JPH05172308A - Reducing method for n2o of fluidized bed boiler - Google Patents

Reducing method for n2o of fluidized bed boiler

Info

Publication number
JPH05172308A
JPH05172308A JP3355240A JP35524091A JPH05172308A JP H05172308 A JPH05172308 A JP H05172308A JP 3355240 A JP3355240 A JP 3355240A JP 35524091 A JP35524091 A JP 35524091A JP H05172308 A JPH05172308 A JP H05172308A
Authority
JP
Japan
Prior art keywords
exhaust gas
fluidized bed
furnace
air
bed boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3355240A
Other languages
Japanese (ja)
Inventor
Yoshikazu Noguchi
嘉一 野口
Sumie Nakayama
寿美枝 中山
Hisashi Kega
尚志 氣駕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
IHI Corp
Original Assignee
Electric Power Development Co Ltd
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, IHI Corp filed Critical Electric Power Development Co Ltd
Priority to JP3355240A priority Critical patent/JPH05172308A/en
Publication of JPH05172308A publication Critical patent/JPH05172308A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To reduce NOx of a fluidized bed boiler by providing O2 separation equipment on the way of the extension of an air duct and separating O2 from the air introduced into a firing furnace to send the same into the firing furnace. CONSTITUTION:O2 separation equipment 14 for separating O2 in air to send the same into a firing furnace 1 and removing N2 from air is provided on the way of the extension of an air duct 4 and the leading end of a gas circulating duct 12 circulating a part of exhaust gas into the firing furnace 1 is connected to the air duct 4 between the O2 separation equipment 14 and the firing furnace 1. Further, SO2/CO2 liquefying equipment 15 cooling exhaust gas under pressure to liquefy SO2 and CO2 to separate them from the exhaust gas is provided on the way of the extension of a flue 10 and a combustion chamber 18 equipped with a fuel burner 17 for reheating exhaust gas is provided on the downstream side of said equipment 15. By this constitution, the generation of thermal NOx wherein N2 and O2 in air are bonded at high temp. is suppressed and the amount of exhaust gas can be reduced and, therefore, the combustion chamber 18 low in exhaust gas treatment capacity and reduced in the consumption of fuel can be adapted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、公害防止に有用な流動
床ボイラのN2O削減方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing N 2 O in a fluidized bed boiler useful for pollution prevention.

【0002】[0002]

【従来の技術】図4は従来の流動床ボイラの一例の概略
を表す側面図である。1は火炉であり、該火炉1の下部
に多数の小さい空気孔を有する空気分散板2を設け、該
空気分散板2上に流動媒体3となる不活性粒子(例えば
硅砂や石灰石など)を堆積させる。また、4は図示して
いない押込みファンにより供給される空気を前記火炉1
の下部へ導く風道である。
2. Description of the Related Art FIG. 4 is a side view schematically showing an example of a conventional fluidized bed boiler. Reference numeral 1 is a furnace, and an air dispersion plate 2 having a large number of small air holes is provided in the lower portion of the furnace 1, and inert particles (such as silica sand or limestone) serving as a fluid medium 3 are deposited on the air dispersion plate 2. Let In addition, 4 indicates the air supplied by a pushing fan (not shown) to the furnace 1
It is a wind path leading to the bottom of.

【0003】さらに、5は後部伝熱部であり、過熱器
6、節炭器7などで形成された熱交換部8を有し、該熱
交換部8の下方で煙突9へ通じる煙道10と排ガス再循
環経路11とに分岐されており、該排ガス再循環経路1
1はガス再循環ダクト12とガス再循環ファン13とで
形成され、前記風道4を介して火炉1に接続している。
なお、矢印aは排ガスの流れ方向を示す。
Further, 5 is a rear heat transfer section, which has a heat exchange section 8 formed by a superheater 6, a economizer 7, etc., and a flue 10 leading to a chimney 9 below the heat exchange section 8. And the exhaust gas recirculation route 11 and the exhaust gas recirculation route 1
Reference numeral 1 is formed of a gas recirculation duct 12 and a gas recirculation fan 13, and is connected to the furnace 1 via the air passage 4.
The arrow a indicates the flow direction of the exhaust gas.

