JPH05172743A - Ozone concentration measuring method and light absorption type gas phase ozone concentration meter - Google Patents

Ozone concentration measuring method and light absorption type gas phase ozone concentration meter

Info

Publication number
JPH05172743A
JPH05172743A JP34452391A JP34452391A JPH05172743A JP H05172743 A JPH05172743 A JP H05172743A JP 34452391 A JP34452391 A JP 34452391A JP 34452391 A JP34452391 A JP 34452391A JP H05172743 A JPH05172743 A JP H05172743A
Authority
JP
Japan
Prior art keywords
ozone concentration
ozone
light
cell
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34452391A
Other languages
Japanese (ja)
Inventor
Kojiro Kawasaki
浩二郎 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKI ELECTRON KK
Original Assignee
SEKI ELECTRON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKI ELECTRON KK filed Critical SEKI ELECTRON KK
Priority to JP34452391A priority Critical patent/JPH05172743A/en
Publication of JPH05172743A publication Critical patent/JPH05172743A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure ozone concentration over a wide concentration range by a concentration meter with a wide measuring range by executing operation by means of a conversion equation for utilizing a growth curve in the function block of a CPU and correcting measured data. CONSTITUTION:Ozone is separated from a gas phase fluid by means of a catalyst within an ozone analyzer 1. Separated ozone is led into a measuring cell 6 and exhausted through a suction route. Ultraviolet light from a lamp 2 is separated into two beams by a half mirror, one is led to the cell 6 and the other to a detector 5. Within the cell 6 the photoelectric conversion of transmitted light is performed and its detection result is input to a CPU 11. The measurement is shown on a display 12. The influence of the variation of light intensity is corrected according to the output signal of the detector 5. Within the CPU 11 various conditions 14 are set and various information 15 is output. The CPU 11 is equipped with a linear operation means 13 as a function block and correction operation is executed on the basis of a conversion equation by means of a growth curve and the linear area is enlarged to display.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾン濃度測定方法お
よび光吸収式気相オゾン濃度計に関し、特に、紫外線吸
収式オゾン濃度計における測定レンジを拡大する技術に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone concentration measuring method and a light absorption type gas phase ozone concentration meter, and more particularly to a technique for expanding the measurement range of an ultraviolet absorption type ozone concentration meter.

【0002】[0002]

【従来の技術】紫外線吸収式気相オゾン濃度計は、動的
な流体中のオゾン濃度を、紫外線の吸収量の変化を利用
して測定する測定器である。吸収セル中のオゾン濃度
は、試料ガスによる254nmの光の吸収量によって決
定される。この数値決定に関係するものとしては、次の
特性が挙げられる。
2. Description of the Related Art An ultraviolet absorption type gas phase ozone concentration meter is a measuring instrument for measuring the ozone concentration in a dynamic fluid by utilizing the change in the amount of absorption of ultraviolet rays. The ozone concentration in the absorption cell is determined by the amount of absorption of 254 nm light by the sample gas. The following characteristics are related to this numerical determination.

【0003】(ア)波長254nmにおけるオゾンの吸
収係数(μ) (イ)試料ガス中を通過する吸収セルの光路長(L) (ウ)波長254nmにおけるサンプルガスの透過率
(I/I0 ) ここで、透過率(I/I0 )のIは、吸収セル中にオゾ
ンを含む試料ガスがあった時の透過光の強度であり、I
0 はオゾンを含まない場合の透過光の強度測定値であ
る。この透過率の値は、ベール・ランバートの吸収の法
則によって、次式で定義される。
(A) Absorption coefficient (μ) of ozone at a wavelength of 254 nm (b) Optical path length of absorption cell passing through the sample gas (L) (c) Transmittance of sample gas at a wavelength of 254 nm (I / I 0 ) Here, I of the transmittance (I / I 0 ) is the intensity of transmitted light when there is a sample gas containing ozone in the absorption cell, and I
0 is a measured value of the intensity of transmitted light when ozone is not included. This transmittance value is defined by the following equation according to Beer-Lambert's law of absorption.

