JPH05174397A - Auto-focus device - Google Patents
Auto-focus deviceInfo
- Publication number
- JPH05174397A JPH05174397A JP35725491A JP35725491A JPH05174397A JP H05174397 A JPH05174397 A JP H05174397A JP 35725491 A JP35725491 A JP 35725491A JP 35725491 A JP35725491 A JP 35725491A JP H05174397 A JPH05174397 A JP H05174397A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- light
- sample
- light beam
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Automatic Focus Adjustment (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はコンパクトディスク等に
用いられている光学的記録読取り用の光ピックアップの
オートフォーカス装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autofocus device for an optical pickup for optical recording and reading which is used for compact discs and the like.
【0002】[0002]
【従来の技術】上述したような光ピックアップの従来の
オートフォーカス装置の構造は図5のようになってい
た。この図でSは試料面、Lは光源で、光源からの光は
コリメータレンズC,対物レンズMを通して正規位置に
ある試料面に集光される。試料面からの反射光は照射光
路を逆進し、半透明鏡Hで側方に反射される。半透明鏡
Hから右側の光学系がオートフォーカス装置で、正規位
置にある試料S上の集光点0の像が投影レンズPによっ
て受光素子F上に形成されるようになっている。試料面
は鏡面反射をするから、試料面が正規位置から上下方向
にずれると、投影レンズPから見た対物レンズMによる
光源Lの光の集光点は正規の位置0より上下にずれた位
置に見え、そのため受光素子F上の集光点像はぼやけて
直径が大きくなる。従って受光素子上の光像の大小によ
って焦点検出を行ってもよいが、それでは前ピン,後ピ
ンの判定ができないから、実際には更に感度を上げるた
めもかねて投影レンズPの後に円筒レンズAを入れて、
受光素子Fに集光される光束を非点光束とし、試料面が
正規位置にあるとき、受光素子上に非点光束の最小錯乱
円が形成されるようにしてある。このため試料面が正規
位置から上下にずれるのに伴って受光素子F上の集光像
は縦長になつたり横長になったりする。受光素子Fは4
分割してあって、図5Bに示すように集光像が縦長にな
ったときは受光素子F1,F3の受光量が増し、F2,
F4の受光量が減り、像が横長になると、逆にF1,F
3の受光量が減ってF2,F4の受光量が増す。このよ
うにして受光素子F1,F3の出力の和とF2,F4の
出力の和の大小関係を調べることにより焦点外れの方向
を知り、感度を高めている。2. Description of the Related Art The structure of a conventional autofocus device for an optical pickup as described above is shown in FIG. In this figure, S is the sample surface, L is the light source, and the light from the light source is focused on the sample surface at the regular position through the collimator lens C and the objective lens M. The light reflected from the sample surface travels backward in the irradiation light path and is reflected laterally by the semitransparent mirror H. The optical system on the right side of the semitransparent mirror H is an autofocus device, and an image of the focal point 0 on the sample S at the normal position is formed on the light receiving element F by the projection lens P. Since the sample surface is specularly reflected, when the sample surface is vertically displaced from the normal position, the focal point of the light of the light source L by the objective lens M viewed from the projection lens P is vertically displaced from the normal position 0. , And therefore the image of the focal point on the light receiving element F is blurred and has a large diameter. Therefore, although focus detection may be performed based on the size of the light image on the light receiving element, it is not possible to determine the front focus and the rear focus, and therefore the cylindrical lens A may be provided after the projection lens P for the purpose of further increasing the sensitivity. let me in,
The light beam focused on the light receiving element F is an astigmatic light beam, and the minimum circle of confusion of the astigmatic light beam is formed on the light receiving element when the sample surface is at the normal position. Therefore, as the sample surface shifts vertically from the normal position, the condensed image on the light receiving element F becomes vertically long or horizontally long. Light receiving element F is 4
When the focused image becomes vertically long as shown in FIG. 5B, the amount of light received by the light receiving elements F1 and F3 increases and F2
When the amount of light received by F4 decreases and the image becomes horizontally long, on the contrary, F1, F
The light receiving amount of 3 decreases and the light receiving amounts of F2 and F4 increase. In this way, the magnitude of the sum of the outputs of the light-receiving elements F1 and F3 and the sum of the outputs of F2 and F4 is examined to know the direction of defocus, and the sensitivity is enhanced.
【0003】[0003]
【発明が解決しようとする課題】上述した従来装置は非
点光束を作るための円筒レンズを必要とし、光学的構成
が複雑である。本発明はより簡単な構造で高感度のオー
トフォーカス装置を得ようとするものである。The above-mentioned conventional device requires a cylindrical lens for producing an astigmatic light beam, and has a complicated optical structure. The present invention is intended to obtain a highly sensitive autofocus device with a simpler structure.