【0004】空気分散板2上の流動媒体3を石炭の着火
温度以上に加熱し、粉炭と高温の一次空気を風道4から
火炉1内へ送入すると、前記流動媒体3の激しい動きに
よって空気と粉炭は混合され連続燃焼状態となる。而し
て、火炉1から後部伝熱部5へ流入した排ガスは、後部
伝熱部5を通過するときに過熱器6において飽和蒸気を
加熱し、節炭器7において給水を予熱するなど、熱交換
部8において熱交換され、余熱を回収された排ガスの一
部はガス再循環ファン13により吸引され、ガス再循環
ダクト12を通り風道4を経て火炉1内へ循環され、残
りの排ガスは煙道10を介して煙突9から外部へ排出さ
れる。
When the fluidized medium 3 on the air dispersion plate 2 is heated to a temperature higher than the ignition temperature of coal, and pulverized coal and high-temperature primary air are fed into the furnace 1 from the air passage 4, the fluidized medium 3 vigorously moves to generate air. And pulverized coal are mixed and become a continuous combustion state. Thus, the exhaust gas flowing from the furnace 1 into the rear heat transfer section 5 heats the saturated steam in the superheater 6 when passing through the rear heat transfer section 5, and preheats the feed water in the economizer 7. Part of the exhaust gas, which has undergone heat exchange in the exchange section 8 and whose residual heat has been recovered, is sucked by the gas recirculation fan 13, circulated through the gas recirculation duct 12 and the air passage 4 into the furnace 1, and the remaining exhaust gas is It is discharged from the chimney 9 to the outside through the flue 10.

【0005】前述の流動床ボイラは燃焼温度が低いため
に、地表面から放出される赤外線を吸収して宇宙空間に
逃げる熱を地表面に戻して気温を上昇させる温室効果性
の高いN2Oが多く発生する。
Since the fluidized-bed boiler described above has a low combustion temperature, it absorbs infrared rays emitted from the ground surface and returns the heat escaping to outer space to the ground surface to raise the temperature, so that N 2 O has a high greenhouse effect. Often occurs.

【0006】そこで、排ガスを再加熱して、一酸化二窒
素(以下N2Oと記す)を窒素(以下N2と記す)に変換
する方法や、極めて高価な触媒を用いてN2Oを処理す
る方法が提案されている。
[0006] Thus, by reheating the flue gas, dinitrogen monoxide (hereinafter referred to as N 2 O) and how to convert the nitrogen (hereinafter referred to as N 2), the N 2 O using a very expensive catalyst A method of processing has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
排ガスを再加熱させる方法では、多量の排ガスの温度を
800℃ないし1200℃まで昇温するために多量の燃
料を必要とし、不経済である。また、前述の触媒により
排ガスを処理する方法では、多量の排ガスを処理するた
めに設ける触媒を多量に要するので、経済的な負担が大
きいという問題があった。
However, the above-mentioned method of reheating exhaust gas requires a large amount of fuel to raise the temperature of a large amount of exhaust gas to 800 ° C. to 1200 ° C., which is uneconomical. Further, the above-mentioned method of treating exhaust gas with a catalyst requires a large amount of catalyst to be provided for treating a large amount of exhaust gas, and thus has a problem of a large economical burden.

