JPH05172102A - Control method for flow adjusting valve equipped in parallel - Google Patents

Control method for flow adjusting valve equipped in parallel

Info

Publication number
JPH05172102A
JPH05172102A JP3337121A JP33712191A JPH05172102A JP H05172102 A JPH05172102 A JP H05172102A JP 3337121 A JP3337121 A JP 3337121A JP 33712191 A JP33712191 A JP 33712191A JP H05172102 A JPH05172102 A JP H05172102A
Authority
JP
Japan
Prior art keywords
valve
control
flow rate
control valve
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3337121A
Other languages
Japanese (ja)
Inventor
Kenji Tojo
健司 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3337121A priority Critical patent/JPH05172102A/en
Publication of JPH05172102A publication Critical patent/JPH05172102A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel

Abstract

PURPOSE:To reversibly change over a small type flow adjusting valve and a large type flow adjusting valve to adjust flow of fluid without generating hunting and the like at the time of changing over flow control. CONSTITUTION:Valve openings of a small type flow adjusting valve 1v and a large type flow adjusting valve 2v interposed in a first pipe passage 1 and a second pipe passage 2 can be opened and closed in a range of 0-100% by respective positioners 1p, 2p. When the upper limit of the small type flow adjusting valve 1v is detected by the upper limit switch LS1, the large type flow adjusting valve 2v in a closing state is gradually opened to be transferred to control the large type flow adjusting valve 2v at the opening exceeding the flow control impossible range. In the opposite way, when the lower limit of the large type flow control valve 2v is detected by the lower limit switch LS2, the large type flow adjusting valve 2v is gradually closed to be transferred to control by only the small type flow adjusting valve 1v. It is thereby possible to adjust flow of fluid at the range avoiding the flow control impossible range of the large type flow adjusting valve 2v.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弁の開度を制御する弁
の制御方法に関し、より詳しくは、化学プラント,ボイ
ラ等における並設した管路にそれぞれ介装される流量調
節弁の弁開度を制御して流体の流量を制御する並設流量
調節弁の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve control method for controlling the opening degree of a valve, and more particularly, a valve of a flow control valve installed in each of parallel pipelines in a chemical plant, a boiler or the like. The present invention relates to a method for controlling a parallel flow rate control valve that controls the opening to control the flow rate of fluid.

【0002】[0002]

【従来の技術】例えば、1つの調節器から出力される弁
ポジショナーへの入力信号を2分割して、この弁ポジシ
ョナーによって、2分割した上記入力信号の一方によっ
て一方の流量調節弁の開度を制御し、また他方によって
他の流量調節弁の開度を制御するようにした、いわゆる
スプリットレンジ制御方法と呼ばれる並設した流量調節
弁の制御方法が知られている。
2. Description of the Related Art For example, an input signal to a valve positioner output from one regulator is divided into two, and this valve positioner controls the opening of one flow control valve by one of the two divided input signals. There is known a control method of juxtaposed flow control valves, which is a so-called split range control method, in which the control is performed and the opening of another flow control valve is controlled by the other.

【0003】先ず、このようなスプリットレンジ制御方
法の例を、その制御系統図の図4と、小型流量調節弁の
ストリップレンジ特性図の図5aと、大型流量調節弁の
ストリップレンジ特性図の図5bと、ストリップレンジ
制御方法による弁容量変化説明図の図5cとを参照しな
がら以下に説明すると、図4に示す符号1,2はある位
置で分岐すると共に、その下流側において合流する第
1,第2管路であり、これら第1管路1と第2管路2の
うち、一方の第1管路1には小容量の小型流量調節弁1
vが、また他方の第2管路2には小型流量調節弁1vよ
りも大容量の大型流量調節弁2vがそれぞれ介装されて
いる。
First, an example of such a split range control method is shown in FIG. 4 of its control system diagram, FIG. 5a of a strip range characteristic diagram of a small flow control valve, and a strip range characteristic diagram of a large flow control valve. 5b and FIG. 5c which is an explanatory diagram of the valve capacity change according to the strip range control method, the description will be made below. The reference numerals 1 and 2 shown in FIG. 4 branch at a certain position and merge at the downstream side thereof. , The second conduit, and of the first conduit 1 and the second conduit 2, one of the first conduits 1 has a small capacity small flow rate control valve 1
v, and the second flow path 2 on the other side is provided with a large flow rate control valve 2v having a larger capacity than the small flow rate control valve 1v.

