。
Next, the operation will be described. As mentioned above,
The thermistor 28 is resistant to the temperature change of the rechargeable battery 12.
(R O) The voltage between 30 changes and compared with the reference voltage value
If the battery temperature exceeds the cutoff temperature, the comparison circuit
The transistor 36 is turned on by the output of 31, and the pseudo negative
Load resistance (R1) 35 to the current (i1)
It As a result, the current supplied from the constant current circuit 13a
Is i1Current (i)
0) And (i1+ I0).

【0025】しかし、本実施例では、外部充電器13は
定電流回路13aで構成されているので、電流量を一定
に保持しようとして電圧降下を生じさせる。これを図3
(b)で見ると、電池温度は最初の−ΔV検出で充電電
流が供給されなくなって一旦下がるが、再度コンセント
が差し込まれて充電が開始されると温度が上昇を始め
る。そして、カットオフ温度に達した時点でトランジス
タ36がONされて、疑似負荷抵抗35に電流が流れる
と、上記理由により電池電圧が降下し、−ΔV検出が行
われて外部充電器13の−ΔV検出制御回路により充電
を終了させるものである。
However, in this embodiment, since the external charger 13 is composed of the constant current circuit 13a, a voltage drop is caused in order to keep the current amount constant. Figure 3
As shown in (b), the battery temperature drops once when the charging current is not supplied at the first detection of −ΔV, but the temperature starts to rise when the outlet is reinserted and charging is started. When the transistor 36 is turned on when the cut-off temperature is reached and a current flows through the pseudo load resistor 35, the battery voltage drops due to the above reason, -ΔV detection is performed, and -ΔV of the external charger 13 is detected. The detection control circuit terminates charging.

【0026】つまり、請求項2記載の実施例では、充電
電池温度がカットオフ温度を越えると疑似的に−ΔVを
発生させて、あたかも電池が充電末期の如く制御され、
外部充電器側で充電を終了させるものである。次に、請
求項3記載の過充電制御回路27は、図4に示されるよ
うに、上記請求項1又は2記載の実施例において、定電
流回路13aと充電電池12との間に定電流回路13a
から充電電池12方向へのみ電流が流れるようにした逆
電流防止ダイオード37が設けられ、この逆電流防止ダ
イオード37のアノード側には充電制御部25を構成す
るサーミスタ28、抵抗30、定電圧電源29、基準電
圧発生回路32、比較回路31、スイッチング回路33
又は疑似負荷抵抗35及びトランジスタ36に対して電
力を供給するための安定化電源38が接続されている。
この安定化電源38は、定電流回路13aから充電電池
12へ充電電流を供給している間は、安定化電源38に
も電力が供給されて充電制御部25の各部を作動させ
る。しかし、充電電池12の充電終了後は、充電電池1
2から供給される電流が逆電流防止ダイオード37によ
ってアノード側に流れ込まないため、充電制御部25の
各部には電力が供給されず、作動を中止する。
That is, in the embodiment of claim 2, when the charge battery temperature exceeds the cut-off temperature, a pseudo -ΔV is generated, and the battery is controlled as if it were at the end of charge.
Charging is terminated on the external charger side. Next, as shown in FIG. 4, the overcharge control circuit 27 according to claim 3 is the constant current circuit between the constant current circuit 13a and the rechargeable battery 12 in the embodiment according to claim 1 or 2. 13a
Is provided with a reverse current prevention diode 37 that allows a current to flow only in the direction from the charging battery 12 to the rechargeable battery 12. On the anode side of the reverse current prevention diode 37, a thermistor 28, a resistor 30, and a constant voltage power supply 29 that configure the charging control unit 25. , Reference voltage generation circuit 32, comparison circuit 31, switching circuit 33
Alternatively, a stabilizing power supply 38 for supplying electric power to the pseudo load resistor 35 and the transistor 36 is connected.
The stabilizing power supply 38 also supplies power to the stabilizing power supply 38 while the charging current is being supplied from the constant current circuit 13a to the rechargeable battery 12, and operates each part of the charging control unit 25. However, after charging the rechargeable battery 12, the rechargeable battery 1
Since the current supplied from 2 does not flow into the anode side by the reverse current prevention diode 37, power is not supplied to each part of the charging control unit 25 and the operation is stopped.

