JPH0517201A - Ito sintered body and production thereof - Google Patents

Ito sintered body and production thereof

Info

Publication number
JPH0517201A
JPH0517201A JP3186904A JP18690491A JPH0517201A JP H0517201 A JPH0517201 A JP H0517201A JP 3186904 A JP3186904 A JP 3186904A JP 18690491 A JP18690491 A JP 18690491A JP H0517201 A JPH0517201 A JP H0517201A
Authority
JP
Japan
Prior art keywords
sintered body
powder
raw material
ito sintered
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3186904A
Other languages
Japanese (ja)
Inventor
Toshito Kishi
俊人 岸
Mitsuo Okada
光生 岡田
Shigeru Matsui
滋 松井
Tamotsu Akashi
保 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3186904A priority Critical patent/JPH0517201A/en
Publication of JPH0517201A publication Critical patent/JPH0517201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To effectively suppress abnormal discharge phenomenon by sintering a pulverized and press molded raw material containing In oxide and Sn oxide to become a specific relative density under oxidizing atmosphere after impact compression processing. CONSTITUTION:>=20% of a raw material powder mixture obtained by mixing In2O3 and SnO2 powder is put into a cylindrical container and is pulverized to obtain a powdery material after impact compression processing of 500-10GPa with detonation shock wave by explosive or shock wave by collision of a high speed flying body. Next, after the powdery material is mixed again with the residual raw material powder to obtain a processed powder, which is press molded with >=1ton/cm<2> to obtain a molded body. Furthermore the molded body is sintered under O2 atmosphere at 1350-1450 deg.C to form the ITO sintered body containing In, Sn and O2 and >=80% in relative density, <=10mum in Sn aggregation diameter, <=10mum in average crystalline diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜の形成に使
用するスパッタリング用ターゲット材として適する酸化
インジウム−酸化スズ焼結体、即ちITO焼結体及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indium oxide-tin oxide sintered body, that is, an ITO sintered body and a method for producing the same, which is suitable as a sputtering target material used for forming a transparent conductive film.

【0002】[0002]

【従来の技術】酸化インジウム−酸化スズから成るIT
O焼結体をスパッタリングすることによって得られる透
明導電膜は、その比抵抗値の低さから有望な膜として注
目されている。例えばITO焼結体をターゲットとし、
これを 300℃程度の高温に加熱された基板上に適当な条
件でスパッタリングすることにより、透明性が良く且つ
比抵抗値が 2.0×10-4Ω・cm以下の良質なITO膜が得
られる。
2. Description of the Related Art IT consisting of indium oxide-tin oxide
A transparent conductive film obtained by sputtering an O-sintered body has attracted attention as a promising film because of its low specific resistance value. For example, targeting an ITO sintered body,
By sputtering this on a substrate heated to a high temperature of about 300 ° C. under appropriate conditions, a high-quality ITO film having good transparency and a specific resistance value of 2.0 × 10 −4 Ω · cm or less can be obtained.

【0003】このような特性を持つITO膜を得るため
には、ITO焼結体の相対密度が80%以上であることが
必要であるということが公知である。その高密度のIT
O焼結体は、通常、実質的にインジウム、スズおよび酸
素から成り、所望の組成に配合された粉末を成形した
後、酸素あるいは大気中で1500℃以上の温度で焼結する
か、または加圧下で温度を上げて1000℃以下の温度で焼
結することによって製造されている。
It is known that in order to obtain an ITO film having such characteristics, the relative density of the ITO sintered body must be 80% or more. Its high density IT
The O-sinter is usually substantially composed of indium, tin and oxygen, and after molding a powder having a desired composition, it is sintered in oxygen or the atmosphere at a temperature of 1500 ° C. or higher, or added. It is manufactured by raising the temperature under pressure and sintering at a temperature of 1000 ° C or less.

【0004】然しながら、1500℃以上の温度で焼結され
たITO焼結体は、焼結体中のSn原子が凝集を起こして
おり、また結晶粒径の粗大化が促進されて焼結体の結晶
粒径のばらつきが大きくなっていることが公知であり、
また、1000℃以下の温度で焼結されたITO焼結体中に
は SnO2 相が残存することが公知である。その結果、I
TO焼結体の表面抵抗値のばらつきが大きくなる。
However, in the ITO sintered body sintered at a temperature of 1500 ° C. or higher, Sn atoms in the sintered body are agglomerated and the coarsening of the crystal grain size is promoted, so that It is known that the variation in crystal grain size is large,
It is also known that the SnO 2 phase remains in the ITO sintered body sintered at a temperature of 1000 ° C. or lower. As a result, I
The variation of the surface resistance value of the TO sintered body becomes large.

