JPH0517399B2 - - Google Patents

Info

Publication number
JPH0517399B2
JPH0517399B2 JP60074368A JP7436885A JPH0517399B2 JP H0517399 B2 JPH0517399 B2 JP H0517399B2 JP 60074368 A JP60074368 A JP 60074368A JP 7436885 A JP7436885 A JP 7436885A JP H0517399 B2 JPH0517399 B2 JP H0517399B2
Authority
JP
Japan
Prior art keywords
spiral groove
pump
intermediate plate
shaft
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60074368A
Other languages
Japanese (ja)
Other versions
JPS61234296A (en
Inventor
Shotaro Mizobuchi
Yoshiichi Kimura
Katsumi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7436885A priority Critical patent/JPS61234296A/en
Publication of JPS61234296A publication Critical patent/JPS61234296A/en
Publication of JPH0517399B2 publication Critical patent/JPH0517399B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、動圧効果を利用するためにスパイラ
ル溝を具えたスラスト軸受を、運転中、軸推力の
かかる横軸ポンプ、特に横軸多段ポンプの吐出側
に設けて、軸推力を支えるようにした横軸ポンプ
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a thrust bearing equipped with a spiral groove to utilize the hydrodynamic effect of a horizontal shaft pump that is subjected to axial thrust during operation, especially a horizontal shaft multi-stage pump. This invention relates to a horizontal shaft pump that is installed on the discharge side of the pump to support axial thrust.

(従来の技術) 従来の横軸多段ポンプは、第3図に示すよう
に、吸込口1から吸込まれた液が複数の羽根車2
によつて多段的に加圧され、吐出口3から吐出さ
れるが、運転中に回転軸4に加えられるラジアル
荷重は、ケーシング両側壁部の軸封装置5を経て
両側に設けられた軸受6,6によつて支持され、
また回転軸4に加えられるスラスト荷重は、最終
段の羽根車の背後の回転軸4に取付けられたバラ
ンスデイスク(釣合盤)7に、最終段の羽根車か
ら吐出された高圧流体を、各羽根車に作用する吸
込側へ向かう推力荷重とは逆方向に作用させるよ
うにして相殺させ、軸推力をバランスさせてい
た。図中、8は吸込ケーシングを示す。
(Prior Art) In a conventional horizontal shaft multi-stage pump, as shown in FIG.
The radial load applied to the rotating shaft 4 during operation is applied to the bearings 6 provided on both sides of the casing via shaft sealing devices 5 on both side walls of the casing. ,6 supported by
In addition, the thrust load applied to the rotating shaft 4 causes the high pressure fluid discharged from the final stage impeller to be applied to the balance disk 7 attached to the rotating shaft 4 behind the final stage impeller. The thrust load acting on the impeller toward the suction side was applied in the opposite direction to cancel it out, thereby balancing the axial thrust. In the figure, 8 indicates a suction casing.

また、多段羽根車の配列を変えることによつて
軸推力を水力学的にバランスさせたり、バランス
パイプによつて吸込圧と吐出圧をバランスさせて
軸推力を軽減させていた。
The axial thrust was also reduced by hydraulically balancing the axial thrust by changing the arrangement of the multi-stage impeller, and by balancing the suction pressure and discharge pressure with a balance pipe.

(発明が解決しようとする問題点) 上記した従来技術において、バランスデイスク
を用いたものでは、ポンプが段々高圧になるとバ
ランスデイスクでは漏洩が多くなり易く、また相
対運動する対向部材が、始動時及び回転中、摺動
接触する場合があり、摺動接触する材料同士の凝
着摩耗を呈し、これによる動力損失が大きかつ
た。
(Problems to be Solved by the Invention) In the above-mentioned conventional technology, when a balance disk is used, as the pressure of the pump increases gradually, the balance disk tends to leak more, and the opposing members that move relative to each other tend to leak during startup and During rotation, sliding contact may occur, resulting in adhesive wear between the materials in sliding contact, resulting in large power loss.

