JPH0517534Y2 - - Google Patents

Info

Publication number
JPH0517534Y2
JPH0517534Y2 JP16071788U JP16071788U JPH0517534Y2 JP H0517534 Y2 JPH0517534 Y2 JP H0517534Y2 JP 16071788 U JP16071788 U JP 16071788U JP 16071788 U JP16071788 U JP 16071788U JP H0517534 Y2 JPH0517534 Y2 JP H0517534Y2
Authority
JP
Japan
Prior art keywords
water
valve
evaporator
water tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16071788U
Other languages
Japanese (ja)
Other versions
JPH0281330U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16071788U priority Critical patent/JPH0517534Y2/ja
Publication of JPH0281330U publication Critical patent/JPH0281330U/ja
Application granted granted Critical
Publication of JPH0517534Y2 publication Critical patent/JPH0517534Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、送水ポンプにより水槽内の水をレー
ザー加工機、放電加工機といつた被冷却体に送り
込むと共に、被冷却体を冷却した水を水槽内へ還
元する冷却回路と、圧縮機、凝縮器及び蒸発器か
らなる冷媒回路との熱交換を蒸発器を介して行な
う水冷却装置に関するものである。
[Detailed description of the invention] [Field of industrial application] This invention uses a water pump to send water in a water tank to objects to be cooled, such as laser processing machines and electrical discharge machines, and also uses water to cool objects to be cooled. This invention relates to a water cooling system that performs heat exchange between a cooling circuit that returns water to a water tank and a refrigerant circuit that includes a compressor, a condenser, and an evaporator via an evaporator.

[従来の技術] 前記冷却回路と冷媒回路との間の熱交換を行な
つて水槽内の水温を予め設定された目標温度に維
持する水冷却装置として、本願出願人は前記蒸発
器を経由する水路と蒸発器を経由しない水路との
分岐部に三方弁型の電動弁を介在し、水槽内の温
度センサの検出結果に基づく比例制御によつて電
動弁の弁角度を適宜調整することにより分流制御
を行なうものを既に提案している。
[Prior Art] As a water cooling device that maintains the water temperature in the water tank at a preset target temperature by exchanging heat between the cooling circuit and the refrigerant circuit, the applicant of the present application has developed a water cooling system that uses water via the evaporator. A three-way electrically operated valve is interposed at the branching point between the water channel and the channel that does not pass through the evaporator, and the valve angle of the electrically operated valve is appropriately adjusted using proportional control based on the detection results of the temperature sensor in the water tank. We have already proposed something that performs control.

[考案が解決しようとする課題] 電動弁は電磁弁に比して大流量制御に適しては
いるものの、その機械構成に起因する機械的寿命
及びシール寿命の問題から頻繁な弁角度の調整に
は適さない。しかしながら、水槽内の水の目標温
度Trという1点に向けて比例的に水温制御する
方式では電動弁の弁角度の頻繁な調整が避けられ
ず、弁角度の頻繁な調整を行えば機械的寿命及び
シール寿命が短くなる。
[Problems to be solved by the invention] Although electric valves are more suitable for controlling large flow rates than solenoid valves, they do not require frequent valve angle adjustment due to mechanical life and seal life problems caused by their mechanical configuration. is not suitable. However, in a system that proportionally controls the water temperature toward a single point, the target temperature Tr, of water in the water tank, frequent adjustments to the valve angle of the motorized valve are unavoidable, and frequent adjustments to the valve angle will reduce the mechanical lifespan. and seal life is shortened.

本考案は電動弁の頻繁な弁角度調整を行なうこ
となく水温制御を行い得る水冷却装置を提供する
ことを目的とするものである。
An object of the present invention is to provide a water cooling device that can control water temperature without frequently adjusting the valve angle of an electric valve.