【0004】[0004]
【課題を解決するための手段】図1に示すように試料面
に非垂直一定角度で光ビームIを入射させる手段と、試
料面で鏡面反射された上記光束の反射光束Rを受光する
2分割受光素子Fと、試料面と上記受光素子との間に挿
入された液晶素子1及び同液晶素子の両側に直交配置さ
れた偏光子2,3とよりなり、上記入射,反射両光束を
含む平面と反射光束に垂直な面との交線Xを基準方向と
してこれを左右方向とし、液晶素子の旋光角をこの基準
方向の中央部で0、基準方向に中央部から左右に遠ざか
るにつれて旋光角が左右対称的に増加するようにし、受
光素子Fは上記基準方向にF1,F2に2分割して、両
受光素子F1,F2の出力を比較することにより試料の
合焦位置を検出するようにした。As shown in FIG. 1, means for injecting a light beam I at a non-perpendicular constant angle on a sample surface and two divisions for receiving a reflected light beam R of the light beam specularly reflected on the sample surface. A plane including a light receiving element F, a liquid crystal element 1 inserted between the sample surface and the light receiving element, and polarizers 2 and 3 arranged orthogonally on both sides of the liquid crystal element, and including both the incident and reflected light beams. And the plane perpendicular to the reflected light flux is taken as the reference direction, and this is taken as the left-right direction, and the optical rotation angle of the liquid crystal element is 0 at the central portion of this reference direction, and the optical rotation angle becomes more distant from the central portion to the left and right in the reference direction. The light receiving element F is divided into two parts F1 and F2 in the above-mentioned reference direction so that the focus position of the sample can be detected by comparing the outputs of both the light receiving elements F1 and F2. ..
【0005】[0005]
【作用】図1では液晶素子1および受光素子Fは表面を
図面を見る者に向けて画いてあるが実際は光束Rに対し
て垂直である。試料Sが合焦位置にあるときの入射光束
Iの試料照射点を0とする。試料面の上下に伴い反射光
束Rは平行移動し、受光素子F上の反射光束照射スポッ
トrは図矢印方向に動く。偏光子2,3は直交させてあ
るので、液晶素子1がなければ受光素子Fへの入射光量
はゼロである。液晶素子1は中央が旋光角ゼロで左右端
に近づく程対称的に旋光角が大きくなっている。図で液
晶の矢印は旋光角を表わし、基準方向Xに直角の方向が
旋光角0を意味し、Xと平行になる程旋光角は大きくな
っている。偏光子2を透過した反射光束Rは液晶素子1
内で偏向面が回転するから幾分かの光は偏光子3を通っ
て受光素子Fに入射する。試料面が合焦位置にあると
き、反射光束Rは液晶素子1の中央を通る。このとき反
射光束の大部分は液晶の旋光角の小さい所を通るので、
受光素子Fに入射する光量は少なく、かつF1,F2と
も同量の入射光量である。今試料面が合焦よりわずか上
方に動くと、反射光束は液晶素子1の左側に移動し、受
光素子F1の入射光量が増し、F2の入射光量が減る
上、反射光束Rの液晶1による旋光角が大となって、受
光素子F1への入射光量は光束の受光素子F上の移動に
よる分以上に増大し、F1の出力は図2の実線のように
変化する。同様にして試料面が下方に下がったときの受
光素子F2の出力は図2点線のように変化する。受光素
子F1,F2の出力のこのような変化の仕方は、液晶素
子1や偏光子2,3がなくて、反射光束Rが直接2分割
受光素子F1,F2に入射しているときの反射光束スポ
ットの両受光素子への分配面積の変化による出力変化
(図2鎖線)に比し、合焦近辺で拡大されて、焦点検出
感度が向上する。In FIG. 1, the surfaces of the liquid crystal element 1 and the light receiving element F are drawn toward the viewer of the drawing, but in reality they are perpendicular to the light beam R. The sample irradiation point of the incident light flux I when the sample S is at the in-focus position is set to 0. The reflected light flux R moves in parallel with the vertical movement of the sample surface, and the reflected light flux irradiation spot r on the light receiving element F moves in the direction of the arrow in the figure. Since the polarizers 2 and 3 are orthogonal to each other, the amount of light incident on the light receiving element F is zero without the liquid crystal element 1. In the liquid crystal element 1, the optical rotation angle is zero at the center and the optical rotation angle is symmetrically increased toward the left and right ends. In the figure, the arrow of the liquid crystal represents the optical rotation angle, and the direction perpendicular to the reference direction X means the optical rotation angle 0, and the optical rotation angle becomes larger as it becomes parallel to X. The reflected light flux R transmitted through the polarizer 2 is the liquid crystal element 1