【0027】このように、請求項3記載の実施例の場合
は、充電制御部25を充電時の充電電流供給時にのみ作
動させるようにしたため、充電電池12の電力を無駄に
消費することが防止できる。上記したように、本実施例
の過充電制御回路を用いて携帯可能なファクシミリ装置
を構成した場合は、内蔵された充電電池に対して過充電
の行われる可能性が少なく、充電電池の電力を効率良く
消費することができる。
As described above, in the case of the third embodiment, the charging control unit 25 is operated only at the time of supplying the charging current at the time of charging, so that the power consumption of the rechargeable battery 12 is prevented from being wasted. it can. As described above, when the portable facsimile apparatus is configured using the overcharge control circuit of this embodiment, the built-in rechargeable battery is less likely to be overcharged, and the power of the rechargeable battery is reduced. It can be consumed efficiently.

【0028】[0028]

【発明の効果】請求項1記載の発明によれば、機器内に
内蔵された充電電池に隣接してサーミスタを配設し、充
電電池の温度が過充電温度を越えた場合は、外部充電器
による充電電流供給回路を開にして、過充電を防止する
ので、外部充電器に設けられた−ΔV検出制御回路が誤
って充電終了後に再充電が開始されても、過充電状態の
継続を防止することができる。
According to the first aspect of the present invention, the thermistor is disposed adjacent to the rechargeable battery built in the equipment, and when the temperature of the rechargeable battery exceeds the overcharge temperature, the external charger is used. Prevents overcharging by opening the charging current supply circuit by, so even if the -ΔV detection control circuit provided in the external charger mistakenly starts recharging after the end of charging, the overcharged state is prevented from continuing. can do.

【0029】請求項2記載の発明によれば、機器内に内
蔵された充電電池に隣接してサーミスタを配設し、充電
電池の温度が過充電温度を越えた場合は、外部充電器か
ら充電電池へ充電電流を供給する供給回路に対して疑似
負荷抵抗を並列に接続するようにしたので、機器内のイ
ンピーダンスが低下し、充電電流を増加させる方向に制
御され、外部充電器内にある定電流回路により電圧が低
下し、外部充電器内にある−ΔV検出制御回路が作動し
て充電が終了する。このため、充電電池の充電末期状態
を一度検出して充電を終了した−ΔV検出制御回路を、
誤って再び充電開始させた場合であっても、継続的な過
充電を防止することができる。
According to the second aspect of the present invention, the thermistor is arranged adjacent to the rechargeable battery built in the equipment, and when the temperature of the rechargeable battery exceeds the overcharge temperature, the charge is performed from the external charger. Since the pseudo load resistance is connected in parallel to the supply circuit that supplies the charging current to the battery, the impedance inside the device is reduced and the charging current is controlled to increase, and the constant load in the external charger is controlled. The voltage is reduced by the current circuit, and the −ΔV detection control circuit in the external charger is activated to end the charging. For this reason, the -ΔV detection control circuit that once detected the end-of-charge state of the rechargeable battery and finished charging,
Even if the charging is accidentally started again, continuous overcharging can be prevented.

【0030】請求項3記載の発明によれば、請求項1又
は2記載の過充電制御回路において、外部充電器と機器
内の充電電池との間に逆電流防止ダイオードを設け、そ
のアノード側から充電制御回路に対して電力を供給する
ようにしたので、無駄な電力消費を防止することができ
る。
According to a third aspect of the present invention, in the overcharge control circuit according to the first or second aspect, a reverse current preventing diode is provided between the external charger and the charging battery in the device, and the reverse current preventing diode is provided from the anode side. Since power is supplied to the charge control circuit, it is possible to prevent wasteful power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の過充電制御回路が内蔵されたファクシ
ミリ装置の一実施例の構成を示す図であり、(a)は外
観斜視図、(b)は回路ブロック図である。
1A and 1B are diagrams showing a configuration of an embodiment of a facsimile apparatus incorporating an overcharge control circuit of the present invention, in which FIG. 1A is an external perspective view and FIG. 1B is a circuit block diagram.

【図2】請求項1記載の発明に係る過充電制御回路を説
明する図であり、(a)は回路ブロック図、(b)は制
御動作を示す線図である。
2A and 2B are diagrams illustrating an overcharge control circuit according to the first aspect of the invention, FIG. 2A is a circuit block diagram, and FIG. 2B is a diagram showing a control operation.