また、多段羽根車の配列を変えるようにしたも
のでは、例えば、多段羽根車の右半数と左半数を
反対の向きに取付けるなどして理論的には軸推力
をバランスさせ得るが、実際上は運転状態にも変
化があるため、多少の不釣合が残ることは避けら
れず、別個の推力軸受が必要となるなどの問題点
があつた。また、バランスパイプを用いたものに
おいても、漏れによるポンプ効率の低下などの問
題点があつた。
In addition, in a case where the arrangement of the multi-stage impeller is changed, the axial thrust can be balanced in theory by, for example, installing the right half and the left half of the multi-stage impeller in opposite directions, but in practice this is not possible. Due to changes in operating conditions, it was inevitable that some unbalance would remain, which led to problems such as the need for a separate thrust bearing. In addition, even those using a balance pipe had problems such as a decrease in pump efficiency due to leakage.

本発明は、流体摩擦を利用してスラスト軸受の
損失動力を少くすると共に、ポンプの正回転のと
きばかりでなく逆回転させた場合でもスラスト荷
重が受けられることを可能とし、ポンプのシール
機構、外部軸受、バランスデイスク及びバランス
パイプ等を取り除いた高効率ポンプを得ることを
技術的課題としている。
The present invention utilizes fluid friction to reduce the power loss of the thrust bearing, and also enables the thrust load to be received not only when the pump rotates in the forward direction but also when the pump rotates in the reverse direction. The technical challenge is to obtain a high-efficiency pump that eliminates external bearings, balance disks, balance pipes, etc.

(問題点を解決するための手段) 本発明は、上記した従来技術の欠点を除去し、
問題点と技術的課題を解決するために、運転中、
軸推力のかかる横軸ポンプにおいて、一方の端面
に正転時に動圧効果を生じさせる方向に形成され
たスパイラル溝を、裏面には逆回転時に動圧効果
を生じさせる方向に形成されたスパイラル溝をそ
れぞれ設けたセラミツクス等の硬質材料からなる
中間板を、一方が軸と共に回転し、他方がケーシ
ング側に固定された対向する2個の受板の間に介
在させたスラスト軸受を、最終羽根車の背後の軸
を貫通して取付け、前記中間板の表裏両面におけ
る中央開口部の外側に、スパイラル溝部以外の部
分と同じ高さの環状部をそれぞれ設けたことを特
徴としている。
(Means for solving the problems) The present invention eliminates the drawbacks of the prior art described above,
During operation, to solve problems and technical issues.
In a horizontal shaft pump that applies axial thrust, one end face has a spiral groove formed in a direction that produces a dynamic pressure effect during forward rotation, and the back surface has a spiral groove formed in a direction that produces a dynamic pressure effect during reverse rotation. An intermediate plate made of a hard material such as ceramics, each provided with The intermediate plate is attached through the shaft thereof, and an annular portion having the same height as the portion other than the spiral groove portion is provided outside the central opening on both the front and back surfaces of the intermediate plate.

(作用) 本発明は上記のように構成されているので、羽
根車が正方向に回転され吸込側へ向かう軸推力を
発生すると、中間板の表面(回転受板と対向する
面)のスパイラル溝は、ポンプ作動液からなる潤
滑液を周辺部より中央部の環状部へ向けて強制移
動させるのに伴い動圧を発生し、対向両面間に所
要の厚さの液膜が形成されて推力荷重を支える。
他方、裏面(静止受板と対向する面)のスパイラ
ル溝は、ポンプ軸の回転につれて中間板も共に回
転しようとするが、その溝の向きが表面の溝とは
正面からみて逆方向に形成されているので動圧効
果が生ぜず、中央環状部より周辺部へ溝内の液が
排除されようとして両面間に吸引力が働くので、
該中間板は静止受板に完全に密着される。従つ
て、中間板をポンプケーシング側の受板に接着剤
等によつて接着する必要がない。
(Function) Since the present invention is configured as described above, when the impeller rotates in the positive direction and generates an axial thrust toward the suction side, the spiral groove on the surface of the intermediate plate (the surface facing the rotating receiving plate) Dynamic pressure is generated as the lubricating fluid consisting of the pump working fluid is forcibly moved from the periphery towards the annular part in the center, and a liquid film of the required thickness is formed between the opposing surfaces to reduce the thrust load. support.
On the other hand, the spiral groove on the back surface (the surface facing the stationary receiving plate) causes the intermediate plate to rotate as the pump shaft rotates, but the direction of the groove is opposite to the groove on the front surface when viewed from the front. Because of this, no dynamic pressure effect occurs, and the liquid in the groove is removed from the central annular part to the peripheral part, and a suction force acts between both sides.
The intermediate plate is completely attached to the stationary receiving plate. Therefore, there is no need to bond the intermediate plate to the receiving plate on the pump casing side with an adhesive or the like.