Since the deflecting surface rotates inside, some light enters the light receiving element F through the polarizer 3. When the sample surface is at the in-focus position, the reflected light flux R passes through the center of the liquid crystal element 1. At this time, most of the reflected light flux passes through a place where the optical rotation angle of the liquid crystal is small,
The amount of light incident on the light receiving element F is small, and both F1 and F2 have the same amount of incident light. When the sample surface moves slightly above the focus, the reflected light flux moves to the left side of the liquid crystal element 1, the incident light quantity of the light receiving element F1 increases, the incident light quantity of F2 decreases, and the optical rotation of the reflected light flux R by the liquid crystal 1 occurs. When the angle becomes large, the amount of light incident on the light receiving element F1 increases more than the amount of light flux moving on the light receiving element F, and the output of F1 changes as shown by the solid line in FIG. Similarly, the output of the light receiving element F2 when the sample surface goes down changes as shown by the dotted line in FIG. The way of changing the outputs of the light receiving elements F1 and F2 is such that the reflected light flux R directly enters the two-divided light receiving elements F1 and F2 without the liquid crystal element 1 and the polarizers 2 and 3. Compared with the output change (dashed line in FIG. 2) due to the change in the distribution area of the spot to both light receiving elements, the spot is enlarged in the vicinity of the focus and the focus detection sensitivity is improved.
【0006】[0006]
【実施例】図3に本発明の一実施例を示す。図で4は試
料面に光を集光照射させる対物レンズで、試料照射光束
の周辺近くの細い部分光束がオートフォーカスに利用さ
れる試料への入射ビームIであり、この部分光束はレン
ズ4への入射光束が平行光束であるから、レンズ4の焦
点0を通る。即ちこの実施例の場合、対物レンズ4が試
料面に非垂直に一定角度で光ビームを照射する手段とな
っている。この入射ビームIは試料面Sで鏡面反射さ
れ、試料面の上下移動によって反射光束Rは平行移動す
るが全てレンズ4によって、レンズ4の上側の焦点面上
の一点Qを通る。これらの反射光束は対物レンズ4への
入射光束の一部に挿入された鏡5で側方に反射される。
この側方光路中に液晶素子1とその前後の偏光子2,3
が挿入されていて、偏光子3の後方に図で上下方向に2
分割された受光素子Fが配置されている。偏向子2,3
は直交させてあり、液晶素子1は図の水平な線Zを中心
に上下対称的に旋光角が中心から上下に向かって大きく
なるようにしてある。FIG. 3 shows an embodiment of the present invention. In the figure, 4 is an objective lens for converging and irradiating the sample surface with light, and a thin partial light beam near the periphery of the sample irradiation light beam is an incident beam I to the sample used for autofocusing. Since the incident light flux of is a parallel light flux, it passes through the focal point 0 of the lens 4. That is, in the case of this embodiment, the objective lens 4 serves as means for irradiating the sample surface with a light beam non-perpendicularly at a constant angle. The incident beam I is specularly reflected on the sample surface S, and the reflected light flux R moves in parallel due to the vertical movement of the sample surface, but all of them pass through a point Q on the focal plane above the lens 4 by the lens 4. These reflected light beams are reflected laterally by the mirror 5 inserted in a part of the light beam incident on the objective lens 4.
In this side optical path, the liquid crystal element 1 and the polarizers 2 and 3 before and after the liquid crystal element 1 are provided.
2 is inserted in the rear of the polarizer 3 and vertically in the figure.
The divided light receiving elements F are arranged. Deflector 2,3
Are orthogonal to each other, and the liquid crystal element 1 is arranged such that the optical rotatory angle increases vertically from the center in a symmetrical manner with respect to the horizontal line Z in the drawing.