【0004】上記小型流量調節弁1vは、調節計3から
の入力信号を0〜50%の間で作動するように設定され
たポジショナーからの制御信号によってその開度が、図
5aに示すように、0〜100%の間で制御され、また
大型流量調節弁2vは上記調節計3からの入力信号を5
0%を超え100%の間で作動するように設定されたポ
ジショナーからの制御信号によってその開度が、図5b
に示すように、0〜100%の間で制御されるようにな
っている。
The opening of the small flow rate control valve 1v is controlled by a control signal from a positioner which is set so as to operate the input signal from the controller 3 between 0 and 50%, as shown in FIG. 5a. , 0 to 100%, and the large flow rate control valve 2v receives the input signal from the controller 3 by 5
The opening is controlled by the control signal from the positioner set to operate between 0% and 100%, as shown in FIG.
As shown in, the control is performed between 0 and 100%.

【0005】従って、図5cに示すように、調節計3か
らの入力信号が0〜50%の間は小型流量調節弁1vが
制御され、そして入力信号が50%を超えると小型流量
調節弁1vの開度は100%で維持され続けると共に、
大型流量調節弁2vが制御され、入力信号の50%を境
として小型流量調節弁1vの制御から大型流量調節弁2
vの制御に切り換えられて、弁容量が変化するので、第
1管路1と第2管路2の合流部位から下流側に流される
流体の流量が加減される。
Therefore, as shown in FIG. 5c, the small flow rate control valve 1v is controlled when the input signal from the controller 3 is 0 to 50%, and when the input signal exceeds 50%, the small flow rate control valve 1v is controlled. The opening degree of is maintained at 100%,
The large flow rate control valve 2v is controlled, and the control of the small flow rate control valve 1v is started from the control of the small flow rate control valve 1v with 50% of the input signal as a boundary.
Since the valve capacity is changed by switching to the v control, the flow rate of the fluid flowing downstream from the confluence of the first conduit 1 and the second conduit 2 is adjusted.

【0006】[0006]

【発明が解決しようとする課題】ところが、図5a,5
b,5cの各図において破線で示すように、流量調節弁
自体の開度が小さい領域において流量制御不能領域があ
る。そして、この領域でのフィードバック調節制御では
流量調節弁がハンチング現象を起こしてしまうので、調
節計による流量調節弁の弁開度制御によっては流体の流
量を正しく制御することができない。
However, as shown in FIGS.
As indicated by a broken line in each of the drawings b and 5c, there is a flow control uncontrollable region in a region where the opening degree of the flow control valve itself is small. In the feedback adjustment control in this region, the flow control valve causes a hunting phenomenon, so that the flow rate of the fluid cannot be correctly controlled by the valve opening control of the flow control valve by the controller.

【0007】より詳しくは、流量調節弁が小開度の場合
には制御の連続性がなくなってON−OFF状態になる
ので、上記のようにスプリットレンジ制御において2台
の流量調節弁を制御するようにしても、大型流量調節弁
の小開度領域における流量制御不能領域がなくなってし
まうわけではなく、上記従来例の場合には、図5に示す
ように、入力信号の50%の近傍で流体の流量制御がで
きなくなってしまう。
More specifically, when the flow rate control valves have a small opening, the control continuity is lost and the ON-OFF state occurs, so that the two flow rate control valves are controlled in the split range control as described above. Even if it does so, the flow control uncontrollable region in the small opening region of the large flow control valve does not disappear, and in the case of the above-mentioned conventional example, as shown in FIG. 5, in the vicinity of 50% of the input signal. The flow rate of the fluid cannot be controlled.

【0008】従って、本発明の目的とするところは、小
型流量調節弁から大型流量調節弁へ、また逆に大型流量
調節弁から小型流量調節弁への制御切替え時に、ハンチ
ングを起こすことなく安定して流体の流量を調節し得る
並設流量調節弁の制御方法を提供するにある。
Therefore, an object of the present invention is to stabilize the control without switching from a small flow control valve to a large flow control valve and vice versa when switching control from a large flow control valve to a small flow control valve. Another object of the present invention is to provide a control method for a parallel flow rate control valve capable of adjusting the flow rate of a fluid.