【0005】[0005]

【発明が解決しようとする課題】上記のようにして製造
された高密度ITO焼結体をターゲットとしてスパッタ
リングを行う場合、そのITO焼結体の表面抵抗値のば
らつきが大きいために、成膜中の異常放電現象が発生し
易くなりプラズマ状態が不安定となる。その結果、安定
した成膜が行われず、得られた膜の構造が悪化し、膜の
特性値が劣化するという不都合を生じることが知られて
いる。また、異常放電現象が頻繁に発生する状況下にお
いて長時間ITO焼結体ターゲットを使用していると、
ターゲット表面に変質層が生じ(所謂黒化)、これによ
り成膜速度が低下し、生産性が低下するという問題も生
じている。
When the high-density ITO sintered body manufactured as described above is used as a target for sputtering, the ITO sintered body has a large variation in the surface resistance value, and therefore, during film formation. Abnormal discharge phenomenon easily occurs and the plasma state becomes unstable. As a result, it is known that stable film formation is not performed, the structure of the obtained film deteriorates, and the characteristic value of the film deteriorates. In addition, when the ITO sintered body target is used for a long time in a situation where the abnormal discharge phenomenon frequently occurs,
An altered layer is formed on the surface of the target (so-called blackening), which causes a problem that the film forming rate is reduced and the productivity is reduced.

【0006】また、近年、カラー液晶ディスプレイ用カ
ラーフィルター上へのITO膜のコーティングあるいは
ディスプレイの軽量化の面からプラスチック基板上への
ITO膜のコーティングが行われるようになってきた。
これらのカラーフィルターやプラスチック基板は耐熱性
に劣るため、従来行われてきた高温でのスパッタリング
は行えず、基板加熱温度は 200℃以下という制約を受け
ている。
Further, in recent years, coating of an ITO film on a color filter for a color liquid crystal display or coating of an ITO film on a plastic substrate has come to be performed from the viewpoint of weight saving of the display.
Since these color filters and plastic substrates are inferior in heat resistance, conventional high temperature sputtering cannot be performed and the substrate heating temperature is limited to 200 ° C or less.

【0007】前述した従来の高密度ITO焼結体におい
ては、高温での基板加熱(例えば 300℃以上)によるス
パッタリングによれば比抵抗値の低い膜が得られるが、
200℃以下の低温の基板加熱によるスパッタリングで
は、得られるITO膜の比抵抗値は5×10-4Ω・cm以上
であり、比抵抗値の低い膜を得ることが困難となってい
る。即ち、これらのITO焼結体は、カラーフィルター
やプラスチック基板に対しては、良好なITO膜を形成
することが困難である。従って本発明は、ITO膜成膜
中における異常放電現象が有効に抑制され、また、基板
温度が低い条件においても比抵抗値が低いITO膜を成
膜できるようなITO焼結体およびその製造方法を提供
することを目的とする。
In the above-mentioned conventional high density ITO sintered body, a film having a low specific resistance value can be obtained by sputtering by heating the substrate at a high temperature (for example, 300 ° C. or higher).
By sputtering by heating the substrate at a low temperature of 200 ° C. or lower, the specific resistance value of the ITO film obtained is 5 × 10 −4 Ω · cm or more, and it is difficult to obtain a film having a low specific resistance value. That is, it is difficult for these ITO sintered bodies to form a good ITO film on a color filter or a plastic substrate. Therefore, the present invention provides an ITO sintered body capable of effectively suppressing an abnormal discharge phenomenon during formation of an ITO film, and capable of forming an ITO film having a low specific resistance value even under a condition of a low substrate temperature, and a manufacturing method thereof. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明によれば、実質的
にインジウム、スズおよび酸素から成り、相対密度が80
%以上であるITO焼結体において、Sn凝集径が10μm
以下で、かつ平均結晶粒径が10μm 以下であることを特
徴とするITO焼結体が提供される。
According to the present invention, it consists essentially of indium, tin and oxygen and has a relative density of 80.
% Or more of ITO sintered body, Sn aggregate diameter is 10μm
Provided is an ITO sintered body characterized by having an average crystal grain size of 10 μm or less.