また始動時、配線等のミスで逆方向に回転させ
たときは、中間板の表面のスパイラル溝内の潤滑
液が周辺部へ排除されることになつて、回転受板
と中間板間に吸引力が働き、中間板はポンプ軸と
一体となつて回転するようになる。従つて、動圧
効果は、裏面のスパイラル溝と静止受板との間に
形成される。なお、軸の正回転時及び逆回転時、
スパイラル溝の周辺部より中央開口部へ強制移動
された流体は、中央環状部と両受板でそれぞれ形
成される狭い〓間により絞り作用を受けるので、
流体膜に圧力が発生し負荷能力をもつ。
Additionally, if the rotation is made in the opposite direction due to a wiring error, etc. at startup, the lubricating fluid in the spiral groove on the surface of the intermediate plate will be expelled to the surrounding area and will be sucked between the rotating receiving plate and the intermediate plate. The force acts, and the intermediate plate begins to rotate together with the pump shaft. Therefore, a dynamic pressure effect is created between the spiral groove on the back surface and the stationary receiving plate. In addition, when the shaft rotates forward and backward,
The fluid that is forcibly moved from the periphery of the spiral groove to the central opening is subjected to a throttling action by the narrow gaps formed by the central annular portion and both receiving plates.
Pressure is generated in the fluid film and has a load capacity.

(実施例) 次に、本発明の実施例を図面と共に説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、スラスト軸受をポンプ吐出側に取付
けた、本発明の一実施例を示す要部断面図で上半
分を示し、回転軸11に取付けられた複数の羽根
車12から吐き出された水は、吐出口13から外
部へ吐出され、また最終段羽根車12の背後に
は、軸受室14がポンプ室と連通するようにして
形成されている。
FIG. 1 is a cross-sectional view of a main part of an embodiment of the present invention in which a thrust bearing is attached to the pump discharge side, showing the upper half, and shows the water discharged from a plurality of impellers 12 attached to a rotating shaft 11. is discharged to the outside from the discharge port 13, and a bearing chamber 14 is formed behind the final stage impeller 12 so as to communicate with the pump chamber.

上記軸受室14には、回転軸11と一体に回転
する回転支持体15に、回転受板16が充填材を
介して固定され、また中央を開口したケーシング
隔壁17に静止受板18が充填材を介して固定さ
れ、これら両受板16と18の間に、表裏両面に
それぞれの面から見て逆方向(従つて透過して見
たときは同方向に見える。)の向きのスパイラル
溝をそれぞれ設け、且つ中央部に軸が貫通する開
口を有するセラミツクス材からなる中間板19が
挿入されている。なお、図中、20は中間板19
が半径方向に移動しないための支持体、21はラ
ジアル形水中軸受、22は閉止板、23はライナ
ーリングを示す。
In the bearing chamber 14, a rotary support plate 16 is fixed to a rotating support 15 that rotates together with the rotating shaft 11 via a filler, and a stationary support plate 18 is fixed to a casing partition 17 with a center opening through a filler. Between these receiving plates 16 and 18, spiral grooves are formed on both the front and back sides in opposite directions when viewed from the respective surfaces (therefore, they appear in the same direction when viewed through the lens). An intermediate plate 19 made of ceramic material and having an opening in the center through which the shaft passes is inserted. In addition, in the figure, 20 is the intermediate plate 19
21 is a radial underwater bearing, 22 is a closing plate, and 23 is a liner ring.

