JPH05175Y2 - - Google Patents

Info

Publication number
JPH05175Y2
JPH05175Y2 JP8266583U JP8266583U JPH05175Y2 JP H05175 Y2 JPH05175 Y2 JP H05175Y2 JP 8266583 U JP8266583 U JP 8266583U JP 8266583 U JP8266583 U JP 8266583U JP H05175 Y2 JPH05175 Y2 JP H05175Y2
Authority
JP
Japan
Prior art keywords
specimen
microwave
cylinder
applicator
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8266583U
Other languages
Japanese (ja)
Other versions
JPS59186099U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8266583U priority Critical patent/JPS59186099U/en
Publication of JPS59186099U publication Critical patent/JPS59186099U/en
Application granted granted Critical
Publication of JPH05175Y2 publication Critical patent/JPH05175Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【考案の詳細な説明】 本考案は、薬理、生化学において、脳内等の細
胞内酵素の研究を目的として、生物供試体にマイ
クロ波を照射し、その供試体の酵素を瞬時に失活
させる生化学試験用のマイクロ波加熱装置に関す
る。
[Detailed description of the invention] This invention is used in pharmacology and biochemistry for the purpose of researching intracellular enzymes in the brain, etc., by irradiating biological specimens with microwaves to instantly deactivate the enzymes in the specimen. This invention relates to a microwave heating device for biochemical tests.

マイクロ波により物体を加熱する場合、電子レ
ンジのようなオーブン内に物体を入れて加熱する
方法と、導波管のような伝送線路内に入れて加熱
する方法とが考えられる。特に瞬時に物体を加熱
するためには、後者の方法が有効であるが、導波
管の横断面に対しその物体の占める割合が大きく
なると、導波管の電界分布の影響を受けて、その
物体の被加熱部における温度差が無視できなくな
るほど大きくなる。
When heating an object with microwaves, there are two possible methods: placing the object in an oven such as a microwave oven and heating it, and heating the object by placing it in a transmission line such as a waveguide. The latter method is especially effective for instantaneously heating an object, but if the object occupies a large proportion of the cross section of the waveguide, it will be affected by the waveguide's electric field distribution. The temperature difference in the heated part of the object becomes so large that it cannot be ignored.

第1図は伝送線路を利用した従来のマイクロ波
加熱装置を示すものであり、伝送線路として矢印
E方向に電界が生じる、つまりTE10モードとし
て働かせる導波管を使用し、この導波管の終端を
短絡してアプリケータ1とし、その一方の長辺1
aにおける短絡板1bから所定距離だけ離れた位
置に形成した挿入口1cからねずみ等の生物供試
体2の頭部を挿入したものである。すなわち、こ
の供試体2は、アニマル・ホルダ3内に押込部材
4によつて全体が押し込まれ、係止板5をアニマ
ル・ホルダ3から押込部材4に差し込むことによ
つてその全体の動きが固定されている。そして、
このアニマル・ホルダ3を、アプリケータ1の挿
入口1cの外側を囲むように取り付けたチヤンバ
6内に挿入することにより、供試体2の頭部がア
プリケータ1内に入るようにしている。なお、供
試体2の頭部を固定する筒部3aには、マイクロ
波透過性の良好なプラスチツクが使用されてい
る。
Figure 1 shows a conventional microwave heating device using a transmission line. A waveguide is used as the transmission line, which generates an electric field in the direction of arrow E, that is, works as a TE 10 mode. Short-circuit the ends to form applicator 1, and connect one long side to applicator 1.
The head of a biological specimen 2 such as a mouse is inserted through an insertion opening 1c formed at a predetermined distance from the shorting plate 1b in FIG. That is, the entire specimen 2 is pushed into the animal holder 3 by the pushing member 4, and its entire movement is fixed by inserting the locking plate 5 from the animal holder 3 into the pushing member 4. has been done. and,
This animal holder 3 is inserted into a chamber 6 attached to surround the outside of the insertion opening 1c of the applicator 1, so that the head of the specimen 2 enters the applicator 1. Note that the cylindrical portion 3a to which the head of the specimen 2 is fixed is made of plastic with good microwave transparency.