【0004】 透過率=I/I0 =exp(−μyL) ・・・・・(1) ここで、μ=304±4 atm-1cm-1(0°C,760 tor
r) ,y=大気中のオゾン濃度,L=上述の吸収セルの
光路長である。
Transmittance = I / I 0 = exp (−μyL) (1) where μ = 304 ± 4 atm −1 cm −1 (0 ° C., 760 tor
r), y = ozone concentration in the atmosphere, L = optical path length of the above-mentioned absorption cell.

【0005】したがって、オゾン濃度y(ppm)は次
式で計算される。 y(ppm)=−(106 /μL)・ln(I/I0 ) = (106 /μL)・ln(I0 /I)・・・・・(2)
Therefore, the ozone concentration y (ppm) is calculated by the following equation. y (ppm) =-(10 6 / μL) · ln (I / I 0 ) = (10 6 / μL) · ln (I 0 / I) (2)

【0006】[0006]

【発明が解決しようとする課題】上述の(2)式で測定
された濃度値と実際のオゾン濃度との関係をグラフ化す
ると、図6のようになり、オゾン濃度が増加して透過率
が減少すると(すなわち、オゾンによる吸収量が増大す
ると)、測定値は飽和して変化率が減少し、測定値と実
濃度値との間にずれが生じてしまう。すなわち、実際に
オゾン濃度値がリニアに増加しても、測定値はこれに追
従してリニアに変化せず、測定値に誤差が生じる。実験
結果によれば、透過率が約40%までは直線範囲にある
が、透過率が30%になると約3%の誤差が発生し、透
過率20%で約6%の誤差となる。
When the relationship between the concentration value measured by the above equation (2) and the actual ozone concentration is graphed, it becomes as shown in FIG. 6, and the ozone concentration increases and the transmittance increases. When it decreases (that is, when the amount absorbed by ozone increases), the measured value saturates and the rate of change decreases, causing a deviation between the measured value and the actual concentration value. That is, even if the ozone concentration value actually increases linearly, the measured value does not change linearly following this, and an error occurs in the measured value. According to the experimental results, the transmittance is in the linear range up to about 40%, but when the transmittance becomes 30%, an error of about 3% occurs, and when the transmittance is 20%, the error becomes about 6%.

【0007】このように、実際のオゾン濃度に比例した
測定値が得られる領域(リニアリティ領域)は限られて
いるため、一台の機器で、広いオゾン濃度範囲に渡って
(例えば、環境レベル(0〜2ppm )から高濃度レベル
(0〜9999ppm )まで)の測定を行うことはできな
い。
As described above, since the area (linearity area) in which the measured value proportional to the actual ozone concentration is obtained is limited, one device can operate over a wide ozone concentration range (for example, the environmental level ( It is not possible to measure from 0 to 2 ppm) to high concentration levels (0 to 9999 ppm).

【0008】そこで実際は、測定範囲を限定した機器
(すなわち、測定セル長Lをそれぞれのレンジに合わせ
て調整してあり、かつ、担当する測定範囲が上述のリニ
アリティ範囲にあるように設定されている機器)を複数
台用意しておき、ユーザーは、測定対象の濃度レベルに
応じて、それらの機器を使い分けるようにして対応して
いる。
Therefore, in practice, a device having a limited measurement range (that is, the measurement cell length L is adjusted according to each range, and the measurement range in charge is set to be within the above-mentioned linearity range). A plurality of devices are prepared, and the user responds by selectively using these devices according to the concentration level of the measurement target.

【0009】本発明は、このような考察に基づいてなさ
れたものであり、その目的は、オゾン濃度測定における
直線(リニア)領域を透過率1%まで拡大し、測定機器
の測定レンジ(正確な測定を行える範囲)を拡大して、
一台で広い濃度範囲に渡ってのオゾン濃度の測定を可能
とすることにある。
The present invention has been made on the basis of such a consideration, and its purpose is to expand the linear region in ozone concentration measurement to a transmittance of 1%, and to measure the measurement range (correct Expand the measurement range)
It is to be able to measure the ozone concentration over a wide concentration range with one unit.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
光の透過率に関する情報を変数tとし、また、求めるオ
ゾン濃度を変数xとして、生長曲線を利用した、x=K
0 ・ln{(D+t)/(D−t)},(K0 ,Dは、
任意の係数)の変換式による演算を実行し、測定データ
を校正することによって、直線領域を拡大するものであ
る。
The invention according to claim 1 is
Using a growth curve, where the information on the light transmittance is a variable t, and the ozone concentration to be obtained is a variable x, x = K
0 · ln {(D + t) / (D−t)}, (K 0 , D is
The linear region is enlarged by executing the calculation by the conversion formula of arbitrary coefficient) and calibrating the measurement data.