【0009】[0009]

【課題を解決するための手段】本発明は上記実情に鑑み
てなされたものであって、従って本発明に係る並設流量
調節弁の制御方法の要旨は、一方に大容量の大型流量調
節弁が、また他方に該大型流量調節弁の容量より小容量
の小型流量調節弁がそれぞれ介装されてなる管路の合流
点の流体の流量を、これら大・小型流量調節弁の弁開度
を加減して制御する並設流量調節弁の制御方法におい
て、前記大・小型流量調節弁のそれぞれの制御域を設定
する弁ポジショナーにより全領域間で制御作動可能と
し、小型流量調節弁での制御中に該小型流量調節弁が上
限開度になったとき、閉弁中の大型流量調節弁を漸次強
制開弁し、該大型流量調節弁の開度が流量制御不能開度
以上になった後に大型流量調節弁の制御に移行する一
方、該大型流量調節弁での制御中に大型流量調節弁が下
限開度になったときに、該大型流量調節弁を漸次強制閉
弁することにより小型流量調節弁のみの制御に移行する
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. Therefore, the gist of the control method for a parallel flow control valve according to the present invention is, on the one hand, a large-capacity large flow control valve. On the other hand, on the other hand, the flow rate of the fluid at the confluence of the small flow control valves having a smaller capacity than the capacity of the large flow control valve is inserted, In the control method of parallel flow rate control valves that control by adjusting, the valve positioner that sets each control area of the large and small flow rate control valves enables control operation in all areas, and control by the small flow rate control valve When the small flow rate control valve reaches the upper limit opening, the large flow rate control valve that is closed is gradually and forcefully opened, and the large flow rate control valve is opened after the opening becomes equal to or larger than the flow control uncontrollable opening degree. While shifting to the control of the flow rate control valve, When large flow control valve in the control becomes lower opening, characterized in that it shifts to the control of small flow regulating valve only by gradually forcing close the large-sized flow control valve.

【0010】[0010]

【作用】本発明に係る並設流量調節弁の制御方法によれ
ば、大・小型流量調節弁は何れも弁ポジショナーにより
開度が全領域間で制御作動可能であるため、小型流量調
節弁での制御中に該小型流量調節弁が上限開度になった
とき、閉弁中の大型流量調節弁が漸次強制開弁される一
方、該大型流量調節弁の開弁程度に応じて小型流量調節
弁が閉弁され、大型流量調節弁がその流量制御不能開度
よりも弁開度が大きくなった後に、小型流量調節弁の制
御から大型流量調節弁の制御に切り換えられる。この
時、小型流量調節弁も同時に同じ制御信号を受けるの
で、大型流量調節弁と同じ開度で作動するが、小型流量
調節弁は小容量であるため、実質的には大型流量調節弁
の制御に切替えられたことになる。
According to the method for controlling a parallel flow rate control valve according to the present invention, both the large and small flow rate control valves can be controlled by the valve positioner so that the degree of opening can be controlled in all regions. When the small flow rate control valve reaches the upper limit opening during the control, the large flow rate control valve that is closed is gradually opened while the small flow rate control valve is opened according to the degree of opening of the large flow rate control valve. After the valve is closed and the valve opening of the large flow control valve becomes larger than the flow control uncontrollable opening, the control of the small flow control valve is switched to the control of the large flow control valve. At this time, the small flow rate control valve also receives the same control signal at the same time, so it operates at the same opening as the large flow rate control valve, but since the small flow rate control valve has a small capacity, it actually controls the large flow rate control valve. Has been switched to.

【0011】また、逆に大型流量調節弁での制御中に大
型流量調節弁が下限開度になったとき、大型流量調節弁
が漸次強制閉弁されることにより小型流量調節弁の制御
のみに切替えられ、小型流量調節弁は調節計の調節動作
により、強制閉弁される大型流量調節弁の流量を補って
自動的に大開度となり制御される。
On the contrary, when the large flow rate control valve reaches the lower limit opening during the control by the large flow rate control valve, the large flow rate control valve is gradually and forcibly closed so that only the small flow rate control valve is controlled. The small flow rate control valve is switched to a large opening automatically by the adjustment operation of the controller to compensate for the flow rate of the large flow rate control valve that is forcibly closed.

