JPH05175166A - Method for measuring etched amount of semiconductor crystal - Google Patents

Method for measuring etched amount of semiconductor crystal

Info

Publication number
JPH05175166A
JPH05175166A JP34370891A JP34370891A JPH05175166A JP H05175166 A JPH05175166 A JP H05175166A JP 34370891 A JP34370891 A JP 34370891A JP 34370891 A JP34370891 A JP 34370891A JP H05175166 A JPH05175166 A JP H05175166A
Authority
JP
Japan
Prior art keywords
etching
crystal
carrier concentration
semiconductor crystal
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34370891A
Other languages
Japanese (ja)
Inventor
Masataka Oji
正隆 大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP34370891A priority Critical patent/JPH05175166A/en
Publication of JPH05175166A publication Critical patent/JPH05175166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method by which the finely etched amount of a semiconductor crystal, in which a carrier concentration varies along its depth direction can be measured. CONSTITUTION:A carrier concentration profile in a crystal along its depth direction is found by a capacity-voltage (C-V) measuring method using a Schottky electrode before and after the surface of the crystal is etched and the etched amount of the crystal is found from the difference in film thickness of the crystal before and after the etching appearing in the carrier concentration profile. When this method is used, the finely etched amount of the semiconductor crystal can be measured in the order of 1nm. Therefore, this method can be effectively applied to the manufacturing process of a semiconductor device and evaluation of crystal growth which requires an accurate etched amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体結晶のエッチン
グ量の測定方法、特に表面から深さ方向にキャリア濃度
が変化する結晶のエッチング量を正確に測定する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the etching amount of a semiconductor crystal, and more particularly to a method for accurately measuring the etching amount of a crystal whose carrier concentration changes from the surface to the depth direction.

【0002】[0002]

【従来の技術】半導体結晶のエッチング量測定は、一般
的に段差測定法により行われていた。例えば、図3に示
すように半導体結晶試料1の表面の一部にフォトレジス
ト2を塗布して、エッチング液により一定時間エッチン
グする。エッチング後フォトレジスト2を除去し、エッ
チングにより生じた試料1の表面の段差を、触針式の段
差計等により測定する。この段差が求めるエッチング量
である。
2. Description of the Related Art The etching amount of a semiconductor crystal is generally measured by a step measuring method. For example, as shown in FIG. 3, a photoresist 2 is applied to a part of the surface of the semiconductor crystal sample 1 and etched with an etching solution for a certain period of time. After the etching, the photoresist 2 is removed, and the step difference on the surface of the sample 1 caused by the etching is measured by a stylus type step meter or the like. This step is the required etching amount.

【0003】[0003]

【発明が解決しようとする課題】段差測定法による従来
のエッチング量測定には次のような問題があった。すな
わち、エッチング量が50nm程度よりも大きい場合に
は段差測定法でも比較的正確にエッチング量を求めるこ
とが出来た。しかし、50nm程度よりも浅いエッチン
グの場合には、段差測定器自体の分解能が不十分である
ことおよびエッチングした試料の表面の凹凸がエッチン
グの深さに対して無視できない程度となってくること等
のために、段差測定法では正確にエッチング量を測定す
ることが出来なかった。本発明は前記の課題を解決し、
表面から深さ方向にキャリア濃度が変化する結晶の微小
なエッチング量を正確に測定する方法を提供することを
目的とする。
The conventional etching amount measurement by the step measuring method has the following problems. That is, when the etching amount is larger than about 50 nm, the etching amount could be relatively accurately obtained by the step measuring method. However, in the case of etching shallower than about 50 nm, the resolution of the step measuring device itself is insufficient, and the unevenness of the surface of the etched sample becomes not negligible with respect to the etching depth. Therefore, the etching amount could not be accurately measured by the step measuring method. The present invention solves the above problems,
An object of the present invention is to provide a method for accurately measuring a minute etching amount of a crystal whose carrier concentration changes from the surface to the depth direction.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の測定方法は、半導体結晶表面のエッチン
グ前後に、ショットキー電極を用いた容量−電圧(C−
V)測定法によって結晶の深さ方向のキャリア濃度プロ
ファイルを求め、キャリア濃度プロファイルに現れたエ
ッチング前後の結晶の膜厚の差からエッチング量を求め
ることを特徴とする。
In order to achieve the above object, the measuring method of the present invention uses a capacitance-voltage (C-
V) The carrier concentration profile in the depth direction of the crystal is obtained by the measurement method, and the etching amount is obtained from the difference in the film thickness of the crystal before and after the etching that appears in the carrier concentration profile.