【0011】請求項2の記載の発明は、校正機能を実現
するために、校正演算手段をオゾン濃度計に付加したも
のである。校正演算手段は、例えば、CPU内に機能ブ
ロック(ハードウエアがソフトウエアに従って動作する
結果として構築される、所定の機能を実行する手段)と
して、実現される。
According to the second aspect of the invention, in order to realize the calibration function, the calibration calculation means is added to the ozone concentration meter. The calibration calculation means is realized, for example, as a functional block (means for executing a predetermined function, which is constructed as a result of the hardware operating according to the software) in the CPU.

【0012】[0012]

【作用】測定値を校正するための変換方式には、非線形
領域のデータを実濃度値に即して線形化すること、なら
びに、本来の線形領域のデータを歪ませないことが要求
される。かといって、実濃度値とオゾン濃度計の出力の
関係は、測定セル長や個々の機器の微妙な特性によって
異なるため、最適な変換式を、測定データそのものの特
性のみに着目して直接に求めることはできない。
The conversion method for calibrating the measured values is required to linearize the data in the non-linear region according to the actual density value and not distort the original data in the linear region. However, the relationship between the actual concentration value and the output of the ozone concentration meter differs depending on the measurement cell length and the delicate characteristics of each device, so the optimum conversion formula should be directly determined by focusing only on the characteristics of the measurement data itself. I can't ask.

【0013】そこで本発明では、実濃度値−オゾン濃度
計の出力の曲線と非常に近似した形状を有する生長曲線
(logistic curve) を選択して、この生長曲線の特性を
利用して、校正直線を得るようにする。
Therefore, in the present invention, a growth curve (logistic curve) having a shape very similar to the curve of the actual concentration value-output of the ozone concentration meter is selected, and the calibration curve is utilized by utilizing the characteristics of this growth curve. To get.

【0014】すなわち、生長曲線はハイパボリック型の
関数であって、−∞と+∞において収束点(収斂点)を
有しており、実濃度値−オゾン濃度計の出力の曲線のよ
うな収束が不安定化するという要因がなく、かつ、その
対数をとると、所定の傾きを持った一次関数(直線)に
なるという特徴を有している。
That is, the growth curve is a hyperbolic function and has a convergence point (convergence point) at −∞ and + ∞, and the actual concentration value−the output of the ozone concentration meter converges like a curve. There is no factor of destabilization, and when its logarithm is taken, it has a characteristic that it becomes a linear function (straight line) having a predetermined slope.

【0015】このため、生長曲線の対数をとって得られ
る直線の傾きが、所望の校正直線と可能なかぎり一致す
るように、生長曲線の対数値を求める式の係数を選択し
ておくことにより、変換式によって得られる値は、リニ
ア領域のデータにはほとんど誤差を与えず、校正の必要
なノンリニア領域のデータのみを持ち上げ、線形性を回
復させるという効果が得られるようになる。
Therefore, by selecting the coefficient of the equation for obtaining the logarithmic value of the growth curve so that the slope of the straight line obtained by taking the logarithm of the growth curve matches the desired calibration line as much as possible. The value obtained by the conversion equation gives almost no error to the data in the linear region, and only the data in the non-linear region that needs calibration is lifted to obtain the effect of restoring the linearity.

【0016】[0016]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の紫外線吸収式オゾン濃度計
の一実施例の構成を示す図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing the configuration of an embodiment of the ultraviolet absorption type ozone concentration meter of the present invention.

