JPH0517366Y2 - - Google Patents

Info

Publication number
JPH0517366Y2
JPH0517366Y2 JP19179787U JP19179787U JPH0517366Y2 JP H0517366 Y2 JPH0517366 Y2 JP H0517366Y2 JP 19179787 U JP19179787 U JP 19179787U JP 19179787 U JP19179787 U JP 19179787U JP H0517366 Y2 JPH0517366 Y2 JP H0517366Y2
Authority
JP
Japan
Prior art keywords
exhaust
valve
exhaust valves
valves
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19179787U
Other languages
Japanese (ja)
Other versions
JPH0195503U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19179787U priority Critical patent/JPH0517366Y2/ja
Publication of JPH0195503U publication Critical patent/JPH0195503U/ja
Application granted granted Critical
Publication of JPH0517366Y2 publication Critical patent/JPH0517366Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、内燃機関の弁装置に関する。[Detailed explanation of the idea] (Industrial application field) The present invention relates to a valve device for an internal combustion engine.

(従来の技術) 自動車用内燃機関等にあつては、高速高負荷域
での燃焼性を高める目的などから、一つの気筒に
備えられる複数の排気弁および吸気弁を互いに独
立して作動させるものが提案されている。
(Prior art) In the case of internal combustion engines for automobiles, multiple exhaust valves and intake valves provided in one cylinder are operated independently of each other for the purpose of improving combustibility in high-speed, high-load ranges. is proposed.

この種の弁装置として、例えば特公昭49−
17967号公報に開示されたものは、第7図に示す
ように、4サイクル4弁式内燃機関において同一
気筒において2本の排気弁のバルブタイミング
E1,E2および2本の吸気弁のバルブタイミング
I1,I2はそれぞれ所定の位相差をもち、排気行程
から吸入行程への上死点付近において、1組の排
気弁と吸気弁が閉じて他の1組の排気弁と吸気弁
が開くようにし、気筒内における新気の流速を大
きくして掃気効率を高めている。また、吸入行程
から圧縮行程への下死点付近において1本の吸気
弁のみが開いて気筒内に吸気スワールを生起し、
主に高速高負荷域の燃焼性を改善するようになつ
ている。
As this type of valve device, for example,
What was disclosed in Publication No. 17967 is the valve timing of two exhaust valves in the same cylinder in a 4-stroke, 4-valve internal combustion engine, as shown in Figure 7.
Valve timing of E 1 , E 2 and two intake valves
I 1 and I 2 each have a predetermined phase difference, and near top dead center from the exhaust stroke to the intake stroke, one set of exhaust valves and intake valves closes and the other set of exhaust valves and intake valves opens. This increases the flow rate of fresh air in the cylinder to improve scavenging efficiency. In addition, only one intake valve opens near the bottom dead center from the intake stroke to the compression stroke, creating an intake swirl in the cylinder.
It is designed to improve combustibility mainly in high-speed, high-load ranges.

(考案が解決しようとする問題点) ところで、このような弁装置にあつては2本の
排気弁の全閉時期にも位相差をもたせているた
め、吸排気弁が同時に開くバルブオーバラツプ時
における排気弁の実質弁開口面積が小さくなり、
高速高負荷域に吸気の慣性過給効果を十分に得る
ためにはバルブオーバラツプ期間を長くとる必要
があつた。
(Problem to be solved by the invention) By the way, in such a valve device, since the two exhaust valves have a phase difference in the timing of full closing, valve overlap occurs when the intake and exhaust valves open at the same time. When the actual valve opening area of the exhaust valve becomes smaller,
In order to obtain sufficient intake inertia supercharging effect in high-speed, high-load ranges, it was necessary to extend the valve overlap period.

しかしながら、バルブオーバラツプ期間を長く
とると、機関の低速低負荷域では、小さな弁開口
面積でも大きな吸入負荷に引かれて排気弁の下流
から排気ガスがシリンダ内へと逆流するため、も
ともと燃料が多くは供給されない低減低負荷域に
は残留ガス割合が多くなつて燃焼性を大きく損な
うという問題点があつた。
However, if the valve overlap period is long, in the engine's low speed and low load range, even if the valve opening area is small, the exhaust gas will flow back into the cylinder from the downstream of the exhaust valve due to the large suction load, so the fuel There was a problem that in the reduced low load range where much gas was not supplied, the proportion of residual gas increased and combustibility was significantly impaired.