【0012】[0012]

【実施例】以下、本発明に係る実施例を、並設流量調節
弁の制御系統図の図1と、大型流量調節弁信号切替スイ
ッチ回路図の図2と、並設流量調節弁の開度検出要領説
明図の図3とを参照しながら、従来と同一のものならび
に同一機能を有するものを同一符号を以て説明する。
Embodiments of the present invention will be described below with reference to FIG. 1 of a control system diagram of a parallel flow rate control valve, FIG. 2 of a large flow rate control valve signal changeover switch circuit diagram, and opening degree of a parallel flow rate control valve. With reference to FIG. 3 which is an explanatory diagram of the detection procedure, the same parts and those having the same function as those of the conventional one will be described with the same reference numerals.

【0013】即ち、従来と同様に、符号1,2はある位
置で分岐し、その下流側で合流する第1,第2管路であ
って、これら第1管路1と第2管路2のうち、一方の第
1管路1には小容量の小型流量調節弁(以下、小型弁と
いう)1vが、また他方の第2管路2には小型弁1vよ
りも大容量の大型流量調節弁(以下、大型弁という)2
vがそれぞれ介装されている。
That is, as in the prior art, reference numerals 1 and 2 are first and second pipelines that branch at a certain position and join at the downstream side thereof, and the first pipeline 1 and the second pipeline 2 respectively. Among them, a small capacity small flow rate control valve (hereinafter referred to as a small valve) 1v is provided in one first pipeline 1 and a large capacity flow control with a larger capacity than the small valve 1v is provided in the other second pipeline 2. Valve (hereinafter referred to as large valve) 2
v are respectively interposed.

【0014】上記小型弁1vには、この小型弁1vの上
限開度を検出する上限開度検出用リミットスイッチLS
1 が付設され、また大型弁2vには、この大型弁2vに
よる流量制御可能な下限開度で作動する下限開度検出用
リミットスイッチLS2 が付設されている。
The small valve 1v includes an upper limit opening detecting limit switch LS for detecting an upper limit opening of the small valve 1v.
1 is attached, also a large valve 2v, the lower limit opening detecting limit switch LS 2 for operating at a flow rate controllable lower opening by the large valve 2v is attached.

【0015】さらに、小型弁1vには、調節計3からの
入力信号により0〜100%の間で作動するように設定
され、この小型弁1vの開度を0〜100%の間で制御
する小型弁用ポジショナー1pが設けられている。ま
た、大型弁2vには調節計3からの入力信号により、こ
の大型弁2vを流量制御可能な下限開度から上限開度の
間で流体の流量を制御する大型弁用ポジショナー2pが
設けられているが、調節計3と大型弁用ポジショナー2
pの間には、この調節計3から出力される調節計出力信
号を切替えする、後述する構成になる切替回路4が介装
されている。
Further, the small valve 1v is set to operate between 0 and 100% by an input signal from the controller 3, and the opening degree of the small valve 1v is controlled between 0 and 100%. A small valve positioner 1p is provided. Further, the large valve 2v is provided with a large valve positioner 2p for controlling the flow rate of the fluid between the lower limit opening and the upper limit opening capable of controlling the flow rate of the large valve 2v by an input signal from the controller 3. There is a controller 3 and a positioner for large valves 2
A switching circuit 4 for switching the controller output signal output from the controller 3 is interposed between p and p.

