JPH05172839A - Piezoelectric vibration sensor - Google Patents

Piezoelectric vibration sensor

Info

Publication number
JPH05172839A
JPH05172839A JP33910191A JP33910191A JPH05172839A JP H05172839 A JPH05172839 A JP H05172839A JP 33910191 A JP33910191 A JP 33910191A JP 33910191 A JP33910191 A JP 33910191A JP H05172839 A JPH05172839 A JP H05172839A
Authority
JP
Japan
Prior art keywords
piezoelectric
film
piezoelectric vibration
shaped
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33910191A
Other languages
Japanese (ja)
Inventor
Satoshi Kunimura
智 國村
Shiro Nakayama
四郎 中山
Katsuhiko Takahashi
克彦 高橋
Takayuki Imai
隆之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP33910191A priority Critical patent/JPH05172839A/en
Publication of JPH05172839A publication Critical patent/JPH05172839A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the output voltage by forming the electrodes installed on both the surfaces of a piezoelectric film to mesh form and varying the mesh degree, and to obtain a number of piezoelectric vibration sensors which are adjusted to each equal output at one time by carrying out output adjustment before cutting a sensor part member to each chip form, reduce dispersion, suppress the variation of size and weight of a loading body, and prevent the reduction of the impact resistance. CONSTITUTION:A piezoelectric vibration sensor is equipped with a base 1 which is rigidly installed on a measured article, sensor part 2 fixed on a measurement surface vertical to the sensing axis G of the base 1, and a loading body 3 consisting of a rigid body which is fixed on the sensor part 2 and acts as inertial mass part. The sensor part 2 consists of a film shaped piezoelectric body 4 having electrodes 7 and 7 on both the surfaces of a piezoelectric film 6, and two supporting plates 5 and 5 consisting of plate shaped rigid bodies fixed on the obverse and reverse surfaces of the film shaped piezoelectric body 4. The shape of the electrode 7 is formed to a mesh form.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧電型振動センサに関
し、特に軽量小型で、その出力を容易に変えることがで
きる圧電型振動センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibration sensor, and more particularly to a piezoelectric vibration sensor which is light and compact and whose output can be easily changed.

【0002】[0002]

【従来の技術】本発明者はすでに、図2に示すような、
軽量小型で、耐衝撃性にすぐれ、製造が容易な圧電型振
動センサと、これらの出力を簡便に調整するための方法
を出願している(特願平1ー156019)。すなわ
ち、この圧電型振動センサは、被測定物に剛に取り付け
られる台座1と、この台座1の感知軸Gに垂直な測定面
に固着された感知部2と、この感知部2上に固着され慣
性質量部として作用する剛体からなる荷重体3を有し、
前記感知部2は、圧電フィルム6の両面に板状電極8を
設けた膜状圧電体4と、この膜状圧電体4の表裏両面に
固着された板状の剛体からなる2枚の支持板5とからな
り、かつ膜状圧電体4の平面形状が、前記測定面に平行
な面において感知軸Gを対称の中心とする点対称であ
り、前記荷重体3は、それの感知部2に接する面の平面
形状が感知軸Gを対称の中心とする点対称であり、かつ
感知軸Gを通り前記測定面に垂直な無数の平面で断面し
た時に、すべての断面について感知軸Gを対称軸とする
線対称としたものである。
2. Description of the Related Art The present inventor has already proposed that, as shown in FIG.
We have applied for a piezoelectric vibration sensor that is lightweight, compact, has excellent impact resistance, and is easy to manufacture, and a method for adjusting the output of these piezoelectric vibration sensors easily (Japanese Patent Application No. 1-156019). That is, this piezoelectric vibration sensor is fixedly mounted on the object to be measured, a pedestal 1 that is rigidly attached to the object to be measured, a sensing unit 2 that is fixed to a measurement surface of the pedestal 1 that is perpendicular to the sensing axis G, and that is fixed to the sensing unit 2. A load body 3 made of a rigid body that acts as an inertial mass portion,
The sensing unit 2 includes two support plates each including a film-shaped piezoelectric body 4 having plate-shaped electrodes 8 provided on both surfaces of a piezoelectric film 6, and plate-shaped rigid bodies fixed to both front and back surfaces of the film-shaped piezoelectric body 4. 5 and the plane shape of the film-shaped piezoelectric body 4 is point-symmetrical with the sensing axis G as the center of symmetry in a plane parallel to the measurement surface, and the load body 3 The plane shape of the contacting surfaces is point-symmetrical with the sensing axis G as the center of symmetry, and when the sensing axis G is crossed in a myriad of planes passing through the sensing axis G and perpendicular to the measurement surface, the sensing axis G is the symmetry axis. It is a line symmetry.