【0007】液晶素子1の旋光角を上述したように場所
によって変化させるための構造を図4に示す。図で1
1,12は液晶をはさんでいる透明電極で、液晶素子の
中央部にリード線13,14が着けてあり、両電極1
1,12は両端で互いに短絡してある。このため透明電
極間の電圧差は液晶素子の中央で最大であり、両端では
0になっている。液晶にはネマチック型が用いられ、透
明電極11,12の液晶と接する表面は液晶分子が互い
に直交する方向に配向するように処理してある。このた
めこの液晶素子は電極11,12間に電圧を印加してな
い状態では何れの部分も光の旋光角が90°になってお
り、偏光子2を通った偏光の偏光方向を90°回転させ
て偏光子3に送る。偏光子3は偏光子2と直交させてあ
るから、液晶素子の前面一様に光が透過する。こゝで電
極11,12間に電圧をかけると、液晶分子は電界方向
に配向するので、電極11,12間の電圧差の大きい中
央部では殆ど旋向性は0となり、両端部では電圧差は0
であるから、旋光角は90°のまゝで、結局中央から両
端に向かって対称的に旋光角が大きくなっている素子と
なる。FIG. 4 shows a structure for changing the optical rotation angle of the liquid crystal element 1 depending on the location as described above. 1 in the figure
Reference numerals 1 and 12 are transparent electrodes sandwiching the liquid crystal, and lead wires 13 and 14 are attached to the center of the liquid crystal element.
1 and 12 are short-circuited to each other at both ends. Therefore, the voltage difference between the transparent electrodes is maximum at the center of the liquid crystal element and is zero at both ends. A nematic type is used for the liquid crystal, and the surfaces of the transparent electrodes 11 and 12 in contact with the liquid crystal are treated so that the liquid crystal molecules are aligned in the directions orthogonal to each other. For this reason, in this liquid crystal element, the optical rotation angle of light is 90 ° in any part in the state where no voltage is applied between the electrodes 11 and 12, and the polarization direction of the polarized light passing through the polarizer 2 is rotated by 90 °. And send it to the polarizer 3. Since the polarizer 3 is orthogonal to the polarizer 2, light is evenly transmitted through the front surface of the liquid crystal element. When a voltage is applied between the electrodes 11 and 12 here, the liquid crystal molecules are oriented in the direction of the electric field, so that at the central portion where the voltage difference between the electrodes 11 and 12 is large, the rotation is almost 0, and the voltage difference between the two ends. Is 0
Therefore, the optical rotation angle is up to 90 °, and eventually the device is such that the optical rotation angle increases symmetrically from the center to both ends.
【0008】試料面からの反射光束Rは試料面が合焦位
置にあるときはレンズ4透過後平行光束となっている
が、試料面が上下すると発散光束となり、受光素子F上
での照射スポットの面積は増大するが、作用上は何等支
障はない。受光素子Fの2分割された各セグメントF
1,F2の出力信号は差動増幅器6の両入力端子に印加
される。差動増幅器6の出力によってサーボモータ7を
駆動して試料Sを上下させることにより、差動増幅器6
の出力が0になる。差動増幅器出力が0になったときが
合焦状態である。The reflected light beam R from the sample surface is a parallel light beam after passing through the lens 4 when the sample surface is at the in-focus position, but becomes a divergent light beam when the sample surface moves up and down, and an irradiation spot on the light receiving element F is obtained. Area increases, but there is no problem in operation. Each divided segment F of the light receiving element F
The output signals of 1 and F2 are applied to both input terminals of the differential amplifier 6. By driving the servomotor 7 by the output of the differential amplifier 6 to move the sample S up and down, the differential amplifier 6
Output becomes 0. When the output of the differential amplifier becomes 0, it is in focus.
【0009】[0009]
【発明の効果】本発明によれば非点光束を作るための円
筒レンズのような非球面光学素子を必要としないから、
オートフォーカス装置が安価にでき、試料の上下による
光束の移動を受光面上の照光スポットの移動による受光
量変化として検出する構成に照光スポットの偏光方向の
変化を付加して受光量変化を拡大したことで焦点検出の
感度も向上した。According to the present invention, since an aspherical optical element such as a cylindrical lens for producing an astigmatic light beam is not required,
The autofocus device can be made inexpensive, and the change in the polarization direction of the illumination spot is added to the configuration that detects the movement of the light flux due to the vertical movement of the sample as the change in the received light amount due to the movement of the illumination spot on the light receiving surface, thus expanding the change in the received light amount This also improved the sensitivity of focus detection.
【図1】本発明の原理説明図FIG. 1 is an explanatory diagram of the principle of the present invention.
【図2】本発明における2分割受光素子の出力変化を示
すグラフFIG. 2 is a graph showing changes in output of a two-divided light receiving element according to the present invention.
【図3】本発明の一実施例装置の側面図FIG. 3 is a side view of an apparatus according to an embodiment of the present invention.
【図4】上記実施例における液晶素子の斜視図FIG. 4 is a perspective view of a liquid crystal element in the above embodiment.