【0008】本発明は、前述の実情に鑑み、火炉へ送入
する前の空気から窒素(以下N2と記す)を分離除去
し、さらに排ガスから亜硫酸ガス(以下SO2と記す)
と炭酸ガス(以下CO2と記す)とを液化除去して、排
ガスの量を数%に削減した上で、N20を処理し得る流
動床ボイラのN2O削減方法を提供することを目的とし
てなしたものである。
In view of the above-mentioned circumstances, the present invention separates and removes nitrogen (hereinafter referred to as N 2 ) from the air before it is fed into the furnace, and further, sulfurous acid gas (hereinafter referred to as SO 2 ) from the exhaust gas.
As a (hereinafter referred to as CO 2) carbon dioxide and liquefied removed, after reducing the amount of exhaust gas to a few percent, to provide a N 2 O reduction method of the fluidized bed boiler can process N 2 0 It was done as a purpose.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
め、第1の発明の流動床ボイラのN2O削減方法は、流
動床を有する火炉と後部伝熱部とを備えた流動床ボイラ
において、O2分離設備により空気中のO2を分離して火
炉へ送入し、また後部伝熱部の出側に接続された煙道を
流れる排ガスの一部を火炉へ再循環させ、残りの排ガス
を煙道の延設途中に設けたSO2/CO2液化設備により
加圧冷却することにより排ガスからSO2とCO2とを液
化分離し、前記SO2/CO2液化設備の下流側を流れる
SO2とCO2とを分離された排ガスを燃料バーナで再加
熱して排ガス中のN2OをN2などに変化させたのちに外
部へ排出する構成とし、さらに第2の発明の流動床ボイ
ラのN2O削減方法は、流動床を有する火炉と後部伝熱
部とを備えた流動床ボイラにおいて、O2分離設備によ
り空気中のO2を分離して火炉へ送入し、また後部伝熱
部の出側に接続された煙道を流れる排ガスの一部を火炉
へ再循環させ、残りの排ガスを煙道の延設途中に設けた
SO2/CO2液化設備により加圧冷却することにより排
ガスからSO2とCO2とを液化分離し、前記SO2/C
2液化設備の下流側を流れるSO2とCO2とを分離さ
れた排ガスを触媒を通し排ガス中のN2OをN2などに変
化させたのちに外部へ排出する構成としている。
In order to achieve the above object, a method for reducing N 2 O in a fluidized bed boiler according to the first invention is a fluidized bed boiler including a furnace having a fluidized bed and a rear heat transfer section. In the above, the O 2 separation equipment separates O 2 from the air into the furnace, and recirculates part of the exhaust gas flowing through the flue connected to the outlet side of the rear heat transfer section to the furnace, leaving the rest. SO 2 and CO 2 are liquefied and separated from the exhaust gas by pressurizing and cooling the exhaust gas of the exhaust gas with an SO 2 / CO 2 liquefaction equipment provided in the middle of the extension of the flue, and the downstream side of the SO 2 / CO 2 liquefaction equipment. The exhaust gas separated from the SO 2 and CO 2 flowing in the exhaust gas is reheated by the fuel burner to change N 2 O in the exhaust gas to N 2 and the like, and then exhausted to the outside. N 2 O reduction method of the fluidized bed boiler comprises a furnace and the heat recovery unit with a fluidized bed In a fluidized bed boiler, to separate the O 2 in the air by O 2 separation equipment and fed to the furnace, also recirculate part of the exhaust gas flowing in the flue connected to the outlet side of the heat recovery unit to the furnace is allowed, liquefied separates the SO 2 and CO 2 remaining exhaust gas from the exhaust gas by pressurized cooling by SO 2 / CO 2 liquefaction plant provided in extension設途flue, the SO 2 / C
The exhaust gas separated from SO 2 and CO 2 flowing on the downstream side of the O 2 liquefaction facility is passed through a catalyst to change N 2 O in the exhaust gas to N 2 and then discharged to the outside.

【0010】[0010]

【作用】従って、第1の発明では、風道を介してO2
離設備へ供給される空気をO2分離設備で処理して空気
中からO2を分離し、他を大気中へ放出することにより
2を除去し、前記O2を火炉へ送入する。また、煙道の
延設途中に設けたSO2/CO2液化設備で煙道を通って
煙突方向に流れる排ガスを加圧冷却することにより、排
ガス中からSO2とCO2とを分離する。その結果、量的
に減少した排ガスを燃焼室により昇温し排ガス中のN2
Oを削減したのち、該排ガスを外部へ排出する。
Therefore, according to the first aspect of the invention, the air supplied to the O 2 separation facility through the air passage is treated by the O 2 separation facility to separate O 2 from the air, and the other is released to the atmosphere. This removes N 2 and feeds the O 2 into the furnace. Further, by pressurized cooling the exhaust gas flowing in the stack direction through the flue in SO 2 / CO 2 liquefaction plant provided in extension設途flue separates the SO 2 and CO 2 from the exhaust gas. As a result, the exhaust gas, which has been reduced in quantity, is heated by the combustion chamber and the N 2 in the exhaust gas is increased.
After reducing O, the exhaust gas is discharged to the outside.