ところが、このマイクロ波加熱装置では、マイ
クロ波がTE10モードでアプリケータ1内を矢印
A方向に進む場合、そのアプリケータ1内の電界
Eの分布は、第2図aに示すように導波管の軸中
心aが最大となり、電力(∝E2)は軸中心部a
が著しく強くなる。
However, in this microwave heating device, when the microwave propagates in the direction of arrow A in the applicator 1 in the TE 10 mode, the distribution of the electric field E in the applicator 1 is as shown in Figure 2a. The axial center a of the tube is the maximum, and the electric power (∝E 2 ) is at the axial center a
becomes significantly stronger.

従つて、供試体2の加熱すべき部分の容積・寸
法が使用マイクロ波のλg(管内波長)に比較して
非常に小さい場合には、供試体2の加熱された内
部の温度差は無視できるほどに小さいが、加熱す
べき部分が大きくなるにつれて電界分布の影響を
受け易くなり、加熱された内部の温度差は無視で
きないほどに大きくなる。よつて、特に加熱中
に、供試体2が第2図bに示す矢印B方向に少し
でも回転すると、その供試体2の加熱による左右
の温度差が大きくなり、供試体2の脳2a内を研
究対象とする場合には、片側が過剰加熱、他側が
加熱不足という状態となり、脳2aの部位を均一
に加熱して脳内酵素分布を調査する研究に支障を
きたすことがある。
Therefore, if the volume and dimensions of the part of specimen 2 to be heated are very small compared to λg (tube wavelength) of the microwave used, the temperature difference inside the heated specimen 2 can be ignored. However, as the area to be heated becomes larger, it becomes more susceptible to the influence of the electric field distribution, and the temperature difference within the heated interior becomes so large that it cannot be ignored. Therefore, if the specimen 2 rotates even slightly in the direction of arrow B shown in FIG. When used as a research subject, one side may be overheated and the other side may be underheated, which may impede research aimed at uniformly heating parts of the brain 2a to investigate enzyme distribution in the brain.

本考案は斯かる点に鑑みて成されたもので、そ
の目的は、比較的肉厚の低損失誘電体によりマイ
クロ波を散乱させるようにして、アプリケータ内
の電界の強い部分の範囲を広げ、加熱範囲を拡大
させて、供試体内部が均一に加熱できるようにし
たマイクロ波加熱装置を提供することである。
The present invention was developed in view of this point, and its purpose is to scatter microwaves using a relatively thick, low-loss dielectric material, thereby expanding the range of areas where the electric field is strong within the applicator. Another object of the present invention is to provide a microwave heating device that can uniformly heat the inside of a specimen by expanding its heating range.

以下、本考案を実施例について説明する。第3
図はその一実施例を示すものであり、第1図の各
部に対応する部分には同一符号を附した。この実
施例では、アニマル・ホルダ3における筒部3a
を間〓を介して囲むように、アプリケータ1の長
片1aの内壁に、低損失誘電体で成る比較的肉厚
の厚い円筒7を止めネジ8により取り付けてい
る。この円筒7はアプリケータ1の挿入穴1cの
軸心と同軸となるように取り付け、供試体2の加
熱すべき部分、例えば脳2aが完全に囲まれるよ
うにしている。
Hereinafter, the present invention will be described with reference to embodiments. Third
The figure shows one embodiment, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this embodiment, the cylindrical portion 3a in the animal holder 3
A relatively thick cylinder 7 made of a low-loss dielectric material is attached to the inner wall of the long piece 1a of the applicator 1 with a set screw 8 so as to surround it with a gap in between. This cylinder 7 is attached so as to be coaxial with the axis of the insertion hole 1c of the applicator 1, so that the portion of the specimen 2 to be heated, for example, the brain 2a, is completely surrounded.