【0009】ITO焼結体 本発明のITO焼結体は、実質的にインジウム、スズお
よび酸素から成るものであり、相対密度が80%以上のも
のである。本発明のITO焼結体においては、Sn凝集径
が10μm 以下、好ましくは5μm以下であり、かつ平均
結晶粒径が10μm 以下であることが重要である。ITO
焼結体中のSn凝集径が10μm を超えたり、平均結晶粒径
が10μm を超えると、その焼結体の表面抵抗値のばらつ
きが大きくなり、スパッタリング中の異常放電現象が発
生し易くなる。
ITO Sintered Body The ITO sintered body of the present invention is substantially composed of indium, tin and oxygen, and has a relative density of 80% or more. In the ITO sintered body of the present invention, it is important that the Sn aggregate diameter is 10 μm or less, preferably 5 μm or less, and the average crystal grain size is 10 μm or less. ITO
If the Sn agglomerate diameter in the sintered body exceeds 10 μm or the average crystal grain size exceeds 10 μm, the surface resistance value of the sintered body varies widely, and abnormal discharge phenomenon during sputtering easily occurs.

【0010】本発明のITO焼結体は、例えば次のよう
にして製造することができる。即ち、上記のITO焼結
体は、インジウム酸化物およびスズ酸化物を含有する原
料粉末の20重量%以上を衝撃圧縮処理後、粉砕し、得ら
れた粉末を前記原料粉末の残分が存在する場合にはそれ
と再混合し、得られた処理粉末を加圧成形し、次いで酸
化性雰囲気中で焼結することからなる製造方法により製
造することができる。
The ITO sintered body of the present invention can be manufactured, for example, as follows. That is, in the above ITO sintered body, 20% by weight or more of the raw material powder containing indium oxide and tin oxide is subjected to impact compression treatment and then pulverized, and the obtained powder has a residue of the raw material powder. In some cases, it can be produced by a production method comprising remixing with it, press-molding the obtained treated powder, and then sintering in an oxidizing atmosphere.

【0011】原料粉末 本発明の製造方法において、原料粉末としては、酸化イ
ンジウム粉末と酸化スズ粉末との混合粉末、酸化スズ固
溶酸化インジウム粉末と酸化スズ粉末との混合粉末、酸
化スズ固溶酸化インジウム粉末と酸化インジウム粉末と
の混合粉末、あるいは酸化スズ固溶酸化インジウム粉末
のみなどが使用される。この原料粉末を所望の組成に混
合・調製する。原料粉末の調製は、例えばボールミル等
を用いての混合・粉砕によって行われ、混合時間は好ま
しくは12時間以上、更に好ましくは24時間以上である。
Raw Material Powder In the manufacturing method of the present invention, as the raw material powder, a mixed powder of indium oxide powder and tin oxide powder, a mixed powder of tin oxide solid solution indium oxide powder and tin oxide powder, tin oxide solid solution oxidation. A mixed powder of indium powder and indium oxide powder, or tin oxide solid solution indium oxide powder alone is used. This raw material powder is mixed and prepared to have a desired composition. The raw material powder is prepared by, for example, mixing and pulverizing using a ball mill or the like, and the mixing time is preferably 12 hours or longer, more preferably 24 hours or longer.

【0012】また、本発明において使用する原料粉末に
は、上記の混合・粉砕時にパラフィンワックス、ポリビ
ニルアルコール等の成形用バインダーを添加することが
できる。このバインダーの添加量は、1〜2重量%の範
囲であることが好ましい。
A molding binder such as paraffin wax or polyvinyl alcohol can be added to the raw material powder used in the present invention at the time of mixing and pulverizing. The addition amount of this binder is preferably in the range of 1 to 2% by weight.