第2A図は、上記中間板19の表面、即ち回転
受板16と対向する面からみた平面図であつて、
周辺部から、中央開口部25の周りに溝部以外の
部分と同じ高さに形成された中央環状部26(図
の白い部分)にかけて、スパイラル溝27(図の
黒い部分で、通常、溝部とその間とはほぼ等面積
に形成される。)が設けられており、この表面の
スパイラル溝27の向きは、これと対向して回転
する受板16によつて流体が周辺部より溝27に
沿つて中央環状部26へ誘導され、該中央環状部
26と回転受板15で形成される狭い〓間の絞り
作用により動圧効果を生じるような方向に形成さ
れる。また該中間板19の裏面、即ち静止受板1
8と対向する面は、第2B図に示されているよう
に、第2A図(表面)とは向きを逆にしただけの
同形状のスパイラル溝27′と中央環状部26′が
形成されている。
FIG. 2A is a plan view seen from the surface of the intermediate plate 19, that is, the surface facing the rotation receiving plate 16,
From the peripheral part to the central annular part 26 (white part in the figure) formed around the central opening 25 at the same height as the part other than the groove part, the spiral groove 27 (black part in the figure, usually between the groove part and ) is provided, and the direction of the spiral groove 27 on this surface is such that the fluid is directed from the periphery along the groove 27 by the receiving plate 16 rotating in opposition to the spiral groove 27. It is guided to the central annular portion 26 and is formed in a direction such that a dynamic pressure effect is produced by the narrow gap formed between the central annular portion 26 and the rotary receiving plate 15 . Also, the back surface of the intermediate plate 19, that is, the stationary receiving plate 1
As shown in FIG. 2B, the surface facing 8 is formed with a spiral groove 27' and a central annular portion 26' having the same shape as those shown in FIG. 2A (surface) but with the direction reversed. There is.

そしてこの実施例では、中間板19を構成する
硬質材としてセラミツクス材、例えば炭化珪素
(sic)、窒化珪素(si3N4)が使用され、また両受
板16,18には、sus 420 TZ(マルテンサイド
系ステンレス)、FC、超硬合金(WC)、軟質焼
結銅合金が使用される。なお、このセラミツクス
材は、耐食性に優れている反面、加工性が悪いた
め、その表面に3〜50um(ミクロンメータ、1/
1000mm)の極めて浅いスパイラル状の溝加工を施
すことは容易ではないが、本発明では、所定形状
のセラミツクス製の被加工材の表面を、所定形状
のスパイラル状の樹脂マスクで遮蔽した上、微粉
のアルミナ質研削材を上記樹脂マスク上に噴射す
るシヨツトブラスト加工法により、極めて短時間
にスパイラル溝を形成する。(この方法は特願昭
60−7579号明細書に詳しく説明されている。)な
お、スパイラル溝の溝深さは、5〜10umのとき、
動圧を発生する対向両面間の流体膜に大きな限界
面圧が発生し、大きな推力荷重を受けることが可
能となることが実験的に確認されている。なお、
前記水中軸受21もSiC、Si3N4、A2O3等で構
成され、軸スリーブは、上記受板と同材料で構成
されている。
In this embodiment, a ceramic material such as silicon carbide (SIC) or silicon nitride (SI 3 N 4 ) is used as the hard material constituting the intermediate plate 19, and SUS 420 TZ is used for both the receiving plates 16 and 18. (martenside stainless steel), FC, cemented carbide (WC), and soft sintered copper alloy are used. Although this ceramic material has excellent corrosion resistance, it has poor workability, so it has a surface coating of 3 to 50 μm (micron meter, 1/2 μm).
Although it is not easy to process extremely shallow spiral grooves (1000mm), in the present invention, the surface of a ceramic workpiece of a predetermined shape is shielded with a spiral resin mask of a predetermined shape, and then fine powder A spiral groove is formed in an extremely short time by a shot blasting method in which an alumina abrasive material of 100 mL is injected onto the resin mask. (This method was developed by Tokugansho.
60-7579. ) In addition, when the groove depth of the spiral groove is 5 to 10 um,
It has been experimentally confirmed that a large critical surface pressure is generated in the fluid film between opposing surfaces that generate dynamic pressure, making it possible to receive large thrust loads. In addition,
The underwater bearing 21 is also made of SiC, Si 3 N 4 , A 2 O 3 , etc., and the shaft sleeve is made of the same material as the receiving plate.