[課題を解決するための手段] そのために本考案では、蒸発器を経由する水路
と蒸発器を経由しない水路との分岐部には分流可
能かつ任意の弁角度に停止保持可能な三方弁型の
電動弁を介在し、水槽内には温度センサを設置す
ると共に、温度センサを制御装置に接続し、水槽
内の水温の目標温度領域以外では温度センサによ
り検出された水温に応じた制御信号を出力する制
御装置を電動弁に接続する共に、前記目標温度領
域では制御装置から電動弁への制御信号出力を停
止するようにした。
[Means for Solving the Problems] To achieve this, in the present invention, a three-way valve type is installed at the branching part between the waterway passing through the evaporator and the waterway not passing through the evaporator. A temperature sensor is installed inside the water tank via an electric valve, and the temperature sensor is connected to a control device, and a control signal is output according to the water temperature detected by the temperature sensor outside the target temperature range of the water temperature in the water tank. A control device is connected to the electric valve, and control signal output from the control device to the electric valve is stopped in the target temperature range.

[作用] 検出水温が目標温度領域を越える場合には、制
御装置は水温を低下するように電動弁に制御信号
を発し、熱負荷体からの還流水が蒸発器を経由す
る割合が増える。これにより蒸発器を経由して水
槽へ還流する水が増え、水槽内の水温が低下方向
へ向かう。逆に、検出水温が目標温度領域に達し
ない場合には、制御装置は水温を上昇するように
電動弁に制御信号を発し、熱負荷体からの還流水
が蒸発器を経由する割合が減る。これにより蒸発
を経由することなく水槽へ還流する水が増え、水
槽内の水温が上昇方向へ向かう。検出水温が目標
温度領域に入り込めば、制御装置は電動弁に対す
る制御信号の出力を停止し、電動弁は制御信号出
力停止直後の弁角度状態に停止保持される。従つ
て、電動弁の弁角度変更の動作が大幅に減り、電
動弁の機械的寿命、シール寿命が向上する。
[Operation] When the detected water temperature exceeds the target temperature range, the control device issues a control signal to the motor-operated valve to lower the water temperature, and the proportion of return water from the heat load body passing through the evaporator increases. As a result, the amount of water flowing back into the tank via the evaporator increases, and the water temperature in the tank tends to decrease. Conversely, when the detected water temperature does not reach the target temperature range, the control device issues a control signal to the electric valve to increase the water temperature, and the proportion of return water from the heat load body passing through the evaporator is reduced. This increases the amount of water that flows back into the aquarium without going through evaporation, causing the water temperature in the aquarium to rise. When the detected water temperature falls within the target temperature range, the control device stops outputting the control signal to the motor-operated valve, and the motor-operated valve is stopped and maintained at the valve angle state immediately after the control signal output stops. Therefore, the operation of changing the valve angle of the motor-operated valve is significantly reduced, and the mechanical life and seal life of the motor-operated valve are improved.

[実施例] 以下、本考案を具体化した一実施例を図面に基
づいて説明する。
[Example] Hereinafter, an example embodying the present invention will be described based on the drawings.

1は水槽であり、水槽1に接続された供給パイ
プ2上には送水ポンプ3が介在されており、供給
パイプ2は熱負荷体4の水路入口となる導入管4
aに接続されていると共に、水槽1に接続された
還流パイプ5は熱負荷体4の水路出口となる排出
管4bに接続されている。送水ポンプ3の下流側
の供給パイプ2には冷却用パイプ6の一端が分岐
接続されており、冷却用パイプ6の他端には三方
弁型の電送弁7の入力ポートP1が接続されてい
る。電動弁7の一方の出力ポートP2は冷却用パ
イプ8を介して水槽1に接続されていると共に、
電動弁7の他方の出力ポートP3には放出パイプ
9が接続されており、その開放端が水槽1上に配
置されている。
1 is a water tank, a water pump 3 is interposed on a supply pipe 2 connected to the water tank 1, and the supply pipe 2 is an introduction pipe 4 which becomes the waterway inlet of the heat load body 4
The reflux pipe 5, which is connected to the water tank 1 and the water tank 1, is connected to the discharge pipe 4b, which serves as a waterway outlet of the heat load body 4. One end of a cooling pipe 6 is branched and connected to the supply pipe 2 on the downstream side of the water pump 3, and the input port P1 of a three-way valve type electric transmission valve 7 is connected to the other end of the cooling pipe 6. There is. One output port P2 of the electric valve 7 is connected to the water tank 1 via a cooling pipe 8,
A discharge pipe 9 is connected to the other output port P 3 of the electric valve 7 and its open end is placed above the water tank 1 .