【0003】またこの圧電型振動センサの製造は、次の
ように行なわれる。まず材料となる1枚の圧電フィルム
の表裏両面に、電極をはさんで支持板を接着し、大型の
感知部となる部材を作成する。次にこの部材を完成時の
大きさに合わせてチップ状に切断し、1個の感知部とす
る。この感知部を台座に接着し、さらに荷重体を接着し
て、1個の圧電型振動センサが完成する。この圧電型振
動センサの出力の調整は、荷重体の質量を個々に増減さ
せることにより行なわれる。
The piezoelectric vibration sensor is manufactured as follows. First, a support plate is bonded to both front and back surfaces of a single piezoelectric film as a material, with electrodes sandwiched therebetween, to form a large-sized sensing member. Next, this member is cut into chips according to the size at the time of completion to form one sensing unit. This sensing part is bonded to the pedestal, and then the load body is bonded to complete one piezoelectric vibration sensor. The output of the piezoelectric vibration sensor is adjusted by individually increasing or decreasing the mass of the load body.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、荷重体
の増量による出力調整、特に荷重体の質量増加による出
力増大方向での出力調整では、荷重体の質量が大きくな
ると、耐衝撃性が低下してしまうという難点があった。
したがって、調整可能な出力に上限があることは避けら
れず、規定の出力と実際の出力が大きな差がある場合に
は、事実上補正できなかった。また出力が規定の出力に
対して不足する場合、その出力不足の主な原因は、圧電
フィルムの圧電性が低いことであるが、本圧電型振動セ
ンサの製造方法では、1枚の圧電フィルムから多数の圧
電型振動センサができるので、使用圧電フィルムの圧電
性が低い場合、これに由来する全ての圧電型振動センサ
を出力調整しなればならなかった。したがって圧電フィ
ルムをチップ状に切断する前に、圧電フィルム自体の圧
電性を補正できる方法が望ましいことになる。
However, in the output adjustment by increasing the amount of the load body, particularly in the output adjustment in the direction of increasing the output by increasing the mass of the load body, when the weight of the load body increases, the impact resistance decreases. There was a drawback that it would end up.
Therefore, it is unavoidable that the adjustable output has an upper limit, and in the case where there is a large difference between the regulated output and the actual output, the correction cannot be practically performed. When the output is insufficient with respect to the specified output, the main cause of the insufficient output is that the piezoelectricity of the piezoelectric film is low. Since a large number of piezoelectric vibration sensors can be formed, if the piezoelectric film used has a low piezoelectric property, it is necessary to adjust the output of all piezoelectric vibration sensors derived from this. Therefore, a method that can correct the piezoelectricity of the piezoelectric film itself before cutting the piezoelectric film into chips is desirable.

【0005】本発明は前記事情に鑑みてなされたもの
で、一度に多数の圧電型振動センサについて、出力のば
らつきが少なく、出力を上げることができ、かつ耐衝撃
性の低下を起こさないような方法で出力調整することが
可能な、圧電型振動センサを提供するものである。
The present invention has been made in view of the above circumstances, and it is possible to increase the output and reduce the impact resistance of a large number of piezoelectric vibration sensors at one time. A piezoelectric vibration sensor whose output can be adjusted by a method.

【0006】[0006]

【課題を解決するための手段】本発明の圧電型振動セン
サは、その圧電フィルムの両面に設けられた電極に、メ
ッシュ状のものを使用することを前記課題の解決手段と
した。
In the piezoelectric vibration sensor of the present invention, the electrodes provided on both sides of the piezoelectric film are mesh-shaped ones, and the means for solving the above-mentioned problems is used.