この実施例によれば、回転軸11を第1図の矢
印方向(正方向)に回転させると、回転支持体1
5を介して回転受板16も同方向に一緒に回転
し、中間板19の表面(第2A図)に矢印A方向
の流れが生じ、スパイラル溝27にはポンプ作動
液が周辺部から中央環状部26へ向つて強制移動
され、該中央環状部26と回転受板16で形成さ
れる狭い〓間の絞り作用によつて動圧が発生し、
この対向両面間に所要の厚さの液膜を形成して推
力荷重を支える。他方、静止受板18と対向した
裏面(第3B図)のスパイラル溝27′は、回転
軸1の回転につれて中間板19も共に回転しよう
として、中心環状部26′より周辺部へスパイラ
ル溝27′内の液を排除しようとし、その結果、
両面間に吸引力が働いて該中間板10は静止受板
18に完全に密着される。従つて、中間板10を
ケーシング側の受板に密着する必要がなくなるの
で、接着による熱膨脹差による割れの心配もな
く、高温ポンプにも使用でき、また、回り止めを
必要とせず簡単な構造となる。
According to this embodiment, when the rotating shaft 11 is rotated in the direction of the arrow (positive direction) in FIG.
5, the rotary receiving plate 16 also rotates in the same direction, a flow in the direction of arrow A is generated on the surface of the intermediate plate 19 (FIG. 2A), and the pump working fluid flows from the periphery to the central annular shape in the spiral groove 27. Dynamic pressure is generated by the narrow gap formed by the central annular portion 26 and the rotary receiving plate 16.
A liquid film of a required thickness is formed between these opposing surfaces to support the thrust load. On the other hand, the spiral groove 27' on the back surface (FIG. 3B) facing the stationary receiving plate 18 tends to rotate along with the intermediate plate 19 as the rotating shaft 1 rotates, and the spiral groove 27' extends from the central annular portion 26' to the peripheral portion. attempts to eliminate the fluid within, and as a result,
A suction force acts between both surfaces, and the intermediate plate 10 is completely brought into close contact with the stationary receiving plate 18. Therefore, there is no need to tightly attach the intermediate plate 10 to the receiving plate on the casing side, so there is no fear of cracking due to differences in thermal expansion caused by adhesion, and it can be used for high-temperature pumps. Furthermore, it does not require a rotation stopper and has a simple structure. Become.

また始動時、配線等のミスで逆方向に回転させ
たときは、中間板19の表面のスパイラル溝27
内の液が周辺部へ排除されることになつて回転受
板16と中間板19の間に吸引力が働き、中間板
19はポンプ軸11と一緒に回転するようになる
ので、動圧効果は裏面のスパイラル溝27′と静
止受板18との間に形成され、スラスト荷重を受
ける。
Also, if the rotation is in the opposite direction due to a mistake in the wiring etc. during startup, the spiral groove 27 on the surface of the intermediate plate 19
As the liquid inside is expelled to the periphery, a suction force acts between the rotary receiving plate 16 and the intermediate plate 19, and the intermediate plate 19 rotates together with the pump shaft 11, resulting in a dynamic pressure effect. is formed between the spiral groove 27' on the back surface and the stationary receiving plate 18, and receives thrust load.

またこの実施例では、中間板10を前記のよう
にセラミツクス材で構成しているので、スパイラ
ル溝が3〜50umの深さの溝で十分な軸受能力を
発揮することから、素材のセラミツクスも経済的
な肉厚、例えばSiCでは1〜2mmの厚みでよく、
しかも前記のように、支持受板に対する吸引作用
によつて金属材料等への接着の必要がないので、
前記のようにコスト的にも安価に製造でき、また
接着に伴う熱膨脹差による割れの心配もないの
で、高温用としても都合がよい。また、潤滑液と
してポンプ作動液がそのまま使用でき、自己潤滑
が可能となるので、ラジアル形水中軸受と組合せ
ることによりシール機構が不要となり、従つて外
部軸受の必要がない。また、特に横軸ポンプに用
いているので、動圧効果が未だ発生しないポンプ
起動時において回転体の自重がスラスト軸受にか
からず、都合がよい。
In addition, in this embodiment, since the intermediate plate 10 is made of ceramic material as described above, the spiral groove exhibits sufficient bearing capacity even with a groove depth of 3 to 50 um, making ceramics an economical material. For example, for SiC, a thickness of 1 to 2 mm is sufficient.
Moreover, as mentioned above, there is no need for adhesion to metal materials etc. due to the suction effect on the support plate.
As mentioned above, it can be manufactured at a low cost, and there is no fear of cracking due to the difference in thermal expansion associated with adhesion, so it is convenient for high-temperature applications. In addition, since the pump working fluid can be used as it is as the lubricating fluid and self-lubrication is possible, by combining it with a radial submersible bearing, a sealing mechanism is not required, and therefore an external bearing is not required. In addition, since it is used particularly in a horizontal shaft pump, the weight of the rotating body is not applied to the thrust bearing when the pump is started, when the dynamic pressure effect is not yet generated, which is convenient.