【0011】また、第2の発明では、第1の発明と同様
にO2を火炉へ送入し、SO2/CO2液化設備で排ガス
中からSO2とCO2とを分離する。その結果、量的に減
少した排ガス中に含まれるN2Oを触媒により処理した
のち外部へ排出する構成としている。
[0011] In the second invention, likewise the O 2 to the first invention is fed to the furnace, separating the SO 2 and CO 2 from the exhaust gas in SO 2 / CO 2 liquefaction plant. As a result, N 2 O contained in the exhaust gas, which has been reduced in quantity, is treated with a catalyst and then discharged to the outside.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は第1の発明の流動床ボイラのN2
削減方法の概略を表す側面図、図2は図1の流動床ボイ
ラのN2O削減方法に関連する液化ガスの蒸気圧曲線図
である。
FIG. 1 shows the N 2 O of the fluidized bed boiler of the first invention.
FIG. 2 is a side view showing an outline of the reduction method, and FIG. 2 is a vapor pressure curve diagram of liquefied gas related to the N 2 O reduction method of the fluidized bed boiler of FIG.

【0014】基本的構成は図4に示す従来の流動床ボイ
ラと略同様であり、図中、図4に示すものと同じものに
は同じ符号が付してある。
The basic structure is substantially the same as that of the conventional fluidized bed boiler shown in FIG. 4, and the same parts as those shown in FIG. 4 are designated by the same reference numerals.

【0015】本実施例の風道4の延設途中には、空気中
のO2を分離し、該O2を火炉1へ送入するため、O2
離設備14が設けられており、該O2分離設備14と火
炉1との間の風道4に、排ガスの一部を火炉1内へ循環
させるガス再循環ダクト12の先端を接続している。
[0015] During extension設途wind path 4 of this embodiment, the O 2 in the air is separated and to fed the O 2 to the furnace 1, and O 2 separation facility 14 is provided, the The tip of a gas recirculation duct 12 that circulates a part of the exhaust gas into the furnace 1 is connected to the air passage 4 between the O 2 separation facility 14 and the furnace 1.

【0016】また、煙道10の延設途中には、排ガス中
のSO2とCO2とを分離するために、排ガスを加圧冷却
してSO2とCO2とを液化し排ガス中から分離し得るS
2/CO2液化設備15が設けられ、該SO2/CO2
化設備15の下流側に排ガスを再加熱するための燃料バ
ーナ17を備えた燃焼室18を設けている。
During the extension of the flue 10, in order to separate SO 2 and CO 2 in the exhaust gas, the exhaust gas is pressurized and cooled to liquefy SO 2 and CO 2 and separate it from the exhaust gas. Possible S
An O 2 / CO 2 liquefaction facility 15 is provided, and a combustion chamber 18 equipped with a fuel burner 17 for reheating exhaust gas is provided downstream of the SO 2 / CO 2 liquefaction facility 15.

【0017】前記以外の構成は、図4に示す従来の流動
床ボイラの構成と変わるところがないので説明を省略す
る。
Since the configuration other than the above is the same as that of the conventional fluidized bed boiler shown in FIG. 4, its description is omitted.

【0018】次に作動について説明する。風道4を介し
てO2分離設備14へ供給される空気を、O2分離設備1
4で処理して空気中からO2を分離し、他を大気中へ放
出することによりN2を除去し、前記O2を火炉1へ送入
する。
Next, the operation will be described. The air supplied to the O 2 separation equipment 14 via the air passage 4 is supplied to the O 2 separation equipment 1
O 2 is separated from the air by treatment with 4 and N 2 is removed by releasing the other into the atmosphere, and the O 2 is fed into the furnace 1.