本考案は、こうした従来の問題点を解決し、機
関の全回転数域で性能向上をはかることを目的と
する。
The purpose of the present invention is to solve these conventional problems and improve performance in the entire engine speed range.

(問題点を解決するための手段) 上記目的を達成するため本考案では、一つの気
筒に複数の排気弁を備える内燃機関の弁装置にお
いて、前記複数の排気弁は弁径およびステム径を
同一にし、かつバルブ傘裏部の形状を相異させる
構成とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a valve device for an internal combustion engine having a plurality of exhaust valves in one cylinder, in which the plurality of exhaust valves have the same valve diameter and stem diameter. and the shapes of the backs of the valve umbrellas are different.

(作用) 排気弁の開弁作動に伴つて排気通路には圧力波
が生じ、排気弁の全閉時に排気弁の直下流側が負
圧となる回転数域では掃気が促されるが、逆に正
圧になる回転数域では排気ガスの排出に費やされ
るポンピングロスが増大して、機関の発生トルク
の落ち込み、この回転数域でいわゆるトルクの谷
が生じる。
(Function) Pressure waves are generated in the exhaust passage as the exhaust valve opens, and scavenging is promoted in the rotation speed range where the immediate downstream side of the exhaust valve becomes negative pressure when the exhaust valve is fully closed. In the rotation speed range where engine pressure is high, the pumping loss used to discharge exhaust gas increases, causing a drop in the torque generated by the engine, and a so-called torque trough occurs in this rotation speed range.

本考案は、バブル傘裏部の形状を相異させるこ
とにより、同一気筒における複数の排気弁が開弁
作用するとき、それぞれ排気弁が画成する開口部
の面積が増大する速度が相異し、各排気弁の開弁
時に排気通路に入射される圧力も相互に位相差を
もつて入射されるため、排気通路に生じる圧力波
の振幅は小さくなり、これにより上記排気弁の全
閉時に排気弁の直下流側が正圧となる回転数域の
ポンピングロスを低減し、排気慣性効果により掃
気を促して残留ガスを低減するとともに体積効率
を高めるので、この回転数域でのトルクの落ち込
みを減少することができる。
In this invention, by making the shapes of the backs of bubble umbrellas different, when multiple exhaust valves in the same cylinder open, the speed at which the area of the opening defined by each exhaust valve increases is different. Since the pressures that are input into the exhaust passage when each exhaust valve is opened are also input with a phase difference from each other, the amplitude of the pressure wave generated in the exhaust passage becomes small, and as a result, when the exhaust valve is fully closed, the exhaust Pumping loss is reduced in the rotation speed range where the pressure immediately downstream of the valve is positive, and the exhaust inertia effect promotes scavenging to reduce residual gas and increase volumetric efficiency, reducing torque drop in this rotation speed range. can do.

また、同一気筒において複数の排気弁の閉弁終
了時期が同期することにより、バルブオーバラツ
プ時に各排気弁が開く排気通路の実質開口面積が
大きくなるため、高速高負荷域に対応してバルブ
オーバラツプ時期をそれほど大きく設定する必要
がなくなり、その結果低速低負荷域に排気ガスの
逆流を減らして燃焼性を高め、アイドル安定性等
を確保できる。
In addition, by synchronizing the closing timings of multiple exhaust valves in the same cylinder, the effective opening area of the exhaust passage that each exhaust valve opens when valves overlap becomes larger. It is no longer necessary to set the overlap timing so large, and as a result, it is possible to reduce backflow of exhaust gas in the low speed and low load range, improve combustibility, and ensure idle stability.

(実施例) 以下、本考案の一実施例を添付図面に基づいて
説明する。
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図に示すように、同一気筒に備えられる2
本の排気弁1,2は、直円柱状ステム11,21
と、各排気ポート4を閉塞する傘部12,22と
を備える。
As shown in Figure 1, two
The exhaust valves 1 and 2 have right cylindrical stems 11 and 21.
and umbrella portions 12 and 22 that close each exhaust port 4.

各排気弁1,2はそのステム11,21がシリ
ンダヘツド7に固着されたガイド3を介して摺動
自在に支持され、機関運転時は図示しないステム
上端部に摺接するカムにより各傘部12,22が
相互に同期した所定のタイミングでリフトされ
る。
The stems 11, 21 of each exhaust valve 1, 2 are slidably supported via a guide 3 fixed to the cylinder head 7, and during engine operation, each umbrella portion 12 is supported by a cam that slides into the upper end of the stem (not shown). , 22 are lifted at predetermined timings synchronized with each other.