【0016】上記切替回路4の詳細は、上記調節計3か
ら出力される調節計出力信号が入力され、AとBの2つ
の切替位置を有する切替スイッチ41と、この切替スイ
ッチ41の一方の端子Aからの出力信号が入力され、そ
の出力を大型弁用ポジショナー2pに入力する信号漸次
発生器42と、この切替スイッチ41の他方の端子Bか
らの出力信号が入力され、その出力を同大型弁用ポジシ
ョナー2pに入力する信号漸次停止器43とからなり、
調節計出力信号が切替スイッチ41のA位置かB位置へ
の切替えによって信号漸次発生器42か、信号漸次停止
器43かに入力されるようになっている。
For details of the changeover circuit 4, a changeover switch 41 to which the output signal of the controller outputted from the controller 3 is inputted and which has two switching positions A and B, and one terminal of the changeover switch 41. An output signal from A is input, and a signal gradual generator 42 that inputs the output to the large valve positioner 2p and an output signal from the other terminal B of the changeover switch 41 are input, and the output is the same as the large valve. And a signal gradual stop 43 input to the positioner 2p for
The controller output signal is inputted to the signal gradual generator 42 or the signal gradual stop 43 by switching the changeover switch 41 to the A position or the B position.

【0017】上記信号漸次発生器42は、切替スイッチ
41の切替えによって調節計出力信号が入力されると、
この出力信号の値をt時間かかって次第に入力される調
節計出力信号と同値に近づけ、t時間経過以内はその後
変化した調節計出力信号と同値となった時に、またt時
間経過以降は直ちに調節計出力信号と同値の出力を大型
弁用ポジショナー2pに出力し続けるものであり、また
信号漸次停止器43は、入力された調節計出力信号を逆
にt時間かかってゼロに近づけ、t時間経過以降はゼロ
出力を大型弁用ポジショナー2pに出力し続けるもので
ある。
The signal gradual generator 42 receives the controller output signal when the selector switch 41 is switched,
The value of this output signal approaches the same value as that of the controller output signal that is input gradually after t hours, and within the time of t time, when it becomes the same value as the changed controller output signal, and after t time, adjust immediately. The output of the same value as the meter output signal is continuously output to the large-valve positioner 2p, and the signal gradual stop unit 43 reversely takes the inputted controller output signal to zero for about t hours and elapses t time. After that, zero output is continuously output to the large valve positioner 2p.

【0018】ところで、切替位置AとBとを有する上記
切替スイッチ41は、図2に示すような大型弁信号切替
スイッチ回路によって切替えられる。即ち、このスイッ
チ回路の構成は、上限開度検出用リミットスイッチLS
1 と下限開度検出用リミットスイッチLS2 とリレーR
およびタイマーTが介装されている。
By the way, the changeover switch 41 having the changeover positions A and B is changed over by a large valve signal changeover switch circuit as shown in FIG. That is, the configuration of this switch circuit is such that the upper limit opening detection limit switch LS
1 and limit switch for lower limit opening detection LS 2 and relay R
And a timer T is interposed.

【0019】その動作は先ず、小流量で小型弁1vの制
御域における流量調節に際しては、リレーRは非励磁で
あり、切替スイッチ41は端子B側に切替えられてお
り、大型弁2vは全閉になっている。自動調節により必
要流量が増してくると、調節計出力信号は大きくなり、
図3に示すように、小型制御弁1vにより上限開度検出
用リミットスイッチLS1 が作動され、リレーRが非励
磁であるが故にタイマーTも非励磁でタイマーTの接点
1 は閉じているため、リレーRが励磁される。即ち、
切替スイッチ41は端子A側に切替えられる。
The operation is as follows. When adjusting the flow rate in the control range of the small valve 1v with a small flow rate, the relay R is de-energized, the changeover switch 41 is switched to the terminal B side, and the large valve 2v is fully closed. It has become. As the required flow rate increases due to automatic adjustment, the controller output signal increases,
As shown in FIG. 3, the small control valve 1v actuates the upper limit opening detecting limit switch LS 1 and the relay R is de-energized so that the timer T is also de-energized and the contact T 1 of the timer T is closed. Therefore, the relay R is excited. That is,
The changeover switch 41 is switched to the terminal A side.

【0020】すると、信号漸次発生器42により大型弁
2vの開弁が開始され、制御不能域を通過して信号漸次
発生器42からの出力増に応じて開度が大きくなってく
るが、大型弁2vは強制漸次開弁でありフィードバック
されていないため、大型弁2vを通って流れる流体の流
量は安定した状態で少しづつ増量される。
Then, the large signal valve 2v is started to be opened by the signal gradual generator 42, and the opening degree increases as the output from the signal gradual generator 42 passes through the uncontrollable region. Since the valve 2v is forcibly and gradually opened and is not fed back, the flow rate of the fluid flowing through the large valve 2v is gradually increased in a stable state.