【0007】[0007]

【作用】本発明の圧電型振動センサに用いたメッシュ状
の電極は、メッシュの度合を変えれば、感知部の測定面
の単位面積あたりの電極面積の比率を増減でき、これに
よって膜状圧電体の電気容量を変化させ、出力電圧を制
御することができる。この電極はメッシュ状であるの
で、これをチップ状に切断した後も、各チップ間で電極
面積の比率が一定となる。したがって、一度に多数の同
じ出力に調整された圧電型振動センサを得ることができ
る。
With the mesh-shaped electrode used in the piezoelectric vibration sensor of the present invention, the ratio of the electrode area per unit area of the measurement surface of the sensing portion can be increased or decreased by changing the degree of the mesh. The output voltage can be controlled by changing the electric capacity of the. Since this electrode has a mesh shape, the ratio of the electrode area is constant between the chips even after the electrode is cut into chips. Therefore, a large number of piezoelectric vibration sensors adjusted to the same output can be obtained at one time.

【0008】[0008]

【実施例】以下、本発明を詳しく説明する。図1は本発
明の圧電型振動センサの一実施例を示したもので、
(A)は外観を示す斜視図、(B)は感知部の分解斜視
図である。この圧電型振動センサは、被測定物に剛に取
り付けられる台座1と、この台座1の感知軸Gに垂直な
測定面に固着された感知部2と、この感知部2上に固着
され慣性質量部として作用する剛体からなる荷重体3か
ら構成されている。台座1の材料としては、繊維強化樹
脂、金属など充分剛性を持つものであればよい。荷重体
3の材料としては、しんちゅう、その他の金属など比較
的比重の大きな材料を用いることが望ましい。
The present invention will be described in detail below. FIG. 1 shows an embodiment of the piezoelectric vibration sensor of the present invention.
(A) is a perspective view showing an external appearance, and (B) is an exploded perspective view of a sensing unit. This piezoelectric vibration sensor includes a pedestal 1 rigidly attached to an object to be measured, a sensing unit 2 fixed to a measurement surface perpendicular to the sensing axis G of the pedestal 1, and an inertial mass fixed to the sensing unit 2. It is composed of a load body 3 made of a rigid body acting as a part. The material of the pedestal 1 may be any material having sufficient rigidity such as fiber reinforced resin and metal. As the material of the load body 3, it is desirable to use a material having a relatively large specific gravity such as brass and other metals.

【0009】感知部2は、圧電フィルム6の両面にメッ
シュ状の電極7を設けた膜状圧電体4と、この膜状圧電
体4の表裏両面に固着された板状の剛体からなる2枚の
支持板5から構成される。圧電フィルム6の材料として
は、ポリフッ化ビニリデン、テトラフルオロエチレンと
トリフルオロエチレンとの共重合体、チタン酸金属塩、
ジルコン酸金属塩などの各種の圧電材料を用いることが
できる。メッシュ状の電極の材料となる金属の種類やメ
ッシュの形成方法は特に限定されない。
The sensing portion 2 is composed of a film-shaped piezoelectric body 4 having mesh-shaped electrodes 7 provided on both surfaces of a piezoelectric film 6 and a plate-shaped rigid body fixed to both front and back surfaces of the film-shaped piezoelectric body 4. The support plate 5 of FIG. Examples of the material of the piezoelectric film 6 include polyvinylidene fluoride, a copolymer of tetrafluoroethylene and trifluoroethylene, a metal titanate salt,
Various piezoelectric materials such as metal zirconate can be used. The type of metal used as the material of the mesh-shaped electrode and the method of forming the mesh are not particularly limited.