電動弁7のボール状バルブ7aはモータ部7b
の出力軸7cに連結固定されており、ボール状バ
ルブ7a内の通路7dの一方の開口が入力ポート
P1に常時連通していると共に、他方の開口が両
出力ポートP2,P3に連通可能である。通路7d
はボール状バルブ7aの回動角(即ち弁角度)が
ある範囲では両出力ポートP2,P3に共に連通し
ており、この弁角度範囲を外れると通路7dは出
力ポートP2,P3いずれか一方にのみ連通する。
モータ部7bには減速歯車機構が組み込まれてお
り、この減速歯車機構によりボール状バルブ7a
が任意の弁角度で停止保持可能である。
The ball-shaped valve 7a of the electric valve 7 is connected to the motor part 7b.
is connected and fixed to the output shaft 7c of the ball-shaped valve 7a, and one opening of the passage 7d in the ball-shaped valve 7a is an input port.
It is always in communication with P 1 , and the other opening can communicate with both output ports P 2 and P 3 . aisle 7d
is in communication with both output ports P 2 and P 3 within a certain range of rotation angle (i.e., valve angle) of the ball-shaped valve 7a, and outside this valve angle range, the passage 7d is connected to the output ports P 2 and P 3 It communicates with only one of them.
A reduction gear mechanism is incorporated in the motor section 7b, and this reduction gear mechanism causes the ball-shaped valve 7a to
can be stopped and held at any valve angle.

10は圧縮機であり、その吐出ポート側には冷
媒ガスを液化する凝縮器11及び冷媒液の流量制
限を行なうキヤピラリチユーブ12が直列に接続
されていると共に、流量調整用電磁弁13が凝縮
器11及びキヤピラリチユーブ12に対して並列
となるように接続されている。圧縮機10の吸入
ポート側には蒸発器14が接続されており、キヤ
ピラリチユーブ12及び流量調整用電磁弁13が
蒸発器14に並列接続されている。なお、15は
フアンである。
10 is a compressor, and a condenser 11 for liquefying refrigerant gas and a capillary tube 12 for restricting the flow rate of refrigerant liquid are connected in series to the discharge port side of the compressor, and a solenoid valve 13 for adjusting the flow rate is connected in series to the discharge port side of the compressor. The capillary tube 11 and the capillary tube 12 are connected in parallel. An evaporator 14 is connected to the suction port side of the compressor 10, and a capillary tube 12 and a flow rate adjustment solenoid valve 13 are connected to the evaporator 14 in parallel. Note that 15 is a fan.

圧縮機10、凝縮器11、キヤピラリチユーブ
12及び流量調整電磁弁13と共に冷媒回路を構
成する蒸発器14は、水槽1、供給パイプ2、送
水ポンプ3、還流パイプ5、冷却用パイプ8、電
動弁7及び放出パイプ9と共に冷却回路を構成す
る冷却用パイプ8に組みつけられており、冷却用
パイプ8と蒸発器14とにより冷却器16が構成
されている。
The evaporator 14, which constitutes a refrigerant circuit together with the compressor 10, condenser 11, capillary tube 12, and flow rate adjustment solenoid valve 13, includes a water tank 1, a supply pipe 2, a water pump 3, a reflux pipe 5, a cooling pipe 8, and an electric motor. It is assembled into a cooling pipe 8 that constitutes a cooling circuit together with the valve 7 and the discharge pipe 9, and the cooling pipe 8 and the evaporator 14 constitute a cooler 16.

水槽1内にはその水温を検出するための温度セ
ンサ17が設置されており、温度センサ17から
の温度検出信号が制御コンピユータCに取り込ま
れるようになつている。制御コンピユータCは温
度センサ17からの温度検出信号に基づいて電動
弁7の駆動回路7eに制御信号を送る。制御コン
ピユータCには水槽1内の水温の目標温度領域
T1,T2が予め入力設定されており、制御コンピ
ユータCは温度センサ17により検出された水槽
1内の水温Txが予め設定された目標温度領域
T1,T2以外の場合には電動弁7に対してその弁
開度制御を行ない、この弁開度制御は次式で表さ
れる比例制御によつて行われる。
A temperature sensor 17 is installed in the water tank 1 to detect the temperature of the water, and a temperature detection signal from the temperature sensor 17 is input to a control computer C. The control computer C sends a control signal to the drive circuit 7e of the electric valve 7 based on the temperature detection signal from the temperature sensor 17. The control computer C has a target temperature range for the water temperature in the water tank 1.
T 1 and T 2 are input and set in advance, and the control computer C sets the water temperature Tx in the water tank 1 detected by the temperature sensor 17 to a preset target temperature range.
In cases other than T 1 and T 2 , valve opening control is performed on the motor-operated valve 7, and this valve opening control is performed by proportional control expressed by the following equation.