第2図にも示すように、各排気弁1,2は相互
に傘部12,22の外径すなわち弁径をD、ステ
ム11,21の外径をdとそれぞれ同一に設定す
る。そして、一方の排気弁1のラツパ状に拡がる
傘裏部13は、他方の排気弁2の傘裏部23に対
して大きな曲率で湾曲させて相互に異なる形状と
する。すなわちバルブシート5に着座する座面1
4,24からステム11,21に向けて湾曲する
傘裏部13,23と傾斜角度(弁中心線に直交す
る線と傘裏部12,22の始点上接線に挾まれる
角度)θ1,θ2を相異させる。
As shown in FIG. 2, in each of the exhaust valves 1 and 2, the outer diameter of the umbrella portions 12 and 22, that is, the valve diameter, is set to be the same as D, and the outer diameter of the stems 11 and 21 is set to be the same as d, respectively. The umbrella back 13 of one of the exhaust valves 1, which expands in the shape of a bulge, is curved with a large curvature relative to the umbrella back 23 of the other exhaust valve 2, so that the shapes thereof are different from each other. In other words, the seat surface 1 that seats on the valve seat 5
The umbrella backs 13, 23 curve from 4, 24 toward the stems 11, 21 and the inclination angle (the angle between the line perpendicular to the valve center line and the tangent above the starting point of the umbrella backs 12, 22) θ 1 , Differentiate θ 2 .

シリンダヘツド7は同一気筒における各排気ポ
ート4およびバルブシート5をそれぞれ同一形状
に形成する。
The cylinder head 7 forms each exhaust port 4 and valve seat 5 in the same cylinder into the same shape.

このように、排気弁1,2は各傘裏部13,2
3の形状を相異させるため、排気弁1,2の開弁
作動時は同一リフトでも、各排気ポート4と各傘
裏部13,23の間で画成される開口部の断面積
が相異し、各排気弁1,2の開くときに排気ポー
ト4に入射されるブローダウン圧力は相互に位相
差が生じる。
In this way, the exhaust valves 1 and 2 are connected to the respective umbrella backs 13 and 2.
3 have different shapes, when the exhaust valves 1 and 2 are opened, the cross-sectional areas of the openings defined between each exhaust port 4 and each umbrella back 13 and 23 are the same even when the lift is the same. On the other hand, when the exhaust valves 1 and 2 open, the blowdown pressures that enter the exhaust port 4 have a phase difference.

第3図には排気弁1,2の下流側排気通路に生
じる圧力波を破線で示しているが、排気弁2が開
く時に入射されるブローダウン圧力(1点鎖線)
に対して、排気弁1が開くときに入射されるブロ
ーダウン圧力(2点鎖線)はある位相差をもつて
遅れるため、これらが合成してつくられる圧力波
(破線)は圧力波の振幅は2つの排気弁が同一位
相で開弁する従来装置の場合(実線)に比べて小
さく抑えられる。
In Fig. 3, the pressure waves generated in the downstream exhaust passages of the exhaust valves 1 and 2 are shown by broken lines, and the blowdown pressure (dotted chain line) that is incident when the exhaust valve 2 opens
On the other hand, the blowdown pressure (double-dashed line) that is injected when the exhaust valve 1 opens is delayed by a certain phase difference, so the pressure wave (dashed line) created by combining these pressure waves has an amplitude of This can be kept smaller than in the case of a conventional device in which the two exhaust valves open in the same phase (solid line).

第4図には排気弁1,2が全閉するときに排気
弁1,2より120mm下流点に生じる圧力波が正圧
となる回転数3600rpmの運転条件での圧力変動を
実際に測定した結果を破線で示し、図中実線で示
す特性は2つの排気弁が同一形状である従来装置
の場合を示している。この実験結果からもわかる
ように、本実施例ではブローダウン(図中A部)
が低下する分その反射波(図中B部)の振幅も小
さく抑えられる。
Figure 4 shows the results of actually measuring pressure fluctuations under operating conditions at a rotational speed of 3600 rpm, where the pressure wave generated 120 mm downstream of exhaust valves 1 and 2 becomes positive pressure when exhaust valves 1 and 2 are fully closed. The characteristic shown by the broken line and the solid line in the figure shows the case of a conventional device in which the two exhaust valves have the same shape. As can be seen from this experimental result, in this example, blowdown (section A in the figure)
As this decreases, the amplitude of the reflected wave (section B in the figure) can also be suppressed to a small level.