【0021】一方、調節計3はこの増量分を保障するた
めに、調節計出力信号を次第に下げるので、小型弁1v
の開度が次第に小さくなり、そしてt時間以内に小型弁
1vと大型弁2vへの入力信号が同値になるか、または
t時間経過すると、信号漸次発生器42の入力と同一に
なるため、制御は大型弁2vに移行する。この場合、第
1管路1と第2管路2の合流点の流体の流量は、小型弁
1vと大型弁2vとから流出する流体の合計量となる。
On the other hand, since the controller 3 gradually lowers the controller output signal in order to guarantee this increase, the small valve 1v
Is gradually decreased, and the input signals to the small valve 1v and the large valve 2v become the same value within the time t, or when the time t has elapsed, the input becomes the same as the input of the signal gradual generator 42. Moves to the large valve 2v. In this case, the flow rate of the fluid at the confluence of the first conduit 1 and the second conduit 2 is the total amount of the fluid flowing out from the small valve 1v and the large valve 2v.

【0022】しかし、このとき、大型弁2vの開度がま
だ制御不能域にある場合には、図3に示すように、リミ
ットスイッチLS2 がまだ作動したままであるため、図
2に示すように、t時間経過によりタイマーTの接点T
1 が離れることによって、リレーRは非励磁状態にな
る。これは切替えスイッチ41が端子B側に戻ることで
あり、小型弁1vの制御が引続いて行われることであ
る。この効果は、大型弁制御不能領域では大型弁2vに
制御を移さないことにある。
However, at this time, when the opening degree of the large valve 2v is still in the uncontrollable range, as shown in FIG. 3, the limit switch LS 2 is still in operation, and therefore, as shown in FIG. In addition, the contact point T of the timer T becomes
When 1 is separated, the relay R is in the non-excited state. This is that the changeover switch 41 returns to the terminal B side, and the control of the small valve 1v is continuously performed. The effect is that control is not transferred to the large valve 2v in the large valve uncontrollable region.

【0023】次に、調節計3の出力が減少して必要流量
が少なくなって、大型弁2vによって下限開度検出用リ
ミットスイッチLS2 が作動されると、図2より、接点
1 は既に離れているためリミットスイッチLS2 も接
点が離れることにより、リレーRが消磁され、切替スイ
ッチ41は端子B側に切替えられる。
Next, when there are fewer active required flow rate output adjusting meter 3 is decreased, the lower limit opening detecting limit switch LS 2 is actuated by a large valve 2v, from FIG. 2, the contact T 1 already Since the contacts of the limit switch LS 2 are also separated because they are separated, the relay R is demagnetized and the changeover switch 41 is changed over to the terminal B side.

【0024】すると、信号漸次停止器43の作動により
大型弁2vはゆっくりとt時間かけて全閉方向に作動
し、一方大型弁2vの閉弁動作に伴う流量減を補うべ
く、調節計3は調節計出力信号値を大きくして行く。そ
して、t時間後には信号漸次停止器43からの出力信号
がゼロになるので大型弁2vが全閉されると共に、小型
弁1vのみの制御になる。
Then, due to the operation of the signal gradual stop 43, the large valve 2v slowly operates in the fully closing direction over a period of t hours, while the controller 3 operates in order to compensate for the flow reduction due to the closing operation of the large valve 2v. Increase the controller output signal value. Then, after t time, the output signal from the signal gradual stop 43 becomes zero, so that the large valve 2v is fully closed and only the small valve 1v is controlled.

【0025】このように、大型弁2vの流量制御不能領
域をゆっくりと通過させながら、この流量制御不能領域
を超えた領域で小型弁1vの制御から大型弁2vの並列
制御に、また大型弁2vの制御から小型弁1vのみの制
御に切替えられるので、プロセスの調節動作を中断させ
ることなく安定した流量制御が行える。
As described above, while slowly passing through the flow control uncontrollable region of the large valve 2v, in the region beyond the flow control uncontrollable region, the control of the small valve 1v is changed to the parallel control of the large valve 2v and the large valve 2v. Since the control is switched to the control of only the small valve 1v, stable flow rate control can be performed without interrupting the process adjusting operation.