【図3】請求項2記載の発明に係る過充電制御回路を説
明する図であり、(a)は回路ブロック図、(b)は制
御動作を示す線図である。
3A and 3B are diagrams illustrating an overcharge control circuit according to a second aspect of the present invention, in which FIG. 3A is a circuit block diagram and FIG. 3B is a diagram showing a control operation.

【図4】請求項3記載の発明に係る過充電制御回路の回
路ブロック図である。
FIG. 4 is a circuit block diagram of an overcharge control circuit according to a third aspect of the invention.

【図5】従来の電池電圧検出方式を説明する線図であ
る。
FIG. 5 is a diagram illustrating a conventional battery voltage detection method.

【図6】従来の電池温度検出方式を説明する図で、
(a)は回路ブロック図、(b)は制御動作を示す線図
である。
FIG. 6 is a diagram illustrating a conventional battery temperature detection method,
(A) is a circuit block diagram and (b) is a diagram showing a control operation.

【図7】従来の−ΔV検出制御方式を説明する図で、
(a)は回路ブロック図、(b)は制御動作を示す線図
である。
FIG. 7 is a diagram illustrating a conventional −ΔV detection control method,
(A) is a circuit block diagram and (b) is a diagram showing a control operation.

【符号の説明】[Explanation of symbols]

11 ファクシミリ装置 12 充電電池(バッテリーパック) 13 外部充電器 13a 定電流回路 25 充電制御部 27 過充電制御回路 28 感温素子(電池温度検出手段) 29 定電圧電源 30 抵抗 31 比較回路(電圧比較手段) 32 基準電圧発生回路(基準電圧値出力手段) 33 スイッチング回路(スイッチング手段) 35 疑似負荷抵抗 36 トランジスタ(疑似負荷抵抗接続手段) 37 逆電流防止ダイオード 38 安定化電源 11 Facsimile Device 12 Rechargeable Battery (Battery Pack) 13 External Charger 13a Constant Current Circuit 25 Charge Control Section 27 Overcharge Control Circuit 28 Temperature Sensing Element (Battery Temperature Detection Means) 29 Constant Voltage Power Supply 30 Resistance 31 Comparison Circuit (Voltage Comparison Means) ) 32 reference voltage generation circuit (reference voltage value output means) 33 switching circuit (switching means) 35 pseudo load resistance 36 transistor (pseudo load resistance connection means) 37 reverse current prevention diode 38 stabilized power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】機器内に電源用の充電電池を備え、該充電
電池を充電する充電電流が定電流回路を備えた外部充電
器から供給されると共に、該外部充電器には前記充電電
池が発する充電末期の電池電圧の降下分(ΔV)を検出
して充電を終了する−ΔV検出制御回路が設けられた過
充電制御回路において、 前記機器内部には、 前記充電電池の温度を逐次電圧値に変換して電池温度電
圧値を検出する電池温度検出手段と、 前記充電電池の過充電時に発生する温度を電圧値に変換
した基準電圧値を出力する基準電圧値出力手段と、 前記検出された電池温度電圧値と前記基準電圧値とを比
較する電圧比較手段と、 該電圧比較手段により電池温度電圧値が基準電圧値以上
になった場合に前記外部充電器からの充電電流の供給回
路を切って充電を終了させるスイッチング手段と、 を備えたことを特徴とする過充電制御回路。
1. A rechargeable battery for power supply is provided in a device, a charging current for charging the rechargeable battery is supplied from an external charger having a constant current circuit, and the rechargeable battery is provided in the external charger. In the overcharge control circuit provided with a −ΔV detection control circuit, which detects a drop (ΔV) in the battery voltage at the end of charging and ends the charging, the temperature of the charging battery is sequentially changed to a voltage value inside the device. A battery temperature detecting means for converting the battery temperature voltage value into a voltage value, and a reference voltage value outputting means for outputting a reference voltage value obtained by converting the temperature generated at the time of overcharging of the rechargeable battery into a voltage value; Voltage comparing means for comparing the battery temperature voltage value with the reference voltage value, and turning off the charging current supply circuit from the external charger when the battery temperature voltage value exceeds the reference voltage value by the voltage comparing means. To end charging Overcharge control circuit, wherein the switching means, further comprising a that.
【請求項2】請求項1記載の過充電制御回路において、 前記スイッチング手段に代えて、前記電圧比較手段によ
り電池温度電圧値が基準電圧値以上になった場合に、前
記外部充電器から充電電池へ充電電流を供給する供給回
路に対して並列に疑似負荷抵抗を接続する疑似負荷抵抗
接続手段を備えたことを特徴とする過充電制御回路。
2. The overcharge control circuit according to claim 1, wherein, in place of the switching means, when the battery temperature voltage value becomes equal to or higher than a reference voltage value by the voltage comparison means, the external charger charges the battery. An overcharge control circuit comprising pseudo load resistance connecting means for connecting a pseudo load resistance in parallel to a supply circuit for supplying a charging current to the load circuit.
【請求項3】請求項1または2記載の過充電制御回路に
おいて、 前記外部充電器から機器内の充電電池へ充電電流を供給
する供給回路の途中に外部充電器から充電電池方向にの
み電流を流す逆電流防止ダイオードが設けられ、 該逆電流防止ダイオードのアノード側から機器内の充電
制御を行う前記電池温度検出手段、基準電圧値出力手
段、電圧比較手段、スイッチング手段又は疑似負荷接続
手段などに対して電源を供給するようにしたことを特徴
とする過充電制御回路。
3. The overcharge control circuit according to claim 1, wherein a current is supplied only from the external charger to the charging battery in the middle of a supply circuit that supplies the charging current from the external charger to the charging battery in the device. A reverse current prevention diode for flowing is provided, and the battery temperature detection means, the reference voltage value output means, the voltage comparison means, the switching means or the pseudo load connection means, etc. for controlling the charging of the equipment from the anode side of the reverse current prevention diode An overcharge control circuit characterized in that power is supplied thereto.
JP34421591A 1991-12-26 1991-12-26 Overcharge control circuit Pending JPH05176474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34421591A JPH05176474A (en) 1991-12-26 1991-12-26 Overcharge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34421591A JPH05176474A (en) 1991-12-26 1991-12-26 Overcharge control circuit