【0019】また、煙道10を通って煙突9方向へ流れ
る排ガスを、煙道10の延設途中に設けたSO2/CO2
液化設備15によって、図2に示す圧力と温度との条件
に適合するよう加圧冷却(例えば、圧力2Kg/cm2
下では280゜KでSO2が液化し、205゜KでCO2
が液化する)することにより、排ガス中からSO2とC
2とを分離する。その結果、排ガスは量的に数%に減
少する。燃焼室18の燃料バーナ17に点火して燃焼さ
せ、減少した排ガスを再加熱し、排ガス中のN2OをN2
などとすることによりN2Oを削減する。
The exhaust gas flowing toward the chimney 9 through the flue 10 is provided with SO 2 / CO 2 which is provided during the extension of the flue 10.
By the liquefaction facility 15, pressure cooling (for example, a pressure of 2 Kg / cm 2) is applied so that the pressure and temperature conditions shown in FIG.
Below, SO 2 liquefies at 280 ° K and CO 2 at 205 ° K.
Liquefies), so that SO 2 and C
Separated from O 2 . As a result, the exhaust gas is quantitatively reduced to several percent. The fuel burner 17 in the combustion chamber 18 is ignited and burned to reheat the reduced exhaust gas, and N 2 O in the exhaust gas is converted to N 2
By reducing the amount of N 2 O, etc.

【0020】前記によれば、風道4延設途中にO2分離
設備14を設け、火炉1へ送入する空気中からO2を分
離して前記O2を火炉1へ送入し得るように形成したの
で、空気中のN2がO2と高温化で結合するサーマルNO
xの発生が抑制され、しかも排ガス量を約1/5に削減
し得る。また、煙道10延設途中にSO2/CO2液化設
備15を設け、排ガス中のSO2とCO2とを液化分離し
得るよう形成したので、更に排ガス量を削減し得、従来
のボイラの排ガス量の僅か数%に減少した排ガスを処理
すればよいので、排ガス処理能力が低く且つ燃料の消費
量の少ない燃焼室18を適用することが可能となり、経
済的にも有利である。
According to the, the O 2 separation equipment 14 provided in the air duct 4 extending設途, as by separating the O 2 from the air to fed into the furnace 1 may fed the O 2 to the furnace 1 Having formed, thermal NO to N 2 in the air is bonded with O 2 and high temperature
Generation of x is suppressed, and the amount of exhaust gas can be reduced to about 1/5. Further, since the SO 2 / CO 2 liquefaction facility 15 is provided in the middle of the extension of the flue 10 so that SO 2 and CO 2 in the exhaust gas can be liquefied and separated, the exhaust gas amount can be further reduced and the conventional boiler can be used. Since it is only necessary to treat the exhaust gas reduced to a few% of the exhaust gas amount, it is possible to apply the combustion chamber 18 having a low exhaust gas treatment capacity and a low fuel consumption amount, which is economically advantageous.

【0021】図3は第2の発明の流動床ボイラのN2
削減方法の概略を表す側面図である。基本的構成は図1
に示す第1の発明の流動床ボイラのN2O削減方法と略
同様であり、図中、図1に示すものと同じものには同じ
符号が付してある。
FIG. 3 shows the N 2 O of the fluidized bed boiler of the second invention.
It is a side view showing the outline of the reduction method. The basic configuration is shown in Figure 1.
The method is substantially the same as the method for reducing N 2 O of the fluidized bed boiler of the first invention shown in FIG. 1, and the same parts as those shown in FIG.

【0022】第2の発明の実施例のSO2/CO2液化設
備15の下流側にN2Oを処理し得る触媒16が設けら
れている。
A catalyst 16 capable of treating N 2 O is provided downstream of the SO 2 / CO 2 liquefaction facility 15 of the second embodiment of the invention.

【0023】前記以外の構成は、図1に示す第1の発明
の流動床ボイラのN2O削減方法の構成と変わるところ
がないので説明を省略する。
The configuration other than the above is the same as that of the method for reducing N 2 O of the fluidized bed boiler of the first invention shown in FIG. 1, and therefore its explanation is omitted.