第4図はマイクロ波の進行状況を示すものであ
り、アプリケータ1の上方から進行するマイクロ
波は、低損失誘電体でなる円筒7の外壁面でその
進行方向が曲げられるが、この時反射波が発生す
る。またこのマイクロ波は、その円筒7の内壁面
から空気中(円筒7の内部)に出る時にも進行方
向が曲げられると共に反射波が発生し、これらの
関係はシユネルの法則に従う。この状況はアニマ
ル・ホルダ3の筒部3aにおいても同様である。
FIG. 4 shows the progress of microwaves. The direction of the microwaves traveling from above the applicator 1 is bent by the outer wall surface of the cylinder 7 made of a low-loss dielectric, but at this time, the microwaves are reflected. Waves are generated. Further, when this microwave exits into the air (inside the cylinder 7) from the inner wall surface of the cylinder 7, its traveling direction is bent and a reflected wave is generated, and these relationships follow Schunel's law. This situation also applies to the cylindrical portion 3a of the animal holder 3.

従つて、円筒7の内部では、マイクロ波の進行
が複雑となり、あたかもマイクロ波を攪拌する電
子レンジのオーブン内でのマイクロ波の状態とほ
ぼ同じ状態となる。この散乱は、厚みの薄い筒部
3aによるよりも厚みの厚い円筒7による方が顕
著となるが、両者が加算されることにより、筒部
3a内の散乱は極めて良好となる。
Therefore, the progress of the microwave inside the cylinder 7 is complicated, and the state is almost the same as the state of the microwave inside the oven of a microwave oven that stirs the microwave. Although this scattering is more pronounced due to the thicker cylinder 7 than due to the thinner cylinder 3a, the addition of both results in extremely good scattering within the cylinder 3a.

このため、供試体2はアプリケータ1内に位置
する部分がほぼ均一に加熱されるようになり、従
来に比較してその均一な加熱範囲を大幅に拡大す
ることができ、供試体2の少しの回転や移動も充
分補償することができる。
Therefore, the part of the specimen 2 located inside the applicator 1 is heated almost uniformly, and the uniform heating range can be greatly expanded compared to the conventional method. The rotation and movement of can also be sufficiently compensated for.

第5図はマイクロ波が進行する方向と反対側
(つまり下部)を除去した低損失誘電体で成る円
筒9を示すもので、この場合も内部におけるマイ
クロ波の散乱状態は第4図の場合とほぼ同様であ
り、同様な効果を得ることができる。
Figure 5 shows a cylinder 9 made of a low-loss dielectric material with the side opposite to the direction in which the microwaves travel (that is, the lower part) removed; in this case as well, the scattering state of the microwaves inside is the same as in Figure 4. They are almost the same, and similar effects can be obtained.

上記した供試体2の加熱分布は、低損失誘電体
で成る円筒7,9や筒3aの比誘電率、厚さ、内
径、軸方向の長さ、および供試体2の寸法、比誘
電率の影響を受けるため、適当な加熱分布はこれ
らの諸要因を考慮して、実験的に決める必要があ
る。
The heating distribution of the specimen 2 described above is determined by the dielectric constant, thickness, inner diameter, and axial length of the cylinders 7, 9 and 3a made of low-loss dielectrics, as well as the dimensions of the specimen 2 and the dielectric constant. Therefore, an appropriate heating distribution must be determined experimentally, taking these factors into account.

本考案者は供試体2をねずみとしてその頭部の
脳2aを加熱対象とし、円筒7を厚み5mm、内径
50mm、軸方向長さ50mm、比誘電率2.2、tanδ=1/1
00とし、筒部3aを厚み1mm、内径38mm、比誘電
率2.5とし、マイクロ波の管内波長λg=148mm、マ
イクロ波電力5Kwとし、アプリケータ1の短絡
板1bから筒部3aおよび円筒7の軸心までの距
離をλgとして、良好な結果を得た。
The present inventor assumes that the specimen 2 is a mouse, the brain 2a of its head is to be heated, and the cylinder 7 has a thickness of 5 mm and an inner diameter.
50mm, axial length 50mm, dielectric constant 2.2, tanδ=1/1
00, the thickness of the cylinder part 3a is 1 mm, the inner diameter is 38 mm, the dielectric constant is 2.5, the microwave tube wavelength λg is 148 mm, the microwave power is 5Kw, and the axis of the cylinder part 3a and cylinder 7 is Good results were obtained by setting the distance to the heart as λg.