【0017】オゾン分解器1は触媒を用いて、気相流体
よりオゾン分離する。測定セル6は、流量計8,ニード
ルバルブ9を介して吸引ポンプ10により、所定量のガ
ス吸引がなされており、オゾン分解器1により分離され
たオゾンは、三方電磁弁4を介して測定セル6に導か
れ、そのガス吸引ルートを介して排出されるようになっ
ている。
The ozone decomposer 1 uses a catalyst to separate ozone from the gas phase fluid. The measurement cell 6 has a predetermined amount of gas suctioned by a suction pump 10 via a flow meter 8 and a needle valve 9, and the ozone separated by the ozone decomposer 1 is measured via a three-way solenoid valve 4. 6 and is discharged through the gas suction route.

【0018】紫外線ランプ2からの紫外光は、ハーフミ
ラー3により2方向に分離され、一方は測定セル6に導
かれ、他方は光強度検出用の検出器5に導かれる。ラン
プに低圧水銀灯を用い、検出器に300nm以下に感度
のある光電管を使用すると、波長254nmの輝線スペ
クトルに関するモノクロメータとなり、オゾンの紫外線
吸収のピーク値を一致させることができる。
The ultraviolet light from the ultraviolet lamp 2 is separated into two directions by the half mirror 3, one of which is guided to the measuring cell 6 and the other of which is guided to the detector 5 for detecting the light intensity. When a low-pressure mercury lamp is used for the lamp and a phototube having a sensitivity of 300 nm or less is used for the detector, it becomes a monochromator for the emission line spectrum of wavelength 254 nm, and the peak value of the ultraviolet absorption of ozone can be matched.

【0019】測定セル6を透過した光は、検出器7によ
り光電変換され、検出信号はCPU11に入力される。
測定結果は、表示器12に表示されるようになってい
る。検出器5の出力は、同じくCPU11に入力され、
この信号に基づき、信号処理に際し、光強度の変動の影
響を排するような補正がなされる。なお、CPU11に
は、種々の条件14を設定可能であり、また、種々の情
報15を出力することもできる。
The light transmitted through the measuring cell 6 is photoelectrically converted by the detector 7, and the detection signal is input to the CPU 11.
The measurement result is displayed on the display 12. The output of the detector 5 is also input to the CPU 11,
Based on this signal, correction is performed so as to eliminate the influence of fluctuations in light intensity during signal processing. Various conditions 14 can be set in the CPU 11 and various information 15 can be output.

【0020】CPU11は、機能ブロックとして直線化
演算手段13を具備しており、検出器7の出力をそのま
ま表示に反映させるのではなく、校正演算を実施して、
リニア領域を拡大して表示する。
The CPU 11 is provided with a linearization calculation means 13 as a functional block, and instead of directly reflecting the output of the detector 7 on the display, it performs a calibration calculation,
Enlarge and display the linear area.

【0021】次に、直線化演算手段13の、生長曲線を
用いた変換式による校正変換動作を説明する。図4は適
用される生長曲線40の形状を示しており、以下の
(3)式によって表されるものである。 ln{y/(a−y)}=bx+c ・・・・(3) この生長曲線において収束点は、「0」と「a」であ
り、中央部にリニア領域を持ち、周辺部において飽和領
域を持つ、オゾン濃度計の出力カーブに非常に近似した
特性となっている。
Next, the calibration conversion operation of the linearization calculation means 13 by the conversion equation using the growth curve will be described. FIG. 4 shows the shape of the growth curve 40 to be applied, which is represented by the following equation (3). ln {y / (ay)} = bx + c (3) In this growth curve, the convergence points are "0" and "a", which has a linear region in the central part and a saturated region in the peripheral part. The characteristics are very similar to the output curve of an ozone concentration meter.

【0022】但し、オゾン濃度計の出力は、図4におけ
るx=Q1より右側のような形状であるため、これに合
わせるために、座標の原点をy=a/2のP点に移動さ
せる。そして、測定値を変数yに当てはめ、実濃度値を
変数xに当てはめ、測定値が収束する値をA(=a/
2)とすると、(3)式は以下の(4式)のように変形
できる。 ln{(A+y)/(A−y)}=Bx・・・・
(4),但し、Bは実験によって導き出される定数であ
る。
However, since the output of the ozone concentration meter has a shape on the right side of x = Q1 in FIG. 4, the origin of the coordinates is moved to the point P of y = a / 2 in order to match this. Then, the measured value is applied to the variable y, the actual concentration value is applied to the variable x, and the value at which the measured value converges is A (= a /
If the equation (2) is adopted, the equation (3) can be transformed into the following equation (4). ln {(A + y) / (A-y)} = Bx ...
(4), where B is a constant derived by experiment.