【0026】なお、以上では、小型弁1vの上限開度を
検出し、大型弁2vの下限開度を検出するのにリミット
スイッチLS1 ,LS2 を用いた例を説明したが、例え
ば各ポジショナへーの入力信号から、その上限値と下限
値とを調節弁の開上限,閉下限の信号として取出すこと
により、全て電気信号範囲内で制御することも可能であ
る。
In the above description, the limit switches LS 1 and LS 2 are used to detect the upper limit opening of the small valve 1v and the lower limit opening of the large valve 2v. It is also possible to control all within the electric signal range by extracting the upper limit value and the lower limit value from the input signal to the head as signals of the open upper limit and closed lower limit of the control valve.

【0027】[0027]

【発明の効果】以上詳述したように、本発明に係る並設
流量調節弁の制御方法によれば、小型弁での制御中に該
小型弁が上限開度になったとき、閉弁されている大型弁
が漸次強制開弁されて、流量制御不能領域を超えた弁開
度以上の位置で大型弁の制御に移行され、また逆に大型
弁での制御中に大型弁が下限開度になったとき、大型弁
が漸次強制閉弁されることによって小型弁制御に切り換
えられるので、流量制御不能領域における流体の流量制
御が回避され、従来のように小型弁から大型弁へ、また
逆に大型弁から小型弁への制御切替え時に、ハンチング
を起こすようなことがなくなり、安定した流体の流量制
御が可能になり、化学プラント,ボイラ等の運転安定性
の向上に対して極めて多大な効果がある。
As described above in detail, according to the control method of the parallel flow rate control valve according to the present invention, when the small valve reaches the upper limit opening during the control by the small valve, the valve is closed. The large valve is forcibly opened gradually, and control is transferred to the large valve at a position above the valve opening that exceeds the flow control uncontrollable range.Conversely, the large valve opens the lower limit opening during control with the large valve. In this case, the large valve is gradually closed forcibly to switch to the small valve control, which avoids the flow control of the fluid in the region where the flow control is not possible, and changes from the small valve to the large valve and vice versa. When switching the control from a large valve to a small valve, hunting does not occur, stable flow rate control of fluid is possible, and it is extremely effective for improving the operational stability of chemical plants, boilers, etc. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る並設流量調節弁の制御系
統図である。
FIG. 1 is a control system diagram of a parallel flow rate control valve according to an embodiment of the present invention.

【図2】本発明の実施例に係る大型弁信号切替スイッチ
回路図である。
FIG. 2 is a circuit diagram of a large valve signal changeover switch circuit according to an embodiment of the present invention.

【図3】本発明の実施例に係る並設流量調節弁の開度検
出要領説明図である。
FIG. 3 is an explanatory view of an opening degree detection procedure of the parallel flow rate control valves according to the embodiment of the present invention.

【図4】従来のスプリットレンジ制御方法を示す制御系
統図である。
FIG. 4 is a control system diagram showing a conventional split range control method.

【図5】図5aは従来の小型弁のストリップレンジ特性
図であり、図5bは大型弁のストリップレンジ特性図で
あり、また図5cは従来のスプリットレンジ制御方法に
よる弁容量変化説明図である。
5A is a strip range characteristic diagram of a conventional small valve, FIG. 5B is a strip range characteristic diagram of a large valve, and FIG. 5C is a valve capacity variation explanatory diagram by a conventional split range control method. ..

【符号の説明】[Explanation of symbols]

A,B…切替スイッチの切替位置、LS1 ,LS2 …リ
ミットスイッチ、1,2…管路、1p,2p…ポジショ
ナー、1v,2v…弁、3…調節計、4…切替回路、4
1…切替スイッチ、42…信号漸次発生器、43…信号
漸次停止器。
A, B ... Changeover position of changeover switch, LS 1 , LS 2 ... Limit switch, 1, 2 ... Pipe line, 1p, 2p ... Positioner, 1v, 2v ... Valve, 3 ... Controller, 4 ... Changeover circuit, 4
1 ... Changeover switch, 42 ... Signal gradual generator, 43 ... Signal gradual stop