第6図〜第8図は低損失誘電体で成る円筒の別
の例を示すものであり、まず第6図はネジ止め部
分10a側が厚く、その反対側が薄くなるよう
に、内壁の軸方向に段差を2段形成した円筒10
を示すもので、このように厚みを段階的に変化す
れば、マイクロ波の散乱状態が軸方向で段階的に
異なつてくるので、内部に位置させる供試体の加
熱分布を段階的に異ならせることができる。
6 to 8 show another example of a cylinder made of a low-loss dielectric. First, in FIG. 6, the inner wall is oriented in the axial direction so that the screwed part 10a side is thicker and the opposite side is thinner. Cylinder 10 with two steps formed
If the thickness is changed stepwise in this way, the state of microwave scattering will change stepwise in the axial direction, so the heating distribution of the specimen placed inside can be changed stepwise. I can do it.

第7図はアプリケータ1の長辺1a側に取りつ
付けた円筒に、短辺側から供試体を挿入する場合
に使用できるようにした円筒11を示すものであ
り、供試体挿入用の穴11aを側面、つまり軸心
に直交する側に形成している。11bは長辺1a
に対するネジ止め部分である。
FIG. 7 shows a cylinder 11 that can be used when inserting a specimen from the short side into the cylinder attached to the long side 1a of the applicator 1, and shows a hole for inserting the specimen. 11a is formed on the side surface, that is, on the side perpendicular to the axis. 11b is the long side 1a
This is the screwed part.

第8図は内部に位置させる供試体が大きい場合
の逃げとして一部に切取り部12aを形成すると
共にアプリケータ1への取り付け用にフランジ1
2bを形成した円筒12を示すものである。12
cはネジ止め部分である。
FIG. 8 shows a cutout 12a formed in a part as a relief when the specimen to be placed inside is large, and a flange 1 for attachment to the applicator 1.
2b shows the cylinder 12 formed with the cylinder 2b. 12
c is a screwed part.

なお、以上はアニマル・ホルダ3の筒部3aに
よつて供試体2の頭部を動かないように固定して
いるが、この固定は低損失誘電体でなる比較的肉
厚の円筒で直接行うこともできる。
Note that in the above, the head of the specimen 2 is fixed so as not to move by the cylindrical part 3a of the animal holder 3, but this fixation is performed directly with a relatively thick cylinder made of a low-loss dielectric material. You can also do that.

以上のように、本考案によれば、進行マイクロ
波を充分散乱させることができるので、従来では
導波管の形状でほぼ決まつていた加熱分布を変化
して拡大することができ、よつて加熱範囲が拡大
し、供試体の動き等に影響されずに所望の部位を
良好に均一加熱することができるという特徴があ
る。
As described above, according to the present invention, traveling microwaves can be sufficiently scattered, so that the heating distribution, which was conventionally determined almost by the shape of the waveguide, can be changed and expanded. The heating range is expanded, and a desired region can be uniformly heated without being affected by the movement of the specimen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマイクロ波加熱装置の断面図、
第2図aはアプリケータ内における電界および電
力の分布特性を示す図、bは第1図の−線に
沿つた断面図、第3図は本考案の一実施例のマイ
クロ波加熱装置の断面図、第4図は円筒に対する
マイクロ波の進行を示す図、第5図は別の例の円
筒に対するマイクロ波の進行を示す図、第6図は
更なる別の例の円筒を示す図で、aは正面図、b
は断面図、第7図および第8図も更なる別の例の
円筒を示す図で、aは正面図、bは側面図であ
る。 1……導波管で成るアプリケータ、2……供試
体、3……アニマル・ホルダ、4……押込部材、
5……係止板、6……チヤンバ、7,9〜12…
…低損失誘電体で成る比較的肉厚の円筒、8……
止めネジ。
Figure 1 is a cross-sectional view of a conventional microwave heating device.
Figure 2a is a diagram showing the electric field and power distribution characteristics within the applicator, b is a cross-sectional view taken along the - line in Figure 1, and Figure 3 is a cross-section of a microwave heating device according to an embodiment of the present invention. Figure 4 is a diagram showing the progression of microwaves to a cylinder, Figure 5 is a diagram showing the progression of microwaves to a cylinder in another example, and Figure 6 is a diagram showing a cylinder in yet another example. a is a front view, b
7 is a cross-sectional view, and FIGS. 7 and 8 are views showing further examples of cylinders, in which a is a front view and b is a side view. DESCRIPTION OF SYMBOLS 1... Applicator made of a waveguide, 2... Test object, 3... Animal holder, 4... Pushing member,
5... Locking plate, 6... Chamber, 7, 9-12...
...Relatively thick cylinder made of low-loss dielectric material, 8...
Set screw.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] マイクロ波伝送用の導波管の壁面に形成した挿
入口から供試体の頭部あるいはその他を該導波管
内に突出させて、マイクロ波照射により該供試体
の脳内酸素等の組織細胞酵素を失活させるように
した生化学試験用のマイクロ波加熱装置におい
て、上記挿入口から突出する上記供試体の位置す
べき空間の少なくともマイクロ波進入側を低損失
誘電体で覆い、該低損失誘電体で囲まれる空間に
おけるマイクロ波を散乱させるようにしたことを
特徴とするマイクロ波加熱装置。
The head or other part of the specimen is projected into the waveguide through an insertion port formed on the wall of a waveguide for microwave transmission, and tissue cell enzymes such as brain oxygen of the specimen are removed by microwave irradiation. In a microwave heating device for biochemical tests which is configured to deactivate, at least the microwave entrance side of the space in which the specimen protruding from the insertion port is located is covered with a low-loss dielectric, and the low-loss dielectric is A microwave heating device characterized by scattering microwaves in a space surrounded by.
JP8266583U 1983-05-31 1983-05-31 microwave heating device Granted JPS59186099U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8266583U JPS59186099U (en) 1983-05-31 1983-05-31 microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8266583U JPS59186099U (en) 1983-05-31 1983-05-31 microwave heating device