【0013】衝撃圧縮処理 本発明においては、上記の原料粉末について衝撃圧縮処
理を行う。この衝撃圧縮処理によって構成粒子を微細化
し、同時に結晶内部に微視的な歪を形成することがで
き、その結果、原料粉末を活性化し、焼結体中のSn原子
の凝集性あるいは結晶粒径のばらつきを改善することが
できると考えられる。
Impact compression treatment In the present invention, the above-mentioned raw material powder is subjected to impact compression treatment. By this impact compression treatment, the constituent particles can be made finer and at the same time a microscopic strain can be formed inside the crystal. It is considered possible to improve the dispersion of

【0014】衝撃圧縮の方法としては、例えば爆薬の爆
発に伴う爆轟衝撃波や高速飛翔体の衝突に伴う衝撃波を
原料粉末に伝え粉末を衝撃圧縮する方法を用いることが
できる。装置が簡単で、大量の粉末を一度に処理できる
方法として、例えば、上下にネジ式栓の付いた金属製の
円筒状容器に原料粉末を充填し、その外側に爆薬の詰ま
った容器を配し、その容器の上部に取り付けられた雷管
で起爆して爆薬の爆轟に伴う衝撃波で原料粉末を衝撃圧
縮する方法がある。
As the shock compression method, for example, a detonation shock wave caused by the explosion of explosive or a shock wave caused by the collision of a high-speed flying object is transmitted to the raw material powder and the powder is shock-compressed. As a simple method to process a large amount of powder at a time, for example, a metal cylindrical container with screw caps at the top and bottom is filled with the raw material powder, and a container filled with explosives is placed outside the container. , There is a method of detonating a detonator attached to the upper part of the container and shock-compressing the raw material powder with a shock wave accompanying the detonation of explosives.

【0015】衝撃圧力は、原料粉末の組成により任意に
選択されるべきものであるが、本発明に係わる原料粉末
の組成範囲では通常 500MPa〜10GPa、好ましくは1G
Pa〜10GPaである。衝撃圧力が 100GPa以上になると衝
撃処理時の原料粉末が高温となり、粉末粒子間の焼結が
生じ、また、一度導入された結晶中の歪が高温度下で緩
和されると考えられ、本発明の効果が発揮できない。
The impact pressure should be arbitrarily selected according to the composition of the raw material powder, but is usually 500 MPa to 10 GPa, preferably 1 G in the composition range of the raw material powder according to the present invention.
Pa to 10 GPa. When the impact pressure is 100 GPa or more, it is considered that the raw material powder at the time of impact treatment becomes high temperature, sintering between powder particles occurs, and the strain in the crystal once introduced is relaxed under high temperature. Can not exert the effect of.

【0016】また、原料粉末の20重量%以上、好ましく
は50重量%以上を衝撃圧縮処理すれば、本発明の目的は
達成される。20重量%未満の場合、スパッタリング中の
異常放電現象が発生し易くなり、また得られる膜の比抵
抗値が高くなる。衝撃圧縮処理した粉末と原料粉末の残
分とを再混合し、処理粉末とする。
The object of the present invention can be achieved by subjecting 20% by weight or more, preferably 50% by weight or more of the raw material powder to impact compression treatment. If it is less than 20% by weight, an abnormal discharge phenomenon is likely to occur during sputtering, and the specific resistance value of the obtained film becomes high. The shock-compressed powder and the rest of the raw material powder are remixed to obtain a treated powder.

【0017】成形・焼結工程 上記の処理粉末を加圧成形する。加圧成形は、1ton/cm
2 以上が好ましい。その圧力が1ton/cm2 より低いと、
焼結体の相対密度を80%以上にすることが困難である。
加圧成形に続いて行われる焼結は、酸化性雰囲気、例え
ば酸素あるいは大気中で行う。
Molding / Sintering Step The above-mentioned treated powder is pressure-molded. Pressure molding is 1ton / cm
2 or more is preferable. If the pressure is lower than 1 ton / cm 2 ,
It is difficult to make the relative density of the sintered body 80% or more.
The sintering that follows the pressure molding is performed in an oxidizing atmosphere, such as oxygen or air.

【0018】本発明によれば、焼結を1500℃より低い温
度で行っても相対密度80%以上の焼結体を得ることがで
きる。焼結温度は1350℃以上、好ましくは1400℃以上、
かつ1500℃未満好ましくは1450℃以下であることが必要
である。焼結温度が1350℃未満であると、低比抵抗の良
質な膜が得られなくなることの原因である SnO2 相の残
存が観察され、焼結温度が1500℃以上であるとSn凝集径
が増したり、結晶粒径の粗大化が促進されるという不都
合が生じる。以上の方法によって、本発明のITO焼結
体が得られる。
According to the present invention, a sintered body having a relative density of 80% or more can be obtained even if sintering is performed at a temperature lower than 1500 ° C. Sintering temperature is 1350 ° C or higher, preferably 1400 ° C or higher,
Further, it is necessary to be less than 1500 ° C, preferably 1450 ° C or less. If the sintering temperature is less than 1350 ° C, the SnO 2 phase remains, which is the reason why a high-quality film with low specific resistance cannot be obtained.If the sintering temperature is 1500 ° C or higher, the Sn aggregate diameter is There is an inconvenience that the number of grains increases and the coarsening of the crystal grain size is promoted. The ITO sintered body of the present invention is obtained by the above method.