【0023】この(4)式は、yについての式の対数を
とったものが、Bという傾きを持ったxについての直線
に変換されることを意味しており、Bxを、校正された
測定値−実濃度の関係を表す直線に可能なかぎり一致さ
せれば、その一致の範囲でリニアリティが保障されるこ
とになる。(4)式をオゾン濃度xについての式に変形
すると、 x=(1/B)ln{(A+y)/(A−y)}・・・・(5)となり、 (1/B)を、改めてB0 とおくと、 x=B0 ln{(A+y)/(A−y)}・・・・・・・(6)となる。
This equation (4) means that the logarithm of the equation for y is converted into a straight line for x having a slope of B, and Bx is a calibrated measurement. If the line representing the value-actual density relationship is made to match as much as possible, the linearity is guaranteed in the range of the match. When the formula (4) is transformed into a formula for the ozone concentration x, x = (1 / B) ln {(A + y) / (A−y)} ... (5), and (1 / B) is If B 0 is set again, then x = B 0 ln {(A + y) / (A−y)} ... (6)

【0024】前掲の(2)式の右辺の変化部分、すなわ
ち、透過率の逆数の対数をとったものをtとおくと、y
とtとは比例関係にあるので、(6)式のyをtで置き
換えて、係数調整を行い、 x=K0 ・ln{(D+t)/(D−t)} ・・・・(7) が得られる。本式において、K0 ,Dを適切に選ぶこと
により、信頼性の高い校正変換が可能となる。
Letting t be the changing part of the right side of the above-mentioned equation (2), that is, the logarithm of the reciprocal of the transmittance, then y
Since there is a proportional relationship between t and t, y is replaced by t in the equation (6), coefficient adjustment is performed, and x = K 0 · ln {(D + t) / (D−t)} ··· (7 ) Is obtained. In this equation, by appropriately selecting K 0 and D, highly reliable calibration conversion can be performed.

【0025】実際には、図2に示されるような手順によ
り、測定値からオゾン濃度への変換(校正変換)が行わ
れる。すなわち、透過率I/I0 を求め(ステップ2
0)、図示されるような変換式を用いて校正された濃度
C(ppm)を求め(ステップ21)、表示等の出力を
行う(ステップ22)。
Actually, the conversion from the measured value to the ozone concentration (calibration conversion) is performed by the procedure as shown in FIG. That is, the transmittance I / I 0 is calculated (step 2
0), the calibrated concentration C (ppm) is obtained by using the conversion formula as shown (step 21), and output such as display is performed (step 22).

【0026】ステップ22の変換式において、Lはオゾ
ン濃度計の測定セル長,K,Dは実験によって選択され
る任意の係数である。この変換を施すことによって、従
来、透過率40%までが実用範囲であったものが、透過
率約1%までのリニアリティが保障され、一台の機器の
測定レンジを数倍に拡大することができる。図5は、本
実施例の効果を示す図であり、セル長3mmの、従来の
最大測定濃度である約10000ppmに適用する機器
に、本実施例を適用した場合の、補正(校正)前後の比
較が示されている(補正前がA,補正後がB)。補正に
よって、低濃度域のリニアリティはほとんど影響を受け
ず、一方、高濃度域の直線性が改善されていることがわ
かる。
In the conversion formula of step 22, L is the measurement cell length of the ozone concentration meter, and K and D are arbitrary coefficients selected by experiments. By performing this conversion, the linearity of up to about 1% was guaranteed, while the conventional range of up to 40% was guaranteed, and the measurement range of one device could be expanded several times. it can. FIG. 5 is a diagram showing the effect of the present embodiment, and shows the results before and after correction (calibration) when the present embodiment is applied to a device having a cell length of 3 mm and applied to a conventional maximum measured concentration of about 10000 ppm. A comparison is shown (A before correction, B after correction). It can be seen that the correction hardly affects the linearity in the low density region, while improving the linearity in the high density region.