【0010】本圧電型振動センサの出力の調整は、圧電
型振動センサの感知部となる大型の部材を製造するとき
に、電極に使用するメッシュの度合を変えることにより
行なう。メッシュの度合を変えることは、感知部の測定
面の単位面積あたりの電極面積の比率を変えることを意
味し、しかもメッシュ状であるので、この比率は部材全
体で均一となる。したがってこの部材をチップ状に切断
すれば、一度に多数の同じ出力電圧を有する感知部が得
られ、チップ間で出力のばらつきがない。この方法では
荷重体の質量は変化しないので、耐衝撃性が低下するこ
ともない。
The output of the piezoelectric vibration sensor is adjusted by changing the degree of the mesh used for the electrodes when manufacturing a large member which serves as a sensing portion of the piezoelectric vibration sensor. Changing the degree of the mesh means changing the ratio of the electrode area per unit area of the measurement surface of the sensing unit, and since it is mesh-like, this ratio becomes uniform throughout the member. Therefore, if this member is cut into chips, a large number of sensing units having the same output voltage can be obtained at one time, and there is no variation in output between chips. In this method, since the mass of the load body does not change, the impact resistance does not decrease.

【0011】上記のごとく電極面積を変化させることで
電気出力を制御できるのは、以下のようなメカニズムに
よる。すなわち膜状圧電体に発生する電荷をQ,電気容
量をCとすれば、電極間に生ずる電圧Vは(I)式で表
わされる。
The electric output can be controlled by changing the electrode area as described above due to the following mechanism. That is, if the electric charge generated in the film-shaped piezoelectric body is Q and the electric capacity is C, the voltage V generated between the electrodes is represented by the formula (I).

【数1】 さらに電極面積をS,膜状圧電体の厚さをt、圧電材料
の誘電率をεとすると電気容量は(II)式で表わされ
る。
[Equation 1] Further, assuming that the electrode area is S, the thickness of the film-shaped piezoelectric body is t, and the dielectric constant of the piezoelectric material is ε, the electric capacity is expressed by the formula (II).

【数2】 したがって(I)式と(II)式より(III)式が導かれ
る。
[Equation 2] Therefore, the formula (III) is derived from the formulas (I) and (II).

【数3】 膜状圧電体の厚さtは一定なので、電極面積Sを変化さ
せれば出力電圧Vを変えることができる。出力電圧Vを
上げるには、電極面積Sを小さくすればよい。
[Equation 3] Since the thickness t of the film-shaped piezoelectric body is constant, the output voltage V can be changed by changing the electrode area S. To increase the output voltage V, the electrode area S may be reduced.

【0012】(実施例)図1に示す形状の圧電型振動セ
ンサを作成した。3cm角、100μm厚のポリフッ化ビ
ニリデン(PVDF)圧電フィルムの両面に、3cm角の
メッシュ状の銅箔(電極層)を接着し、さらにその両面
に3cm角1.5mm厚のガラスエポキシ板(支持板)をエ
ポキシ接着剤で接着した。これをダイシングソーで5mm
角に切断し,センサチップとした。各チップを台座上に
固着させ、その上に重さ1gのしんちゅう製の荷重体を
接着して、80Hz,1gで加振し、その電圧出力を測
定した。 このようにして圧電型振動センサを100個
作成し、その電圧出力とそのばらつき及び耐衝撃性を調
べた。耐衝撃性試験では、作成した圧電型振動センサを
台座ごと横方向にコンクリート面に1mの高さから落下
衝突させて、破損する圧電型振動センサの数を調べた。
その結果を表1に示す。表1で、電極面積比とは、チッ
プの面積(25mm2)に対するメッシュ状銅箔部分の面
積の比を示したものである。出力比は、次に示す比較例
で得られた出力を1とした場合の相対値で示した。また
出力のばらつきとは、100個作成したうちの、出力の
平均値の±15%の範囲に入るものの個数を示す。耐衝
撃性とは、作成した100個の圧電型振動センサのうち
で、上記耐衝撃性試験において破損した圧電型振動セン
サの数を示す。
(Example) A piezoelectric vibration sensor having the shape shown in FIG. 1 was prepared. A 3 cm square mesh-shaped copper foil (electrode layer) is adhered to both sides of a 3 cm square, 100 μm thick polyvinylidene fluoride (PVDF) piezoelectric film, and a 3 cm square glass epoxy plate of 1.5 mm thickness (support) The boards) were glued together with an epoxy adhesive. 5 mm with this dicing saw
It was cut into a corner and used as a sensor chip. Each chip was fixed on a pedestal, a brass load body having a weight of 1 g was adhered onto the chip, and the load was vibrated at 80 Hz and 1 g, and the voltage output was measured. In this way, 100 piezoelectric vibration sensors were prepared, and the voltage output, its variation and impact resistance were examined. In the impact resistance test, the created piezoelectric vibration sensor was dropped and collided laterally with a pedestal from a height of 1 m on a concrete surface, and the number of piezoelectric vibration sensors damaged was examined.
The results are shown in Table 1. In Table 1, the electrode area ratio is the ratio of the area of the mesh-shaped copper foil portion to the area of the chip (25 mm 2 ). The output ratio is shown as a relative value when the output obtained in the comparative example shown below is 1. The variation of the output indicates the number of the 100 generated, which are within ± 15% of the average value of the output. The impact resistance refers to the number of piezoelectric vibration sensors that were damaged in the above impact resistance test, out of the 100 piezoelectric vibration sensors that were created.