V(t)=Kp・ΔT(t) =Kp・(tx(t)−Tr) 但し、V(t)はデユーテイ比で表される制御
量、Kpは比例要素の係数、ΔT(t)は目標温度
Trと検出水温Txとの差である。
V(t) = Kp ΔT(t) = Kp ⋅ (tx(t) - Tr) where V(t) is the controlled variable expressed as the duty ratio, Kp is the proportional element coefficient, and ΔT(t) is the target temperature.
This is the difference between Tr and the detected water temperature Tx.

検出水温Tx=Tx1が目標温度領域T1,T2に達
しない場合、即ちTx1<T1の場合には、制御コ
ンピユータCは第2図に直線L1で表されるデユ
ーテイ比V1(t)=Kp(Tx(t)−Tr)を算出し、
このデユーテイ比の制御信号(第3図aに示す曲
線D1)を駆動回路7eに出力する。これにより
電動弁7のボール状バルブ7aが制御信号曲線
D1のパルス幅に応じた角度単位Δθで出力ポート
P3側へ回動し、放出パイプ9から水槽1へ還流
される水量が増加する。従つて、水槽1内の水温
が上昇し、検出水温Txが目標温度領域T1,T2
向かう。
When the detected water temperature Tx=Tx 1 does not reach the target temperature range T 1 , T 2 , that is, when Tx 1 < T 1 , the control computer C sets the duty ratio V 1 represented by the straight line L 1 in FIG. Calculate (t)=Kp(Tx(t)−Tr),
A control signal for this duty ratio (curve D 1 shown in FIG. 3a) is output to the drive circuit 7e. As a result, the ball-shaped valve 7a of the motor-operated valve 7 changes to the control signal curve.
Output port in angular unit Δθ according to the pulse width of D 1
It rotates toward the P3 side, and the amount of water returned from the discharge pipe 9 to the water tank 1 increases. Therefore, the water temperature in the water tank 1 increases, and the detected water temperature Tx moves toward the target temperature ranges T 1 and T 2 .

検出水温Tx=Tx2が目標温度領域T1,T2を越
える場合、即ちTx2>T2の場合には、制御コン
ピユータCは第2図に直線L2で表されるデユー
テイ比V2(t)=Kp(Tx(t)−Tr)を算出し、こ
のデユーテイ比の制御信号(第3図bに示す曲線
D2)を駆動回路7eに出力する。これにより電
動弁7のボール状バルブ7aが制御信号曲線D2
のパルス幅に応じた角度単位Δθで出力ポートP2
側へ回動し、冷却用パイプ8から水槽1へ還流さ
れる水量が増加する。従つて、水槽1内の水温が
低下し、検出水温Txが目標温度領域T1,T2に向
かう。
When the detected water temperature Tx=Tx 2 exceeds the target temperature range T 1 , T 2 , that is, when Tx 2 > T 2 , the control computer C sets the duty ratio V 2 ( t)=Kp(Tx(t)-Tr), and calculate the control signal for this duty ratio (the curve shown in Figure 3b).
D 2 ) is output to the drive circuit 7e. As a result, the ball-shaped valve 7a of the electric valve 7 follows the control signal curve D 2
Output port P 2 in angular units Δθ according to the pulse width of
The amount of water returned from the cooling pipe 8 to the water tank 1 increases. Therefore, the water temperature in the water tank 1 decreases, and the detected water temperature Tx moves toward the target temperature ranges T 1 and T 2 .