【0024】次に作動について説明する。風道4を介し
てO2分離設備14へ供給される空気を、O2分離設備1
4で処理して空気中からO2を分離し、他を大気中へ放
出することによりN2を除去し、前記O2を火炉1へ送入
する。
Next, the operation will be described. The air supplied to the O 2 separation equipment 14 via the air passage 4 is supplied to the O 2 separation equipment 1
O 2 is separated from the air by treatment with 4 and N 2 is removed by releasing the other into the atmosphere, and the O 2 is fed into the furnace 1.

【0025】また、煙道10を通って煙突9方向へ流れ
る排ガスを、煙道10の延設途中に設けたSO2/CO2
液化設備15によって、図2に示す圧力と温度との条件
に適合するよう加圧冷却(例えば、圧力2Kg/cm2
下では280゜KでSO2が液化し、205゜KでCO2
が液化する)することにより、排ガス中からSO2とC
2とを分離する。その結果、排ガスは量的に数%に減
少する。減少した排ガスを触媒16で処理することによ
り排ガス中のN2Oを削減する。
The exhaust gas flowing toward the chimney 9 through the flue 10 is replaced with SO 2 / CO 2 provided in the middle of the extension of the flue 10.
By the liquefaction facility 15, pressure cooling (for example, a pressure of 2 Kg / cm 2) is applied so that the pressure and temperature conditions shown in FIG.
Below, SO 2 liquefies at 280 ° K and CO 2 at 205 ° K.
Liquefies), so that SO 2 and C
Separated from O 2 . As a result, the exhaust gas is quantitatively reduced to several percent. By treating the reduced exhaust gas with the catalyst 16, N 2 O in the exhaust gas is reduced.

【0026】前記によれば、風道4延設途中にO2分離
設備14を設け、火炉1へ送入する空気中からO2を分
離して前記O2を火炉1へ送入し得るように形成したの
で、空気中のN2がO2と高温化で結合するサーマルNO
xの発生が抑制され、しかも排ガス量を約1/5に削減
し得る。また、煙道10延設途中にSO2/CO2液化設
備15を設け、排ガス中のSO2とCO2とを液化分離し
得るよう形成したので、更に排ガス量を削減し得、従来
のボイラの排ガス量の僅か数%に減少した排ガスを処理
すればよいので、排ガス処理能力が低く且つ量の少ない
触媒16を適用するることが可能となり、経済的にも有
利である。
According to the, the O 2 separation equipment 14 provided in the air duct 4 extending設途, as by separating the O 2 from the air to fed into the furnace 1 may fed the O 2 to the furnace 1 Having formed, thermal NO to N 2 in the air is bonded with O 2 and high temperature
Generation of x is suppressed, and the amount of exhaust gas can be reduced to about 1/5. Further, since the SO 2 / CO 2 liquefaction facility 15 is provided in the middle of the extension of the flue 10 so that the SO 2 and CO 2 in the exhaust gas can be liquefied and separated, the exhaust gas amount can be further reduced and the conventional boiler can be used. Since it is only necessary to treat the exhaust gas reduced to a few percent of the exhaust gas amount, it is possible to apply the catalyst 16 having a low exhaust gas treatment capacity and a small amount, which is economically advantageous.

【0027】なお、本発明は前述の実施例にのみ限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0028】[0028]

【発明の効果】本発明の流動床ボイラのN2O削減方法
によれば、下記のごとき種々の優れた効果を奏し得る。
According to the method for reducing N 2 O of the fluidized bed boiler of the present invention, various excellent effects as described below can be obtained.

【0029】I)風道延設途中にO2分離設備を設け、
火炉へ送入する空気中からO2を分離して該O2を火炉へ
送入し得るように形成したので、空気中のN2がO2と高
温化で結合するサーマルNOxの発生を抑制でき、しか
も排ガス量を約1/5に削減し得る。
I) An O 2 separation facility is provided in the middle of the extension of the air duct,
Since O 2 was separated from the air fed into the furnace and the O 2 was formed so as to be fed into the furnace, the generation of thermal NO x , which combines N 2 in the air with O 2 at a high temperature, is generated. It can be suppressed, and the amount of exhaust gas can be reduced to about 1/5.