【0013】(比較例)図2に示す形状の圧電型振動セ
ンサを作成した。電極に板状の銅箔を用いた他は、実施
例と同様に行なった。その結果を表1に示す。
Comparative Example A piezoelectric vibration sensor having the shape shown in FIG. 2 was prepared. The same procedure as in Example was carried out except that a plate-shaped copper foil was used for the electrodes. The results are shown in Table 1.

【表1】 [Table 1]

【0014】[0014]

【発明の効果】以上説明したように本発明の圧電型振動
センサにおいては、膜状圧電体の両面に設けられた電極
がメッシュ状であるので、この電極に使用したメッシュ
の度合を変えることにより、出力電圧を制御することが
できる。この出力調整は、感知部部材をチップ状に切断
する前に行なうので、一度に多数の同じ出力に調整され
た圧電型振動センサを容易に得ることができ、そのばら
つきは少ない。さらにこの出力調整方法では、荷重体の
大きさや質量は変わらないので、耐衝撃性の低下が起こ
らない。
As described above, in the piezoelectric vibration sensor of the present invention, since the electrodes provided on both sides of the film-shaped piezoelectric body are mesh-shaped, it is possible to change the degree of the mesh used for this electrode. , The output voltage can be controlled. Since this output adjustment is performed before cutting the sensing unit member into chips, it is possible to easily obtain a large number of piezoelectric vibration sensors adjusted to the same output at one time, and there is little variation. Further, in this output adjusting method, since the size and mass of the load body do not change, the impact resistance does not decrease.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧電型振動センサの一実施例を示した
もので、(A)は外観を示す斜視図、(B)は感知部の
分解斜視図である。
1A and 1B show an embodiment of a piezoelectric vibration sensor of the present invention, in which FIG. 1A is a perspective view showing an appearance and FIG. 1B is an exploded perspective view of a sensing unit.

【図2】従来の圧電型振動センサの一実施例を示したも
ので、(A)は外観を示す斜視図、(B)は感知部の分
解斜視図である。
2A and 2B show an embodiment of a conventional piezoelectric vibration sensor, FIG. 2A is a perspective view showing an external appearance, and FIG. 2B is an exploded perspective view of a sensing unit.

【符号の説明】[Explanation of symbols]

1…台座 2…感知部 3…荷重体 4…膜状圧電体 5…支持板 6…圧電フィルム 7…メッシュ状電極 8…板状電極 DESCRIPTION OF SYMBOLS 1 ... Pedestal 2 ... Sensing part 3 ... Load body 4 ... Membrane piezoelectric body 5 ... Support plate 6 ... Piezoelectric film 7 ... Mesh electrode 8 ... Plate electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 隆之 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Imai 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に剛に取り付けられる台座と、
この台座の感知軸に垂直な測定面に固着された感知部
と、この感知部上に固着され慣性質量部として作用する
剛体からなる荷重体を有し、前記感知部は、圧電フィル
ムの両面に電極を設けた膜状圧電体と、この膜状圧電体
の表裏両面に固着された板状の剛体からなる2枚の支持
板とからなる圧電型振動センサにおいて、上記電極がメ
ッシュ状であることを特徴とする圧電型振動センサ。
1. A pedestal rigidly attached to an object to be measured,
The pedestal has a sensing part fixed to a measurement surface perpendicular to the sensing axis, and a load body made of a rigid body fixed on the sensing part and acting as an inertial mass part. The sensing part is provided on both sides of the piezoelectric film. A piezoelectric vibration sensor comprising a film-shaped piezoelectric body provided with electrodes and two supporting plates made of plate-shaped rigid bodies fixed to both front and back surfaces of the film-shaped piezoelectric body, wherein the electrodes are mesh-shaped. Piezoelectric vibration sensor characterized by.
JP33910191A 1991-12-20 1991-12-20 Piezoelectric vibration sensor Pending JPH05172839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33910191A JPH05172839A (en) 1991-12-20 1991-12-20 Piezoelectric vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33910191A JPH05172839A (en) 1991-12-20 1991-12-20 Piezoelectric vibration sensor