【0027】以上の本実施例の特徴となる処理の手順を
まとめると、図3のようになる。すなわち、まず、測定
値−濃度曲線に近似の生長曲線を選択し、変数yに実測
値を、変数xに求めるオゾン濃度をあてはめる(ステッ
プ30)。次に、生長曲線の対数をとり、校正直線の基
本形を得る(ステップ31)。次に、校正直線の係数を
調節し、直線の傾きを、実際の測定値−オゾン濃度の関
係を正確に表示する直線に合致させる(ステップ3
2)。これによって、最適な変換式が得られ、これを用
いて校正を行うことにより、直線レンジを、従来の透過
率40%から1%までに拡げ、測定レンジを拡大する
(ステップ33)。
The procedure of the processing which characterizes the present embodiment described above is summarized in FIG. That is, first, a growth curve approximate to the measured value-concentration curve is selected, and the measured value is assigned to the variable y and the ozone concentration to be obtained is assigned to the variable x (step 30). Next, the logarithm of the growth curve is taken to obtain the basic form of the calibration line (step 31). Next, the coefficient of the calibration straight line is adjusted so that the slope of the straight line is matched with the straight line that accurately displays the actual measured value-ozone concentration relationship (step 3).
2). As a result, an optimum conversion formula is obtained, and calibration is performed using this formula to expand the linear range from the conventional transmittance of 40% to 1% and expand the measurement range (step 33).

【0028】[0028]

【発明の効果】以上説明したように本発明は、生長曲線
の特性に着目してリニアライズ用の変換式を得て、これ
による校正変換を実施することにより、従来の直線領域
には影響を与えることなく、直線領域の範囲を従来の約
5倍に拡大できる。これにより、オゾン濃度測定におけ
る直線(リニア)領域が透過率1%まで拡大され、測定
機器の測定レンジ(正確な測定を行える範囲)が広が
り、一台で広い濃度範囲に渡ってのオゾン濃度の測定が
可能になり、測定器の高性能化を達成できる。
As described above, according to the present invention, the conversion equation for linearization is obtained by paying attention to the characteristic of the growth curve, and the calibration conversion is performed by this, so that the conventional linear region is not affected. The range of the linear region can be expanded to about 5 times that of the conventional case without giving. As a result, the linear region in ozone concentration measurement is expanded to a transmittance of 1%, the measurement range of the measuring device (range in which accurate measurement can be performed) is expanded, and the ozone concentration of the ozone concentration over a wide concentration range can be increased by one unit. Measurement becomes possible, and high performance of the measuring device can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紫外線吸収式オゾン濃度計の一実施例
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of an ultraviolet absorption type ozone concentration meter of the present invention.

【図2】測定値からオゾン濃度への変換(校正変換)の
実際の手順を示す図である。
FIG. 2 is a diagram showing an actual procedure of conversion (calibration conversion) from a measured value to ozone concentration.

【図3】図1の実施例の特徴となる処理の手順を総括し
て示す図である。
FIG. 3 is a diagram summarizing a procedure of processing that characterizes the embodiment of FIG.

【図4】本発明における変換式に適用される生長曲線4
0の形状を示す図である。
FIG. 4 is a growth curve 4 applied to the conversion formula in the present invention.
It is a figure which shows the shape of 0.

【図5】図1の実施例の効果を示す図であり、セル長3
mmの、従来の最大測定濃度である約10000ppm
に適用する機器に、本実施例を適用した場合の、補正
(校正)前後の比較を示す図である。
5 is a diagram showing the effect of the embodiment of FIG. 1 with a cell length of 3
Approximately 10,000 ppm, which is the conventional maximum measurement concentration of mm
It is a figure which shows the comparison before and after correction (calibration) at the time of applying this Example to the apparatus applied to.

【図6】オゾン濃度計における、測定値と実濃度との関
係を示す図である。
FIG. 6 is a diagram showing a relationship between a measured value and an actual concentration in an ozone densitometer.