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方に大容量の大型流量調節弁が、また
他方に該大型流量調節弁の容量より小容量の小型流量調
節弁がそれぞれ介装されてなる管路の合流点の流体の流
量を、これら大・小型流量調節弁の弁開度を加減して制
御する並設流量調節弁の制御方法において、前記大・小
型流量調節弁のそれぞれの制御域を設定する弁ポジショ
ナーにより全領域間で制御作動可能とし、小型流量調節
弁での制御中に該小型流量調節弁が上限開度になったと
き、閉弁中の大型流量調節弁を漸次強制開弁し、該大型
流量調節弁の開度が流量制御不能開度以上になった後に
大型流量調節弁の制御に移行する一方、該大型流量調節
弁での制御中に大型流量調節弁が下限開度になったとき
に、該大型流量調節弁を漸次強制閉弁することにより小
型流量調節弁のみの制御に移行することを特徴とする並
設流量調節弁の制御方法。
1. A flow rate of a fluid at a confluence point of a pipe line, in which a large-capacity large-scale flow control valve is provided on one side and a small-size flow control valve having a smaller capacity than the large-scale flow control valve is provided on the other side. In the control method of the side-by-side flow control valves that controls the valve opening of these large and small flow control valves by controlling the opening degree, the valve positioner that sets each control area of the large and small flow control valves When the small flow rate control valve reaches the upper limit opening during control by the small flow rate control valve, the large flow rate control valve that is closed is gradually and forcibly opened to When the opening becomes equal to or larger than the flow control uncontrollable opening, control is transferred to the large flow rate control valve, and when the large flow rate control valve reaches the lower limit opening during control by the large flow rate control valve, By gradually forcibly closing the flow control valve, only the small flow control valve A method for controlling a parallel flow rate control valve, characterized by shifting to control.
JP3337121A 1991-12-19 1991-12-19 Control method for flow adjusting valve equipped in parallel Pending JPH05172102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3337121A JPH05172102A (en) 1991-12-19 1991-12-19 Control method for flow adjusting valve equipped in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3337121A JPH05172102A (en) 1991-12-19 1991-12-19 Control method for flow adjusting valve equipped in parallel

Publications (1)

Publication Number Publication Date
JPH05172102A true JPH05172102A (en) 1993-07-09

Family

ID=18305639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3337121A Pending JPH05172102A (en) 1991-12-19 1991-12-19 Control method for flow adjusting valve equipped in parallel

Country Status (1)

Country Link
JP (1) JPH05172102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081570A1 (en) * 1999-08-30 2001-03-07 TeeJet Technologies Fluid flow regulator and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081570A1 (en) * 1999-08-30 2001-03-07 TeeJet Technologies Fluid flow regulator and control method

Similar Documents

Publication Publication Date Title
CA2090572C (en) Modulating controller for controlling two operation terminals
JPH05172102A (en) Control method for flow adjusting valve equipped in parallel
JP4332986B2 (en) Mass flow controller
JP2829715B2 (en) Gas burner equipment
JP2586782B2 (en) Multiple water heater control method
JPH087441Y2 (en) Flow controller
JP3546121B2 (en) Fluid pressure control device in pipeline
JPH07134619A (en) Divided flow rate control method for fluid supply equipment and device therefor
JPS6325412A (en) Flow rate controller
JP2001242939A (en) Valve open/close control method
JPH08263103A (en) Method and device for stable control over operation terminal using pulse/air pressure transducer
JPS6295612A (en) Controller for high differential pressure control valve
JPH05341849A (en) Fluid flow-rate controller for steam turbine power plant
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPH058328B2 (en)
SU881466A2 (en) Air conditioning system
JPS60156102A (en) Bumpless switching method
SU1683562A1 (en) Method and device for controlling hothouse temperature condition
JPH08151902A (en) Load controller for steam turbine
JP2504357B2 (en) How to control the water heater
JP2002116824A (en) Method for controlling flow rate of fluid
JPH0244108A (en) Control method for feed of water to boiler
JPH08332659A (en) Oil pressure circuit of injection molding machine
JPS6267209A (en) Electronic governor for steam turbine
JPH06257711A (en) Steam temperature control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991130