【0030】II)さらに、煙道延設途中にSO2/C
2液化設備を設け、排ガス中のSO2とCO2とを液化
分離し得るよう形成したので、排ガス量を数%に減少で
きるため、第1の発明では、排ガスを再加熱するため燃
料バーナにより消費される燃料が少なくて済み、第2の
発明では処理しなければならない排ガス量に対応して具
備する触媒の量が少なくて済み、いずれも経済的にも有
用である。
II) Furthermore, SO 2 / C is added during the extension of the flue.
Since the O 2 liquefaction facility is provided so that SO 2 and CO 2 in the exhaust gas can be liquefied and separated, the amount of the exhaust gas can be reduced to several percent. Therefore, in the first invention, the fuel burner is reheated to reheat the exhaust gas. As a result, the amount of fuel consumed is small, and the second invention requires only a small amount of catalyst to be provided according to the amount of exhaust gas that must be treated, and both are economically useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の流動床ボイラのN2O削減方法の
概略を表す側面図である。
FIG. 1 is a side view showing an outline of a method for reducing N 2 O of a fluidized bed boiler of a first invention.

【図2】図1の流動床ボイラのN2O削減方法に関連す
る液化ガスの蒸気圧曲線図である。
FIG. 2 is a vapor pressure curve diagram of a liquefied gas related to the N 2 O reduction method of the fluidized bed boiler of FIG.

【図3】第2の発明の流動床ボイラのN2O削減方法の
概略を表す側面図である。
FIG. 3 is a side view showing an outline of a method for reducing N 2 O in a fluidized bed boiler of the second invention.

【図4】従来の流動床ボイラの一例の概略を表す側面図
である。
FIG. 4 is a side view schematically showing an example of a conventional fluidized bed boiler.

【符号の説明】[Explanation of symbols]

1 火炉 4 風道 5 後部伝熱部 9 煙突 10 煙道 12 ガス再循環ダクト 13 ガス再循環ファン 14 O2分離設備 15 SO2/CO2液化設備 16 触媒 17 燃料バーナ1 Furnace 4 Airway 5 Rear Heat Transfer Section 9 Chimney 10 Flue 12 Gas Recirculation Duct 13 Gas Recirculation Fan 14 O 2 Separation Equipment 15 SO 2 / CO 2 Liquefaction Equipment 16 Catalyst 17 Fuel Burner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 氣駕 尚志 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoshi Kimura 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toyosu General Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流動床を有する火炉と後部伝熱部とを備
えた流動床ボイラにおいて、O2分離設備により空気中
のO2を分離して火炉へ送入し、また後部伝熱部の出側
に接続された煙道を流れる排ガスの一部を火炉へ再循環
させ、残りの排ガスを煙道の延設途中に設けたSO2
CO2液化設備により加圧冷却することにより排ガスか
らSO2とCO2とを液化分離し、前記SO2/CO2液化
設備の下流側を流れるSO2とCO2とを分離された排ガ
スを燃料バーナで再加熱して排ガス中のN2OをN2など
に変化させたのちに外部へ排出することを特徴とする流
動床ボイラのN2O削減方法。
1. A fluidized bed boiler comprising a furnace and the heat recovery unit with a fluidized bed, separating the O 2 in the air fed to the furnace by O 2 separation equipment, also in the heat recovery area Part of the exhaust gas flowing through the flue connected to the outlet side is recirculated to the furnace, and the remaining exhaust gas is SO 2 /
CO 2 liquefaction plant by liquefying separation of SO 2 and CO 2 from the exhaust gas by cooling under pressure, the fuel exhaust gas, which is separated and SO 2 and CO 2 flowing through the downstream side of the SO 2 / CO 2 liquefaction plant A method for reducing N 2 O in a fluidized bed boiler, which comprises reheating with a burner to convert N 2 O in exhaust gas into N 2 and the like, and then discharging the N 2 O to the outside.
【請求項2】 流動床を有する火炉と後部伝熱部とを備
えた流動床ボイラにおいて、O2分離設備により空気中
のO2を分離して火炉へ送入し、また後部伝熱部の出側
に接続された煙道を流れる排ガスの一部を火炉へ再循環
させ、残りの排ガスを煙道の延設途中に設けたSO2
CO2液化設備により加圧冷却することにより排ガスか
らSO2とCO2とを液化分離し、前記SO2/CO2液化
設備の下流側を流れるSO2とCO2とを分離された排ガ
スを触媒を通し排ガス中のN2OをN2などに変化させた
のちに外部へ排出することを特徴とする流動床ボイラの
2O削減方法。
2. A fluidized bed boiler comprising a furnace and the heat recovery unit with a fluidized bed, separating the O 2 in the air fed to the furnace by O 2 separation equipment, also in the heat recovery area Part of the exhaust gas flowing through the flue connected to the outlet side is recirculated to the furnace, and the remaining exhaust gas is SO 2 /
The SO 2 and CO 2 liquefied separated from the exhaust gas by pressurized cooling by CO 2 liquefaction plant, the catalyst the SO 2 / CO 2 liquefaction plant flue gas are separated and SO 2 and CO 2 flowing through the downstream side of A method for reducing N 2 O in a fluidized bed boiler, which comprises converting N 2 O in the exhaust gas to N 2 etc. through exhaust gas and then discharging it to the outside.
JP3355240A 1991-12-20 1991-12-20 Reducing method for n2o of fluidized bed boiler Pending JPH05172308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355240A JPH05172308A (en) 1991-12-20 1991-12-20 Reducing method for n2o of fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355240A JPH05172308A (en) 1991-12-20 1991-12-20 Reducing method for n2o of fluidized bed boiler