(発明の効果) 本発明によれば次のような効果が奏される。(Effect of the invention) According to the present invention, the following effects are achieved.

(i) ポンプ軸の正転時ばかりでなく逆回転時にお
いても動圧効果を利用して同様のスラスト荷重
を受けることができ、また正逆何れの回転時に
おいても、動圧効果を生じない側には吸引力が
生じるため、対向受板との間に強力な接着作用
が生じる。従つて、特に正回転時、中間板を支
持体に接着する必要がなくなるので、接着によ
る熱膨脹差による割れの心配もなく、脆性的な
材料、特に炭化珪素セラミツクスを軸受材料と
して使用が可能となる。
(i) The same thrust load can be applied not only when the pump shaft rotates forward but also when it rotates in reverse, using the dynamic pressure effect, and no dynamic pressure effect occurs when the pump shaft rotates in either forward or reverse direction. Since a suction force is generated on the side, a strong adhesive action is generated between it and the opposing receiving plate. Therefore, there is no need to bond the intermediate plate to the support, especially during forward rotation, so there is no need to worry about cracking due to differences in thermal expansion caused by bonding, and brittle materials, especially silicon carbide ceramics, can be used as the bearing material. .

(ii) 特に横軸ポンプのスラスト軸受として用いた
ことにより、動圧効果が未だ生じないポンプ起
動時において、回転体の自重が該スラスト軸受
にかからず、都合がよい。
(ii) In particular, by using it as a thrust bearing of a horizontal shaft pump, the weight of the rotating body is not applied to the thrust bearing, which is convenient, when the pump is started, when no dynamic pressure effect occurs yet.

(iii) 中間板をセラミツクス材等の硬質材料で構成
しているので、ポンプ作動液による自己潤滑が
可能となり、当該スラスト軸受を最終羽根車の
背後の軸を貫通して取付けたことと相俟つて、
ラジアル形水中軸受と併用することにより、シ
ール機構が不要となり、外部軸受の必要がなく
なるので、ポンプの据付面積を小さくでき、保
守点検も楽になる。
(iii) Since the intermediate plate is made of a hard material such as ceramics, it is possible to self-lubricate with the pump working fluid, and this is combined with the fact that the thrust bearing is installed through the shaft behind the final impeller. Then,
By using it in conjunction with a radial type submersible bearing, a sealing mechanism is not required and an external bearing is not required, so the installation area of the pump can be reduced and maintenance and inspection can be made easier.

(iv) 従来のバランスパイプを不要としたことによ
り漏水量を極力少なくし、ポンプ効率を従来の
ものより2〜3%向上させることができる。
(iv) By eliminating the need for a conventional balance pipe, water leakage can be minimized and pump efficiency can be improved by 2 to 3% compared to conventional systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す横軸ポンプ
の要部断面図、第2A図及び第2B図は上記実施
例に用いられる中間板の表面及び裏面を示す平面
図、第3図はバランスデイスクを用いた従来の横
軸多段ポンプの縦断面図である。 11……回転軸、12……羽根車、14……軸
受室、16……回転受板、18……静止受板、1
9……中間板、27,27′……スパイラル溝、
25……中央開口部、26……環状部。
FIG. 1 is a sectional view of a main part of a horizontal shaft pump showing an embodiment of the present invention, FIGS. 2A and 2B are plan views showing the front and back surfaces of an intermediate plate used in the above embodiment, and FIG. 1 is a longitudinal sectional view of a conventional horizontal shaft multistage pump using a balance disk. 11... Rotating shaft, 12... Impeller, 14... Bearing chamber, 16... Rotating receiving plate, 18... Stationary receiving plate, 1
9...Intermediate plate, 27, 27'...Spiral groove,
25... central opening, 26... annular part.