Publications (1)

Publication Number Publication Date
JPH05176474A true JPH05176474A (en) 1993-07-13

Family

ID=18367525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34421591A Pending JPH05176474A (en) 1991-12-26 1991-12-26 Overcharge control circuit

Country Status (1)

Country Link
JP (1) JPH05176474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428995B1 (en) * 2000-02-28 2004-04-29 미쓰비시덴키 가부시키가이샤 Elevator control apparatus
US7057309B2 (en) * 2001-10-29 2006-06-06 Lenovo ( Singapore) Pte. Ltd. Electrical apparatus, computer, power switching unit, and power switching method
US8878497B2 (en) 2011-04-26 2014-11-04 Ricoh Company, Ltd. Image processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428995B1 (en) * 2000-02-28 2004-04-29 미쓰비시덴키 가부시키가이샤 Elevator control apparatus
US7057309B2 (en) * 2001-10-29 2006-06-06 Lenovo ( Singapore) Pte. Ltd. Electrical apparatus, computer, power switching unit, and power switching method
US8878497B2 (en) 2011-04-26 2014-11-04 Ricoh Company, Ltd. Image processing apparatus

Similar Documents

Publication Publication Date Title
US5332927A (en) Power supply system for a telecommunication system
US8004237B2 (en) Battery power supply with bidirectional battery charge controller
US5900717A (en) Rechargeable battery charging circuit
EP0631696B1 (en) A power supply and battery charging system
US6127801A (en) Battery pack assembly
KR101445011B1 (en) Power converter with reduced power consumption when toggling between sleep and normal modes during device charging
US5994875A (en) Battery charging apparatus and method with charging mode convertible function
KR100265709B1 (en) A secondary charginf apparatus
US5818199A (en) Current limited charging apparatus for lithium batteries or the like
GB2313721A (en) Battery charging; backup power supply
JPH10271705A (en) Power source circuit
US5576611A (en) Battery charging system
JP2008211966A (en) Circuit and method of operation for electrical power supply
JPH0734628B2 (en) An electrical system that supplies power to a load
US6914417B2 (en) Electrical energy systems, power supply apparatuses, and electrical energy supply methods
US7457141B2 (en) AC adaptor
JPH05176474A (en) Overcharge control circuit
JP3457681B2 (en) Charging device
JPH11327671A (en) Charging circuit for electronic equipment
KR950009298B1 (en) Alternation circuit of recharging mode for the battery
JP2003164070A (en) Battery charger
JP2000278877A (en) Information processor provided with function to charge secondary battery
JP2002324588A (en) Pack battery, pack battery and connection device
JPH1126026A (en) Charge control system of nickel-hydrogen battery
JP4073742B2 (en) Charger