Publications (1)

Publication Number Publication Date
JPH05172308A true JPH05172308A (en) 1993-07-09

Family

ID=18442783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355240A Pending JPH05172308A (en) 1991-12-20 1991-12-20 Reducing method for n2o of fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH05172308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788267B1 (en) * 2005-08-01 2007-12-27 고일영 Exhaust Gas Combustor of Recycled Polyethylene Melter
US20110290162A1 (en) * 2009-01-22 2011-12-01 Yeong Min Jeon Carbon treatment system for supplying decomposition heat to waste tires

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788267B1 (en) * 2005-08-01 2007-12-27 고일영 Exhaust Gas Combustor of Recycled Polyethylene Melter
US20110290162A1 (en) * 2009-01-22 2011-12-01 Yeong Min Jeon Carbon treatment system for supplying decomposition heat to waste tires

Similar Documents

Publication Publication Date Title
US8196532B2 (en) Air-fired CO2 capture ready circulating fluidized bed heat generation with a reactor subsystem
US6505567B1 (en) Oxygen fired circulating fluidized bed steam generator
US4543110A (en) Method and plant for reheating flue gases behind a wet flue-gas desulfurization plant
US5911956A (en) Method of purifying gases containing nitrogen oxides and an apparatus for purifying gases in a steam generation boiler
US4223529A (en) Combined cycle power plant with pressurized fluidized bed combustor
CA2733244C (en) Combustion system with steam or water injection
US20140065559A1 (en) Pressurized oxy-combustion power boiler and power plant and method of operating the same
KR20110010731A (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
JP2019520543A (en) Method and system for improving the efficiency of a boiler
JPH05231609A (en) Combustion device and operating method thereof
KR101495087B1 (en) Combustion system
CA2760959C (en) Oxygen fired steam generator
JP3038073B2 (en) How to reduce N2O in fluidized bed boilers
JPH05500848A (en) Power plants and methods of renovating existing power plants
US11850550B2 (en) Arrangement for and a method of operating a steam boiler system
JPH05172308A (en) Reducing method for n2o of fluidized bed boiler
US5435123A (en) Environmentally acceptable electric energy generation process and plant
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
JPS63218797A (en) Drying of coal
JPH10332134A (en) Production of reformed coal and equipment therefor
JP2662633B2 (en) Cooling method of pressurized fluidized bed boiler combustion ash
JP2554135B2 (en) Method and apparatus for recirculating byproduct gas in coke dry fire extinguishing equipment
JPH0599566A (en) So2/c02 simultaneous removal device for boiler
JPH04101005A (en) Steam turbine type power generator
JPH06918B2 (en) Cooling method for heat-treated coal