Claims (1)

【特許請求の範囲】[Claims] 1 運転中、軸推力のかかる横軸ポンプにおい
て、一方の端面に正転時に動圧効果を生じさせる
方向に形成されたスパイラル溝を、裏面には逆回
転時に動圧効果を生じさせる方向に形成されたス
パイラル溝をそれぞれ設けたセラミツクス等の硬
質材料からなる中間板を、一方が軸と共に回転
し、他方がケーシング側に固定された対向する2
個の受板の間に介在させたスラスト軸受を、最終
羽根車の背後の軸を貫通して取付け、前記中間板
の表裏両面における中央開口部の外側に、スパイ
ラル溝部以外の部分と同じ高さの環状部をそれぞ
れ設けたことを特徴とする横軸ポンプ。
1 In a horizontal shaft pump that is subjected to axial thrust during operation, a spiral groove is formed on one end face in a direction that produces a dynamic pressure effect during forward rotation, and a spiral groove is formed on the back face in a direction that produces a dynamic pressure effect during reverse rotation. Two opposing intermediate plates, one of which rotates with the shaft and the other fixed to the casing side, are made of a hard material such as ceramics and are each provided with a spiral groove.
A thrust bearing interposed between two receiving plates is installed through the shaft behind the final impeller, and an annular shape having the same height as the part other than the spiral groove is installed outside the central opening on both the front and back surfaces of the intermediate plate. A horizontal shaft pump characterized by having separate sections.
JP7436885A 1985-04-10 1985-04-10 Horizontal shaft pump Granted JPS61234296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7436885A JPS61234296A (en) 1985-04-10 1985-04-10 Horizontal shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7436885A JPS61234296A (en) 1985-04-10 1985-04-10 Horizontal shaft pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3307441A Division JPH0768960B2 (en) 1991-11-22 1991-11-22 Horizontal shaft pump

Publications (2)

Publication Number Publication Date
JPS61234296A JPS61234296A (en) 1986-10-18
JPH0517399B2 true JPH0517399B2 (en) 1993-03-09

Family

ID=13545148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7436885A Granted JPS61234296A (en) 1985-04-10 1985-04-10 Horizontal shaft pump

Country Status (1)

Country Link
JP (1) JPS61234296A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025118Y2 (en) * 1985-10-22 1990-02-07
JPS63160393U (en) * 1987-04-09 1988-10-20
JPS63182293U (en) * 1987-05-16 1988-11-24
JPS6435098A (en) * 1987-07-30 1989-02-06 Ebara Corp Non-volumetric type pump
DE4319628A1 (en) * 1993-06-15 1994-12-22 Klein Schanzlin & Becker Ag Structured surfaces of fluid machine components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026814A (en) * 1983-07-25 1985-02-09 Ebara Corp Thrust bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026814A (en) * 1983-07-25 1985-02-09 Ebara Corp Thrust bearing

Also Published As

Publication number Publication date
JPS61234296A (en) 1986-10-18

Similar Documents

Publication Publication Date Title
US3551067A (en) Lined corrosion resistant pump
US3953150A (en) Impeller apparatus
JPS6026814A (en) Thrust bearing
KR100941286B1 (en) Dynamic pressure seal device and rotary joint device using the same
JP5291363B2 (en) pump
US3817653A (en) Centrifugal pump apparatus
CA2797164C (en) Centrifugal pump for slurries
US6629829B1 (en) Vane type rotary machine
JPH0517399B2 (en)
JP2011007243A (en) Structure of thrust bearing for water lubrication
JPS6158703B2 (en)
JPH0521676Y2 (en)
JPS61190191A (en) Motor-driven fuel pump for car
JPH0456892B2 (en)
CN87207494U (en) Static-pressure balancer for a centrifugal pump
US955168A (en) Centrifugal pump.
CN108757437B (en) Vortex oil pump
JPH0791395A (en) Impeller support of pump
JPS6199721A (en) Submerged thrust bearing
CN207420876U (en) Sectional multi-stage centrifugal pump
JPH0768960B2 (en) Horizontal shaft pump
JPH0424572B2 (en)
JPH0456891B2 (en)
JPH0456893B2 (en)
JPS6241992A (en) Pump