検出水温Txが目標温度領域T1,T2に到達する
と、制御コンピユータCは制御信号出力を停止
し、電動弁7の弁角度は制御信号停止直後の位置
に停止保持される。これにより検出水温Txが目
標温度領域T1,T2に存在する間は電動弁7が駆
動されることはなく、弁角度制御における動作回
数が幅のない1点目標設定に比して大幅に減少す
る。従つて、電動弁7の機械的構成に起因して弁
角度制御における頻繁な動作によつてもたらされ
る機械的劣化及びシール性能の低下が回避され、
電動弁7の信頼性が大幅に向上する。
When the detected water temperature Tx reaches the target temperature ranges T 1 and T 2 , the control computer C stops outputting the control signal, and the valve angle of the electric valve 7 is maintained at the position immediately after the control signal stops. As a result, the electric valve 7 is not driven while the detected water temperature Tx is within the target temperature ranges T 1 and T 2 , and the number of operations in valve angle control is significantly reduced compared to a one-point target setting with no range. Decrease. Therefore, mechanical deterioration and reduction in sealing performance caused by frequent operations in valve angle control due to the mechanical configuration of the electric valve 7 are avoided;
The reliability of the electric valve 7 is greatly improved.

又、電動弁7に関するフイードバツク制御を行
わない構成は制御系の簡素化に繋がり、コスト的
にも有利である。
Furthermore, the configuration in which feedback control regarding the electric valve 7 is not performed leads to a simplified control system and is advantageous in terms of cost.

本考案は勿論前記実施例にのみ限定されるもの
ではなく、例えばコンピユータ制御に代えて電子
回路構成の制御装置で前記実施例と同様の電動弁
7の弁角度制御を行なうことも可能である。
The present invention is, of course, not limited to the embodiments described above, and the valve angle of the electric valve 7 may be controlled in the same manner as in the embodiments described above using a control device having an electronic circuit configuration instead of, for example, computer control.

[考案の効果] 以上詳述したように本考案は、蒸発器を経由す
る水路と蒸発器を経由しない水路との分岐部には
分流可能かつ任意の弁角度に停止保持可能な三方
弁型の電動弁を介在し、水槽内の温度センサから
得られる水温情報に基づく電動弁の弁角度制御を
行なう上で検出水温が目標温度領域以外では温度
センサにより検出された水温に応じた制御信号で
電動弁を駆動し、検出水温が目標温度領域では電
動弁を駆動しないようにしたので、電動弁におけ
る弁角度制御における変更動作回数が低減し、こ
れにより電動弁の機械的劣化及びシート性能低下
を抑制して電動弁の信頼性を大幅に向上し得ると
いう優れた効果を奏する。
[Effects of the invention] As detailed above, the present invention has a three-way valve type that can separate the flow and can be stopped and held at any valve angle at the branching part between the waterway passing through the evaporator and the waterway not passing through the evaporator. When the valve angle of the motorized valve is controlled based on the water temperature information obtained from the temperature sensor in the water tank via the motorized valve, if the detected water temperature is outside the target temperature range, the motorized valve is operated using a control signal according to the water temperature detected by the temperature sensor. Since the valve is driven and the motorized valve is not driven when the detected water temperature is in the target temperature range, the number of changes in valve angle control in the motorized valve is reduced, thereby suppressing mechanical deterioration of the motorized valve and deterioration of seat performance. This has the excellent effect of significantly improving the reliability of the electric valve.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案を具体化した一実施例を示し、第
1図は回路図、第2図及び第3図a,bはいずれ
もグラフである。 水槽1、送水ポンプ3、電動弁7、蒸発器14
を経由する水路としての冷却用パイプ8、蒸発器
14を経由しない水路としての放出パイプ9、温
度センサ17、制御コンピユータC。
The drawings show an embodiment embodying the present invention, and FIG. 1 is a circuit diagram, and FIGS. 2 and 3 a and 3 are graphs. Water tank 1, water pump 3, electric valve 7, evaporator 14
A cooling pipe 8 as a waterway passing through the evaporator 14, a discharge pipe 9 as a waterway not passing through the evaporator 14, a temperature sensor 17, and a control computer C.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 送水ポンプ3により水槽1内の水を熱負荷体4
に送り込むと共に、熱負荷体4を冷却した水を水
槽1内へ還流する冷却回路と、圧縮機10、凝縮
器11及び蒸発器14からなる冷媒回路との熱交
換を蒸発器14を介して行なう水冷却装置におい
て、前記蒸発器14を経由する水路8と蒸発器1
4を経由しない水路9との分岐部には分流可能か
つ任意の弁角度に停止保持可能な三方弁型の電動
弁7を介在し、水槽1内には温度センサ17を設
置すると共に、温度センサ17を制御装置Cに接
続し、水槽1内の水温の目標温度領域以外では温
度センサ17により検出された水温に応じた制御
信号を出力する制御装置Cを電動弁7に接続する
共に、前記目標温度領域では制御装置Cから電動
弁7への制御信号出力を停止するようにした水冷
却装置。
The water in the water tank 1 is transferred to the heat load body 4 by the water pump 3.
At the same time, heat exchange is performed between a cooling circuit that circulates the water that has cooled the heat load body 4 into the water tank 1 and a refrigerant circuit that includes a compressor 10, a condenser 11, and an evaporator 14 via an evaporator 14. In the water cooling device, the water channel 8 passing through the evaporator 14 and the evaporator 1
A three-way electric valve 7 is interposed at the branching point with the water channel 9 that does not pass through the water tank 1, and a three-way electric valve 7 that can separate the flow and can be stopped and held at any valve angle is installed in the water tank 1. 17 is connected to the control device C, and a control device C is connected to the electric valve 7, and outputs a control signal according to the water temperature detected by the temperature sensor 17 outside the target temperature range of the water temperature in the water tank 1. A water cooling device configured to stop outputting a control signal from a control device C to an electric valve 7 in a temperature range.
JP16071788U 1988-12-09 1988-12-09 Expired - Lifetime JPH0517534Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16071788U JPH0517534Y2 (en) 1988-12-09 1988-12-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16071788U JPH0517534Y2 (en) 1988-12-09 1988-12-09