Publications (1)

Publication Number Publication Date
JPH05172839A true JPH05172839A (en) 1993-07-13

Family

ID=18324271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33910191A Pending JPH05172839A (en) 1991-12-20 1991-12-20 Piezoelectric vibration sensor

Country Status (1)

Country Link
JP (1) JPH05172839A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175521A (en) * 2009-02-02 2010-08-12 Fujifilm Corp Vibration mode sensor film, vibration mode actuator film, and vibration suppression film
WO2019065960A1 (en) 2017-09-29 2019-04-04 住友理工株式会社 Transducer and method for manufacturing same
WO2020196863A1 (en) 2019-03-28 2020-10-01 住友理工株式会社 Electrostatic transducer and electrostatic transducer unit
WO2020217855A1 (en) 2019-04-26 2020-10-29 住友理工株式会社 Electrostatic transducer and electrostatic transducer unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175521A (en) * 2009-02-02 2010-08-12 Fujifilm Corp Vibration mode sensor film, vibration mode actuator film, and vibration suppression film
US8148881B2 (en) 2009-02-02 2012-04-03 Fujifilm Corporation Vibration sensor film, vibration actuator film, vibration reduction film, and multilayer film using them
WO2019065960A1 (en) 2017-09-29 2019-04-04 住友理工株式会社 Transducer and method for manufacturing same
US11750981B2 (en) 2017-09-29 2023-09-05 Sumitomo Riko Company Limited Transducer and method for manufacturing same
WO2020196863A1 (en) 2019-03-28 2020-10-01 住友理工株式会社 Electrostatic transducer and electrostatic transducer unit
WO2020217855A1 (en) 2019-04-26 2020-10-29 住友理工株式会社 Electrostatic transducer and electrostatic transducer unit

Similar Documents

Publication Publication Date Title
US6240780B1 (en) Angular velocity sensor
EP1544927A3 (en) Piezoelectric element, fabrication method for the same, and inkjet head, inkjet recording apparatus and angular velocity sensor including the same
JP5815833B2 (en) Sound generator and sound generator using the same
EP0399680B1 (en) Piezoelectric acceleration sensor
EP2445025A1 (en) Active/passive absorber for vibration and sound radiation control
WO2006059856A1 (en) Piezoelectric vibrator with multi acting vibrator
JP4511407B2 (en) Piezoelectric sound generator
JPH05172839A (en) Piezoelectric vibration sensor
JP3361988B2 (en) 3-axis sensor
KR101329661B1 (en) Monolithic bending element
KR100729152B1 (en) Piezoelectric vibrator for plate-type speaker
JPH05172841A (en) Output adjustment method for piezoelectric vibration sensor
EP0233057A2 (en) Vibration sensor
Smith et al. Rectilinear phased array transducer using 2-2 ceramic-polymer composite
JPH06249706A (en) Piezoelectric oscillation sensor
JPH06230025A (en) Piezoelectric vibration sensor
JPH0392764A (en) Piezoelectric acceleration sensor
JPH06148227A (en) Piezoelectric acceleration sensor
JPH03259750A (en) Piezoelectric type acceleration sensor
JPH0323757Y2 (en)
JP2688252B2 (en) Piezoelectric acceleration sensor
CN117233424A (en) Sensor
JPH05172624A (en) Piezoelectric type vibration sensor device
JPH0320671A (en) Piezoelectric acceleration sensor and method for controlling output thereof
JPS61155700A (en) Blower using piezo-electric bimorph vibrating plate