【0005】[0005]

【作用】従来のエッチング量測定が、段差計等の機械的
な測定法によっていたために上記のような問題があった
のに対して、本発明の方法は、C−V測定法により電気
的にエッチング前後のキャリア濃度プロファイルを求
め、そのプロファイルに現れた膜厚の差からエッチング
量を求めている。したがって、1nm程度の分解能およ
び精度でエッチング量を正確に求めることが可能であ
る。
The conventional etching amount measurement has been caused by the mechanical measuring method such as a step difference meter, which causes the above-mentioned problems, whereas the method of the present invention is electrically measured by the CV measuring method. In addition, the carrier concentration profile before and after etching is obtained, and the etching amount is obtained from the difference in film thickness that appears in the profile. Therefore, it is possible to accurately obtain the etching amount with a resolution and accuracy of about 1 nm.

【0006】[0006]

【実施例】[実施例1] 半絶縁性GaAs基板上に形
成したn型GaAsエピタキシャルウエハを、3mm×
20mmの大きさに裁断し試料とした。これらの8片の
試料をH3PO4:H22:H2O=3:1:50 のエッ
チング液で、それぞれ10秒から120秒間エッチング
した。エッチングしていない試料および上記8片のエッ
チングした試料について、それぞれ表面に金を蒸着して
ショットキー接合を形成し、C−V測定を行った。C−
V測定により求めた各試料の深さ方向のキャリア濃度プ
ロファイルは図1のとおりであった。
[Example 1] An n-type GaAs epitaxial wafer formed on a semi-insulating GaAs substrate was 3 mm x
A sample was cut into a size of 20 mm. These eight-piece samples were etched with H 3 PO 4 : H 2 O 2 : H 2 O = 3: 1: 50 etching solution for 10 to 120 seconds, respectively. The CV measurement was performed on the unetched sample and the above-described eight pieces of the etched sample by depositing gold on the surface to form a Schottky junction. C-
The carrier concentration profile in the depth direction of each sample obtained by V measurement was as shown in FIG.

【0007】試料表面から、キャリア濃度が5×1016
cm-3となる点までの深さをエピタキシャル層の膜厚と
定義し、キャリア濃度プロファイルから各試料の膜厚を
求めた結果を表1に示す。表1は、エッチング時間0秒
から120秒までの各試料の、エッチング後の膜厚D
a、隣り合った試料間の膜厚の差De’、および膜厚の
差の累計Deを一覧にしたものである。この測定方法に
より、一定時間内のエッチング量が1nmの桁まで得ら
れた。
From the sample surface, the carrier concentration is 5 × 10 16
Table 1 shows the results obtained by defining the depth up to the point of cm −3 as the film thickness of the epitaxial layer and obtaining the film thickness of each sample from the carrier concentration profile. Table 1 shows the film thickness D after etching of each sample from the etching time of 0 seconds to 120 seconds.
a is a list of film thickness differences De ′ between adjacent samples, and cumulative film thickness difference De. By this measuring method, the etching amount within a fixed time was obtained to the order of 1 nm.

【0008】[0008]

【表1】 [Table 1]

【0009】実施例1では、燐酸系のエッチング液を使
用したが、GaAsについて使用される他のエッチング
液、例えば硫酸系、アンモニア系等のエッチング液を使
用した場合でも本発明の方法が同様に適用できることは
言うまでもない。また、エッチングによらず、研磨によ
って膜厚を落す場合にも本発明の測定方法が適用でき
る。膜厚が変化する前後のキャリア濃度プロファイルの
比較から、正確に膜厚の差を求めることが本発明の特徴
だからである。
Although the phosphoric acid type etching solution is used in the first embodiment, the method of the present invention is also applicable to the case of using another etching solution used for GaAs, such as sulfuric acid type or ammonia type etching solution. Needless to say, it can be applied. Further, the measuring method of the present invention can be applied to the case where the film thickness is reduced by polishing instead of etching. This is because the feature of the present invention is to accurately obtain the difference in film thickness from the comparison of carrier concentration profiles before and after the film thickness changes.

【0010】[実施例2] 半導体結晶のキャリア濃
度、膜厚の簡便な非破壊測定法である電解C−V法にお
ける設定エッチング量(エッチングステップ)の正確さ
を、本発明の方法を用いて検定した。電解C−V法は、
予め一定のエッチングステップを設定しておき、タイロ
ン液等の電解液に半導体結晶を接触させ、これに光を照
射、または電圧を印加することで半導体結晶をエッチン
グし、半導体結晶と電解液の境界面のショットキー接合
状態を利用して、容量(C)−電圧(V)の関係を測定
し、前記エッチングステップ毎のキャリア濃度を求める
ものである。エッチングステップの設定は、流す電流と
電解を行う時間(すなわち電荷量)によって定める。
[Embodiment 2] The accuracy of the set etching amount (etching step) in the electrolytic CV method, which is a simple nondestructive measurement method for the carrier concentration and film thickness of a semiconductor crystal, was confirmed by using the method of the present invention. It was calibrated. The electrolytic CV method is
A certain etching step is set in advance, the semiconductor crystal is brought into contact with an electrolytic solution such as Tyrone solution, and the semiconductor crystal is etched by irradiating it with light or applying a voltage, and the boundary between the semiconductor crystal and the electrolytic solution. By utilizing the Schottky junction state of the surface, the relationship of capacitance (C) -voltage (V) is measured, and the carrier concentration at each etching step is obtained. The setting of the etching step is determined by the flowing current and the time for electrolysis (that is, the amount of charge).