【符号の説明】[Explanation of symbols]

1 オゾン分解器 2 紫外線ランプ 3 ハーフミラー(半透鏡) 4 三方電磁弁 5 光強度補正用検出器 6 測定セル 7 光電変換器(検出器) 8 流量計 9 ニードルバルブ 10 吸引ポンプ 11 CPU 12 表示器 13 直線化演算手段 14 設定項目 15 出力項目 DESCRIPTION OF SYMBOLS 1 Ozone decomposer 2 Ultraviolet lamp 3 Half mirror (semi-transparent mirror) 4 Three-way solenoid valve 5 Light intensity correction detector 6 Measuring cell 7 Photoelectric converter (detector) 8 Flow meter 9 Needle valve 10 Suction pump 11 CPU 12 Indicator 13 Linearization calculation means 14 Setting items 15 Output items

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定セル内の気相流体中を通過した光の強
度を測定し、この測定データに基づいて前記測定セル内
の気相流体のオゾン濃度値を得るオゾン濃度測定方法で
あって、 前記測定データより求められる光の透過率に関する情報
を変数tとし、また、求めるオゾン濃度を変数xとし
て、下記変換式によって演算を実行し、測定データから
オゾン濃度への変換を行ってオゾン濃度値を得ることを
特徴とするオゾン濃度測定方法。 (変換式) x=K0 ・ln{(D+t)/(D−t)} 但し、K0 ,Dは、任意の係数である。
1. An ozone concentration measuring method for measuring the intensity of light passing through a gas-phase fluid in a measuring cell and obtaining an ozone concentration value of the gas-phase fluid in the measuring cell based on the measurement data. The information regarding the light transmittance obtained from the measurement data is set as a variable t, and the ozone concentration to be obtained is set as a variable x, and the calculation is performed by the following conversion formula to convert the measurement data to the ozone concentration to obtain the ozone concentration. A method for measuring ozone concentration, which comprises obtaining a value. (Conversion formula) x = K 0 · ln {(D + t) / (D−t)} where K 0 and D are arbitrary coefficients.
【請求項2】測定データより求められる光の透過率に関
する情報は、光の透過率(I/I0 ;Iは測定された、
オゾンによる吸収を生じた透過光の強度であり、I
0 は、予め求められたオゾンによる吸収の無い場合の透
過光の強度である)の逆数の対数(ln(I0 /I))
である請求項1記載のオゾン濃度測定方法。
2. The information on the light transmittance obtained from the measurement data is the light transmittance (I / I 0 ; I is measured,
Is the intensity of the transmitted light that has been absorbed by ozone,
0 is the logarithm (ln (I 0 / I)) of the reciprocal of the intensity of the transmitted light in the case where there is no absorption due to ozone, which is obtained in advance
The ozone concentration measuring method according to claim 1.
【請求項3】測定セル(6)内の気相流体中を通過した
光の強度を検出器(7)によって測定し、この測定デー
タに基づいて前記測定セル(6)内の気相流体のオゾン
濃度値を得る、光吸収式気相オゾン濃度計であって、 前記検出器(7)による測定データに基づいて求められ
る光の透過率に関する情報を変数tとし、また、求める
オゾン濃度を変数xとして、下記変換式による演算を実
行する演算手段(13)を有することを特徴とする光吸
収式気相オゾン濃度計。 (変換式) x=K0 ・ln{(D+t)/(D−t)} 但し、K0 ,Dは、任意の係数である。
3. A detector (7) measures the intensity of light passing through the gas-phase fluid in the measurement cell (6), and based on this measurement data, the gas-phase fluid in the measurement cell (6) is measured. A light absorption type gas phase ozone concentration meter for obtaining an ozone concentration value, wherein information on the light transmittance obtained based on the measurement data by the detector (7) is a variable t, and the ozone concentration to be obtained is a variable. A light absorption type vapor phase ozone concentration meter characterized in that it has a calculation means (13) for executing a calculation by the following conversion formula as x. (Conversion formula) x = K 0 · ln {(D + t) / (D−t)} where K 0 and D are arbitrary coefficients.
【請求項4】測定データに基づいて求められる光の透過
率に関する情報は、光の透過率(I/I0 ;Iは測定さ
れた、オゾンによる吸収を生じた透過光の強度であり、
0 は、予め求められたオゾンによる吸収の無い場合の
透過光の強度である)の逆数の対数(ln(I0
I))である請求項3記載の光吸収式気相オゾン濃度
計。
4. The information on the light transmittance obtained based on the measurement data is the light transmittance (I / I 0 ; I is the measured intensity of transmitted light absorbed by ozone,
I 0 is a logarithm (ln (I 0 / I 0 / I 0 / intensity of transmitted light in the case where there is no absorption by ozone) obtained in advance.
I)) is a light absorption type vapor phase ozone concentration meter according to claim 3.
JP34452391A 1991-12-26 1991-12-26 Ozone concentration measuring method and light absorption type gas phase ozone concentration meter Pending JPH05172743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34452391A JPH05172743A (en) 1991-12-26 1991-12-26 Ozone concentration measuring method and light absorption type gas phase ozone concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34452391A JPH05172743A (en) 1991-12-26 1991-12-26 Ozone concentration measuring method and light absorption type gas phase ozone concentration meter