上述したように、3600rpm付近は排気弁1,2
が全閉するときに排気弁1,2より直下流側が正
圧となつてトルクの谷が生じるが、本実施例では
各排気弁1,2の開弁時に入射されるブローダウ
ン圧力も相互に位相差をもつため、排気通路に生
じる圧力波の振幅は小さくなり、これにより排気
ガスの排出に費やされるポンピングロスを低減
し、残留ガスを低減するとともに吸気の体積効率
を高めるので、この中回転数域でのトルクの落ち
込みを減少することができる。
As mentioned above, around 3600rpm, exhaust valves 1 and 2
When the exhaust valves 1 and 2 are fully closed, the pressure immediately downstream of the exhaust valves 1 and 2 becomes positive, causing a torque valley. However, in this embodiment, the blowdown pressure that is input when the exhaust valves 1 and 2 are opened is also equal to each other. Due to the phase difference, the amplitude of the pressure wave generated in the exhaust passage becomes smaller, which reduces the pumping loss used to discharge exhaust gas, reduces residual gas, and increases the volumetric efficiency of intake air. It is possible to reduce the drop in torque in several ranges.

また、排気弁1,2が相互に同期して全閉する
ことにより、吸気弁3,4とのバルブオーバラツ
プ時に各排気弁1,2が開く排気通路の実質開口
面積が大きくなるため、バルブオーバラツプ期間
をそれほど大きく設定する必要がない。その結
果、高速高負荷域には吸気の慣性を利用して体積
効率を確保しつつ、低速低負荷域に大きな吸入負
荷に引かれて排気弁1,2の下流から排気ガスが
シリンダ内へと逆流することを抑制し、残留ガス
による燃焼性の悪化を防止してアイドル安定性等
を高められる。
In addition, by completely closing the exhaust valves 1 and 2 in synchronization with each other, the actual opening area of the exhaust passage that each exhaust valve 1 and 2 opens when there is valve overlap with the intake valves 3 and 4 increases. There is no need to set the valve overlap period so large. As a result, while volumetric efficiency is secured by utilizing the inertia of the intake air in the high-speed, high-load range, exhaust gas flows into the cylinder from downstream of the exhaust valves 1 and 2 due to the large intake load in the low-speed, low-load range. It suppresses backflow, prevents deterioration of combustibility due to residual gas, and improves idle stability.

次に、第5図A,Bに示す他の実施例は、1気
筒あたり2本の排気弁8,9を備える機関におい
て、各排気弁8,9の座面16,26の傾斜角
θ8,θ9を相異させるものである。
Next, in another embodiment shown in FIGS. 5A and 5B, in an engine provided with two exhaust valves 8 and 9 per cylinder, the inclination angle θ 8 of the seat surfaces 16 and 26 of each exhaust valve 8 and 9 is , θ 9 are different.

この座面16,26の傾斜角に対応して、シリ
ンダヘツド7側の座面17,27および面取部1
8,28の傾斜角を相異させて形成する。
Corresponding to the inclination angle of the seat surfaces 16, 26, the seat surfaces 17, 27 on the cylinder head 7 side and the chamfered portion 1
8 and 28 are formed with different inclination angles.

このように構成してあり、排気弁8,9の開弁
作動時は同一リフトでも、その各座面16,26
と座面17,27および各面取部18,28の間
で画成される開口部の断面積が相異し、各排気弁
8,9の開くときに排気ポート4に入射されるブ
ローダウン圧力は相互に位相差が生じ、排気通路
に生じる圧力波の振幅を低減できる。
With this structure, when the exhaust valves 8 and 9 are opened, the respective seating surfaces 16 and 26
The cross-sectional areas of the openings defined between the seat surfaces 17, 27 and the chamfered portions 18, 28 are different, and the blowdown that enters the exhaust port 4 when the exhaust valves 8, 9 are opened is different. A phase difference occurs between the pressures, and the amplitude of pressure waves generated in the exhaust passage can be reduced.