【0011】実施例1の場合と同じGaAsエピタキシ
ャルウエハを、電解C−V法により測定した。まず厚み
270nmのn型GaAsエピタキシャル層の表面から
100nmの深さまでをエッチングにより除去した。こ
こでC−V法により試料のキャリア濃度プロファイルを
求めた。続いて、電解エッチングによるエッチングステ
ップを5nmに設定し、5nmステップで20nmまた
は10nmエッチングする毎にC−V測定によりキャリ
ア濃度プロファイルを求めていった。
The same GaAs epitaxial wafer as in Example 1 was measured by the electrolytic CV method. First, the n-type GaAs epitaxial layer having a thickness of 270 nm was removed by etching from the surface to a depth of 100 nm. Here, the carrier concentration profile of the sample was obtained by the CV method. Subsequently, the etching step by electrolytic etching was set to 5 nm, and the carrier concentration profile was obtained by CV measurement every time 20 nm or 10 nm was etched in 5 nm steps.

【0012】得られたキャリア濃度プロファイルを図2
に示す。このプロファイルから各エッチング毎の膜厚を
求め、隣り合うプロファイルの膜厚の差から実際のエッ
チング量を得る。結果を表2に示す。膜厚をDa、設定
エッチング量をDs、隣り合ったプロファイル間の膜厚
の差をDe’で、それぞれ表す。エッチング量の設定値
Dsの合計が160nmであるのに対して、実際のエッ
チング量すなわち膜厚の差De’の合計は154nmと
なった。設定値に対し実際のエッチング量は約4%少な
い値となっていることが確認できた。
The obtained carrier concentration profile is shown in FIG.
Shown in. The film thickness for each etching is obtained from this profile, and the actual etching amount is obtained from the difference in film thickness between adjacent profiles. The results are shown in Table 2. The film thickness is represented by Da, the set etching amount is represented by Ds, and the film thickness difference between adjacent profiles is represented by De '. The total etching amount set value Ds was 160 nm, whereas the actual etching amount, that is, the total film thickness difference De ′ was 154 nm. It was confirmed that the actual etching amount was about 4% less than the set value.

【0013】[0013]

【表2】 [Table 2]

【0014】上記と同様の電解C−V測定を、エッチン
グステップを2nmに設定して行った。結果を表3に示
す。設定エッチング量Dsの合計が70nmであるのに
対して、実際のエッチング量は86nmであった。設定
値に対し実際のエッチング量は約20%大きい値となっ
ている。この結果、電解C−V測定においては、エッチ
ングステップが2nmでは誤差が大きいが、エッチング
ステップを5nmとするとほぼ設定通りの正確なエッチ
ングが出来ることが明らかとなった。
The same electrolytic CV measurement as above was performed with the etching step set to 2 nm. The results are shown in Table 3. The total set etching amount Ds was 70 nm, while the actual etching amount was 86 nm. The actual etching amount is about 20% larger than the set value. As a result, in the electrolytic C-V measurement, it was clarified that an error was large when the etching step was 2 nm, but accurate etching could be performed almost as set when the etching step was 5 nm.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】本発明によれば、半導体結晶の微小なエ
ッチング量を1nmの桁まで正確に測定することができ
る。したがって正確なエッチング量が要求される、半導
体デバイスの作製プロセス、結晶成長の評価に利用する
と効果的である。また、本発明の方法は、電解C−V測
定における設定エッチング量の精度確認や、測定装置の
校正にも有効な手段である。
According to the present invention, the minute etching amount of a semiconductor crystal can be accurately measured to the order of 1 nm. Therefore, it is effective when used for evaluation of semiconductor device manufacturing process and crystal growth, which requires an accurate etching amount. The method of the present invention is also an effective means for confirming the accuracy of the set etching amount in the electrolytic CV measurement and for calibrating the measuring device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1において、求めた各試料の深
さ方向のキャリア濃度プロファイルである。
FIG. 1 is a carrier concentration profile in a depth direction of each sample obtained in Example 1 of the present invention.

【図2】本発明の実施例2において、求めた各試料の深
さ方向のキャリア濃度プロファイルである。
FIG. 2 is a carrier concentration profile in the depth direction of each sample obtained in Example 2 of the present invention.