【図5】従来例の側面図FIG. 5 is a side view of a conventional example.
1 液晶素子 2,3 偏光子 4 対物レンズ F 2分割受光素子 F1,F2 受光素子の2分割セグメント S 試料 I 入射ビーム R 反射光束 DESCRIPTION OF SYMBOLS 1 Liquid crystal element 2,3 Polarizer 4 Objective lens F 2 Split light receiving element F1, F2 Two split segment of light receiving element S Sample I Incident beam R Reflected light flux
Claims (1)
射する手段と、上記光ビームの試料面からの鏡面反射光
束を受光する2分割受光素子と、上記反射光束の光路中
に配置された液晶素子と、同液晶素子の両側に配置され
偏光方向が互いに直交している偏光子とよりなり、上記
試料照射光ビームと反射光束とを含む平面と反射光束に
垂直な平面との交線方向を基準方向として、上記液晶素
子は上記基準方向に伸びて、試料が合焦位置にあるとき
の反射光束中心が通過する点から両端に向かって左右対
称的に偏光の旋光角が0から増加するようにし、2分割
受光素子は試料が合焦位置にあるときの反射光束中心の
入射点を境に上記基準方向に2つの分割セグメントを並
べたものであることを特徴とするオートフォーカス装
置。1. A means for irradiating a sample surface with a light beam from an obliquely fixed direction, a two-divided light receiving element for receiving a specularly reflected light beam from the sample surface of the light beam, and a light receiving element arranged in an optical path of the reflected light beam. A liquid crystal element and polarizers arranged on both sides of the liquid crystal element and having polarization directions orthogonal to each other, and an intersection line direction of a plane including the sample irradiation light beam and the reflected light flux and a plane perpendicular to the reflected light flux. With the reference direction as the reference direction, the liquid crystal element extends in the reference direction, and the optical rotation angle of the polarization increases from 0 symmetrically toward both ends from the point where the center of the reflected light flux when the sample is at the in-focus position passes. Thus, the two-division light-receiving element is one in which two divided segments are arranged in the above-mentioned reference direction with the incident point of the center of the reflected light beam when the sample is at the in-focus position as a boundary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35725491A JPH05174397A (en) | 1991-12-24 | 1991-12-24 | Auto-focus device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35725491A JPH05174397A (en) | 1991-12-24 | 1991-12-24 | Auto-focus device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05174397A true JPH05174397A (en) | 1993-07-13 |
Family
ID=18453184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35725491A Pending JPH05174397A (en) | 1991-12-24 | 1991-12-24 | Auto-focus device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05174397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010131436A1 (en) * | 2009-05-15 | 2010-11-18 | 株式会社ニコン | Distance measuring device and image pickup device |
-
1991
- 1991-12-24 JP JP35725491A patent/JPH05174397A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010131436A1 (en) * | 2009-05-15 | 2010-11-18 | 株式会社ニコン | Distance measuring device and image pickup device |
US8773645B2 (en) | 2009-05-15 | 2014-07-08 | Nikon Corporation | Distance measuring device and imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3969575A (en) | Opto-electronic focus detection system | |
KR850001003B1 (en) | Focus detector for an optical disc playback system | |
JPH04350818A (en) | Confocal optical system | |
US3924063A (en) | Variable optical wedge for scanning a light beam in an apparatus for reading an optically encoded disc | |
KR940008404B1 (en) | Automatic focusing apparatus and precessing method therefor | |
JPH0447377B2 (en) | ||
JPH05174397A (en) | Auto-focus device | |
JP2636846B2 (en) | Optical pickup device for magneto-optical disk | |
JP2751899B2 (en) | Optical pickup device | |
JP2625738B2 (en) | Optical head | |
JPH05504224A (en) | optical scanning device | |
KR850000421B1 (en) | Forcus detecting method | |
KR880001788Y1 (en) | Focus error petedting device | |
JPH0327978B2 (en) | ||
JPH07169071A (en) | Optical pickup system for detection of focusing error | |
JP2808713B2 (en) | Optical micro displacement measuring device | |
KR100200815B1 (en) | Detection method for focus error | |
JP3101504B2 (en) | Optical pickup device | |
JP2636659B2 (en) | Focusing error detector | |
JPS62212508A (en) | Method for measuring surface deflection | |
KR850002997Y1 (en) | The detecting apparatus of collection condition in object lens | |
KR0186149B1 (en) | Focus signal detection device of optical disk player | |
JPS6076035A (en) | Focus detector | |
JPS63282939A (en) | Optical pick-up | |
JPH07129977A (en) | Optical pickup device |