(考案の効果) 以上の通り本考案によれば、同一気筒に備えら
れる複数の排気弁相互で弁径およびステム径を同
一にし、かつバルブ傘裏部の形状を相異させたた
め、各排気弁の開弁に伴い排気ポートに入射され
るブローダウン圧力が相互に位相差をもつて入射
されることにより、排気通路に生じる圧力波を弱
めて、トルクの谷が生じる回転数域でのポンピン
グロスを低減して出力向上をはかることができ、
また、排気弁の形状変更により容易に実施でき
る。
(Effects of the invention) As described above, according to the invention, a plurality of exhaust valves provided in the same cylinder have the same valve diameter and stem diameter, and the shapes of the backs of the valve caps are different, so that each exhaust valve has the same valve diameter and stem diameter. The blowdown pressure that is injected into the exhaust port when the valve opens is injected with a phase difference between each other, weakening the pressure wave generated in the exhaust passage and reducing pumping loss in the rotation speed range where torque troughs occur. It is possible to improve output by reducing
Furthermore, this can be easily implemented by changing the shape of the exhaust valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す断面図、第2
図は排気弁の側面図、第3図は作用を示す線図、
第4図は実験結果を示す線図である。第5図A,
Bは他の実施例を示す排気弁の側面図、第6図は
バブル開口面積とクランク角の関係を示す線図で
ある。第7図は従来例を示す吸排気弁の作動説明
図である。 1,2……排気弁、11,21……ステム、1
2,22……傘部、13,23……傘裏部。
Fig. 1 is a sectional view showing one embodiment of the present invention;
The figure is a side view of the exhaust valve, Figure 3 is a diagram showing the action,
FIG. 4 is a diagram showing the experimental results. Figure 5A,
B is a side view of an exhaust valve showing another embodiment, and FIG. 6 is a diagram showing the relationship between bubble opening area and crank angle. FIG. 7 is an explanatory diagram of the operation of an intake and exhaust valve showing a conventional example. 1, 2... Exhaust valve, 11, 21... Stem, 1
2, 22... Umbrella part, 13, 23... Umbrella back part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一つの気筒に複数の排気弁を備える内燃機関に
おいて、前記複数の排気弁は弁径およびステム径
を同一にし、かつバルブ傘裏部の形状を相異させ
たことを特徴とする内燃機関の弁装置。
A valve for an internal combustion engine comprising a plurality of exhaust valves for one cylinder, wherein the plurality of exhaust valves have the same valve diameter and stem diameter, and different shapes of the backs of the valve caps. Device.
JP19179787U 1987-12-17 1987-12-17 Expired - Lifetime JPH0517366Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19179787U JPH0517366Y2 (en) 1987-12-17 1987-12-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19179787U JPH0517366Y2 (en) 1987-12-17 1987-12-17

Publications (2)

Publication Number Publication Date
JPH0195503U JPH0195503U (en) 1989-06-23
JPH0517366Y2 true JPH0517366Y2 (en) 1993-05-11

Family

ID=31482689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19179787U Expired - Lifetime JPH0517366Y2 (en) 1987-12-17 1987-12-17

Country Status (1)

Country Link
JP (1) JPH0517366Y2 (en)

Also Published As

Publication number Publication date
JPH0195503U (en) 1989-06-23

Similar Documents

Publication Publication Date Title
US5797368A (en) Reciprocating piston internal combustion engine having at least one cylinder
JP2002048035A (en) Cylinder fuel injection engine with supercharger
JPH0791984B2 (en) Intake device for supercharged engine
US4616605A (en) Two-cycle engine with improved scavenging
JPS6236134B2 (en)
JPH04506990A (en) Improvement of diesel compression ignition two-cycle internal combustion engine
JPH0517366Y2 (en)
JPH01159417A (en) Valve system for internal combustion engine
JPH0491317A (en) Two stroke engine
JPH0543202Y2 (en)
JP2994784B2 (en) Engine combustion chamber structure
JP2966129B2 (en) Engine combustion chamber structure
JPH07102982A (en) Engine having supercharger
JP3329405B2 (en) Intake control structure for two-valve engine
JPS5928087Y2 (en) supercharged engine
JPS6218731B2 (en)
JPS5925015A (en) Suction device of internal combustion engine
JPS6088822A (en) Intake device for internal-combustion engine with supercharger
JPS5922252Y2 (en) internal combustion engine intake port
JPH0544501A (en) Internal combustion engine
JP3264749B2 (en) Intake control structure for two-valve engine
JPH05263647A (en) Combustion chamber of two-cycle internal combustion engine
JPS6123622Y2 (en)
JPH02123225A (en) Combustion chamber of engine
JPS63201312A (en) Two-cycle internal combustion engine