Publications (2)

Publication Number Publication Date
JPH0281330U JPH0281330U (en) 1990-06-22
JPH0517534Y2 true JPH0517534Y2 (en) 1993-05-11

Family

ID=31443026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16071788U Expired - Lifetime JPH0517534Y2 (en) 1988-12-09 1988-12-09

Country Status (1)

Country Link
JP (1) JPH0517534Y2 (en)

Also Published As

Publication number Publication date
JPH0281330U (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US20220412580A1 (en) Hybrid heat pump with improved dehumidification
EP1448877B1 (en) Automotive coolant control valve
EP0557113A3 (en) Engine cooling system
US5247989A (en) Modulated temperature control for environmental chamber
WO2018076934A1 (en) Air conditioner and refrigeration system thereof
JPH0728545Y2 (en) Liquid temperature controller
US8651171B2 (en) Single flow circuit heat exchange device for periodic positive and reverse directional pumping
JPH0517534Y2 (en)
CN110986405B (en) Heat exchange assembly, heat exchange system and air conditioning equipment
JP2002081408A (en) Fluid pressure circuit
EP3719418A1 (en) Electronic expansion valve, heat exchange system and method for controlling electronic expansion valve
JPH0538931A (en) Warm water type heat exchanger
US6718763B2 (en) Hydraulic drive unit
JPS63279063A (en) Simultaneous air-conditioning method at plurality of position
DK164244B (en) COOLING SYSTEM AND PROCEDURE FOR MANAGING THE COOLANT FLOW
US20100147004A1 (en) Heat pump or heat exchange device with periodic positive and reverse pumping
JP2022157803A (en) Flow control valve and heat exchange unit
JP3712827B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
CN216842511U (en) Hydraulic heat dissipation system and engineering vehicle
JPH09317465A (en) Hydraulic drive for cooling fan
EP4212793A1 (en) Heat pump system and a control method thereof
EP2148163A2 (en) Single flow circuit heat exchange device for periodic positive and reverse directional pumping
JPH10325652A (en) Electronic expansion valve for refrigerating cycle
EP3722706B1 (en) Thermal cycle system and control method for a thermal cycle system
JPS62293066A (en) Engine drive type heat pump type air conditioner