Publications (2)

Publication Number Publication Date
JPS59186099U JPS59186099U (en) 1984-12-10
JPH05175Y2 true JPH05175Y2 (en) 1993-01-06

Family

ID=30212620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8266583U Granted JPS59186099U (en) 1983-05-31 1983-05-31 microwave heating device

Country Status (1)

Country Link
JP (1) JPS59186099U (en)

Also Published As

Publication number Publication date
JPS59186099U (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US4327180A (en) Method and apparatus for electromagnetic radiation of biological material
US4403618A (en) Apparatus for electromagnetic radiation of living tissue and the like
DE69533647T2 (en) DEVICE AND METHOD FOR MICROWAVE PROCESSING OF MATERIALS
JPH0438117B2 (en)
EP0171620B1 (en) Microwave-heating apparatus
JPH05175Y2 (en)
Pathak et al. Finite difference time domain (FDTD) characterization of a single mode applicator
Vrba et al. Technical aspects of microwave thermotherapy
Alabaster The microwave properties of tissue and other lossy dielectrics
US4839494A (en) Electromagnetic container sealing apparatus
JP2005058750A (en) Coaxial probe
Cheung et al. Dual-beam TEM applicator for direct-contact heating of dielectrically encapsulated malignant mouse tumor
US20130015179A1 (en) Arc-shaped cavity of the microwave moisture analyzer
Lau et al. The modelling of biological systems in three dimensions using the time domain finite-difference method: II. The application and experimental evaluation of the method in hyperthermia applicator design
Tada et al. Numerical analysis of electromagnetic wave in a partially loaded microwave applicator
JPH0137643Y2 (en)
JPH0120694Y2 (en)
JPH0637680Y2 (en) Biochemistry test equipment
Raskmark et al. Focused Electromagnetic Heating of Muscle Tissue (Short Papers)
CA1320539C (en) Method and apparatus for ultrafast microwave tissue fixation
Paulsson et al. The effects of microwave radiation on microtubules and axonal transport
Berdnik et al. Radiation fields of the spherical slot antenna in a material medium
JPS5822080Y2 (en) microwave heating furnace
Luypaert et al. On the Synthesis of Waveguides and Cavities Realized with Nonseparable Solutions of Helmholtz Wave Equation (Short Papers)
CA2355152C (en) Electromagnetic exposure chamber for improved heating