【図3】従来の方法によるエッチング量測定の際の、試
料の状態を示す図である。
FIG. 3 is a diagram showing a state of a sample when an etching amount is measured by a conventional method.

【符号の説明】[Explanation of symbols]

1:GaAs測定試料 2:フォトレジスト 1: GaAs measurement sample 2: photoresist

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体結晶表面のエッチング前後に、シ
ョットキー電極を用いた容量−電圧(C−V)測定法に
よって結晶の深さ方向のキャリア濃度プロファイルを求
め、キャリア濃度プロファイルに現れたエッチング前後
の結晶の膜厚の差からエッチング量を求めることを特徴
とする半導体結晶のエッチング量測定方法。
1. A carrier concentration profile in the depth direction of the crystal is obtained by a capacitance-voltage (CV) measurement method using a Schottky electrode before and after the etching of the semiconductor crystal surface, and before and after the etching that appears in the carrier concentration profile. A method for measuring an etching amount of a semiconductor crystal, wherein the etching amount is obtained from the difference in film thickness of the crystal.
JP34370891A 1991-12-26 1991-12-26 Method for measuring etched amount of semiconductor crystal Pending JPH05175166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34370891A JPH05175166A (en) 1991-12-26 1991-12-26 Method for measuring etched amount of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34370891A JPH05175166A (en) 1991-12-26 1991-12-26 Method for measuring etched amount of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH05175166A true JPH05175166A (en) 1993-07-13

Family

ID=18363637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34370891A Pending JPH05175166A (en) 1991-12-26 1991-12-26 Method for measuring etched amount of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH05175166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376679A2 (en) * 2002-06-27 2004-01-02 Sumitomo Electric Industries, Ltd. Method and device for determining backgate characteristics
KR101241755B1 (en) * 2012-07-23 2013-03-15 호서대학교 산학협력단 Electrochemical isothermal-capacitance-transient spectroscopy
CN103868952A (en) * 2014-02-27 2014-06-18 中国电子科技集团公司第十一研究所 Carrier concentration testing method of ion implanted layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376679A2 (en) * 2002-06-27 2004-01-02 Sumitomo Electric Industries, Ltd. Method and device for determining backgate characteristics
EP1376679A3 (en) * 2002-06-27 2010-03-10 Sumitomo Electric Industries, Ltd. Method and device for determining backgate characteristics
KR101241755B1 (en) * 2012-07-23 2013-03-15 호서대학교 산학협력단 Electrochemical isothermal-capacitance-transient spectroscopy
CN103868952A (en) * 2014-02-27 2014-06-18 中国电子科技集团公司第十一研究所 Carrier concentration testing method of ion implanted layer
CN103868952B (en) * 2014-02-27 2016-05-25 中国电子科技集团公司第十一研究所 Ion implanted layer carrier concentration method of testing

Similar Documents

Publication Publication Date Title
CN111751491A (en) Method for analyzing concentration of mixed acid in silicon etching solution
US6459482B1 (en) Grainless material for calibration sample
JPH05175166A (en) Method for measuring etched amount of semiconductor crystal
KR100968325B1 (en) Method and device for determining backgate characteristics
EP1800142A2 (en) Method and apparatus for determining concentration of defects and/or impurities in a semiconductor wafer
CN112949236A (en) Calculation method and calculation system for etching deviation
Kinder et al. Carrier profiling of a heterojunction bipolar transistor and p–i–n photodiode structures by electrochemical C–V technique
US5849603A (en) Method of processing a surface of a semiconductor substrate
Morris Some device applications of spreading resistance measurements on epitaxial silicon
US20040256244A1 (en) Selective electrochemical etching method for two-dimensional dopant profiling
US6275293B1 (en) Method for measurement of OSF density
JP6172102B2 (en) Method for evaluating SOI substrate
KR0140443B1 (en) Measuring method of amount of ion in ion implantation processor
KR100206873B1 (en) Semiconductor device for testing surface characteristics
JP2003258054A (en) Estimating method of effective channel length of mos transistor
KR100192165B1 (en) Line width measuring method for semiconductor device
JP2001060608A (en) Semiconductor device
JPH04111337A (en) Method for measuring concentration distribution in impurity layer formed on surface of semiconductor
JPH02238646A (en) Measurement of impurities in semiconductor
JPH033943B2 (en)
US20030085407A1 (en) Wafer including an In-containing-compound semiconductor surface layer, and method for profiling its carrier concentration
JP3127448B2 (en) Etching control method
JP3777742B2 (en) Manufacturing method of semiconductor device
JPH06124991A (en) Method of estimating junction part
JP2003194747A (en) Method of measuring concentration distribution of element in solid