Publications (1)

Publication Number Publication Date
JPH05172743A true JPH05172743A (en) 1993-07-09

Family

ID=18369936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34452391A Pending JPH05172743A (en) 1991-12-26 1991-12-26 Ozone concentration measuring method and light absorption type gas phase ozone concentration meter

Country Status (1)

Country Link
JP (1) JPH05172743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975231A (en) * 2017-12-27 2019-07-05 茶山Sm株式会社 Based on the ultraviolet automobile exhaust gas checking apparatus of on-dispersive
CN116952884A (en) * 2023-06-25 2023-10-27 青岛崂应海纳光电环保集团有限公司 Gas concentration calculation method for non-dispersive infrared gas detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975231A (en) * 2017-12-27 2019-07-05 茶山Sm株式会社 Based on the ultraviolet automobile exhaust gas checking apparatus of on-dispersive
CN116952884A (en) * 2023-06-25 2023-10-27 青岛崂应海纳光电环保集团有限公司 Gas concentration calculation method for non-dispersive infrared gas detection
CN116952884B (en) * 2023-06-25 2024-03-15 青岛崂应海纳光电环保集团有限公司 Gas concentration calculation method for non-dispersive infrared gas detection

Similar Documents

Publication Publication Date Title
US4525069A (en) Optical absorption analyzer
KR20130069543A (en) Method and mass flow controller for enhanced operating range
JPH02171647A (en) Measurement method and sensor for measuring relative density of gas or steam
TWI732264B (en) Cavity ring-down spectroscopy having interleaved data acquisition for interference mitigation
CN114526831A (en) Dew point frost point temperature sensor and measuring method thereof
US20010019410A1 (en) Wavelength calibration method of monochromator in wavelength measuring apparatus, wavelength measuring method and wavelength measuring apparatus
JPH05172743A (en) Ozone concentration measuring method and light absorption type gas phase ozone concentration meter
JPH04148846A (en) Concentration correcting apparatus
US6710347B1 (en) Device for measuring gas concentration
JPS63182550A (en) Gas sensor
JPH01235834A (en) Signal processing system of laser system gas sensor
JP2017032317A (en) Gas concentration measurement device
JP4417223B2 (en) Concentration measuring device
JPH063266A (en) Method for measuring ozone concentration, and light absorbing type ozone concentration meter
US20230168192A1 (en) Concentration measurement apparatus and concentration measurement method
JPS62127604A (en) Optical position detecting device
CN111929227B (en) Switching method, device, equipment and storage medium of infrared detection pool
JPH08122246A (en) Spectral analyzer
JP3057943B2 (en) Film thickness measuring device
JP7192602B2 (en) Calibration method for gas concentration measuring device
JPH0540088A (en) Method and device for calibrating ozone concentration measuring device
JP2018105833A (en) Moisture density measurement method, and moisture density measurement device
JPH0798287A (en) Deriving method for correlation expression between intensity of fluorescent x-ray and content of element
JP2720530B2 (en) Fourier transform infrared spectrophotometer
JPH0943056A (en) Instrument for measuring intensity of light