【0019】[0019]

【実施例】実施例1 平均粒径 0.2μm の酸化インジウム粉末に平均粒径1μ
m の酸化スズ粉末をスズ組成が 7.8重量%となるように
配合し、バインダーとして1重量%のパラフィンワック
スを添加し、湿式ボールミル中で18時間混合・粉砕を行
い、乾燥後30〜40μm に造粒し、原料粉末を得た。
Example 1 Indium oxide powder having an average particle size of 0.2 μm was added with an average particle size of 1 μm.
m tin oxide powder was blended so that the tin composition was 7.8% by weight, 1% by weight of paraffin wax was added as a binder, mixed and pulverized for 18 hours in a wet ball mill, and dried to 30-40 μm. It granulated and obtained the raw material powder.

【0020】図1に示すように、 2.5kgの原料粉末1を
全て充填密度56%で円筒状容器(直径81mm)2中に封入
し、その容器の外側にダイナマイト火薬3の詰まった爆
薬容器4を配した。爆薬容器4の上部に取り付けた雷管
5で起爆し、原料粉末に衝撃圧縮処理を行った。
As shown in FIG. 1, 2.5 kg of raw material powder 1 was all enclosed in a cylindrical container (diameter 81 mm) 2 with a packing density of 56%, and an explosive container 4 filled with dynamite explosive 3 on the outside of the container. Arranged. The detonator 5 attached to the upper part of the explosive container 4 was detonated, and the raw material powder was subjected to impact compression treatment.

【0021】得られた処理粉末を、擂解機で数百μmに
粗粉砕後、湿式ボールミル中で24時間混合して30〜40μ
m に粉砕し、1ton/cm2 で78mm径×6mm厚に加圧成形
後、酸素気流中で1400℃にて5時間焼結を行った。得ら
れた焼結体について、密度測定、EPMA分析によるSn
原子の凝集体の直径の測定、およびSEMによる結晶粒
径測定を行った。結果を表1に示す。
The treated powder thus obtained was roughly pulverized to several hundreds of μm by a disintegrator and then mixed in a wet ball mill for 24 hours to obtain 30 to 40 μm.
The powder was crushed to m 2 and pressure-molded at 1 ton / cm 2 to a diameter of 78 mm × 6 mm, and then sintered in an oxygen stream at 1400 ° C. for 5 hours. About the obtained sintered body, Sn by density measurement and EPMA analysis
The diameter of the aggregate of atoms was measured, and the crystal grain size was measured by SEM. The results are shown in Table 1.

【0022】また、上記焼結体をスパッタリング用ター
ゲット材として使用し、DCマグネトロンスパッタリン
グ法により 200℃に加熱した基板に3分間成膜を行い、
1000Åの厚さに成膜した。スパッタリング条件は、スパ
ッタガスを容量比でAr:O2 =99:1とし、スパッタガ
ス圧 0.5Pa、スパッタ出力 200W、ターゲット−基板間
距離を60mmとした。
Using the above sintered body as a sputtering target material, a film was formed on a substrate heated to 200 ° C. for 3 minutes by a DC magnetron sputtering method,
The film was formed to a thickness of 1000Å. The sputtering conditions were that the volume ratio of the sputtering gas was Ar: O 2 = 99: 1, the sputtering gas pressure was 0.5 Pa, the sputtering output was 200 W, and the target-substrate distance was 60 mm.

【0023】得られた膜の比抵抗値を四端針法により測
定し、また、波長 500nmにおける透過率を測定した。結
果を表1に示す。さらに、同一のスパッタリング条件で
連続スパッタリングを行い、その間に発生した異常放電
の回数を測定した。結果を表1に示す。
The specific resistance value of the obtained film was measured by the four-point probe method, and the transmittance at a wavelength of 500 nm was measured. The results are shown in Table 1. Further, continuous sputtering was performed under the same sputtering conditions, and the number of abnormal discharges generated during that period was measured. The results are shown in Table 1.

【0024】実施例2 実施例1で用いたのと同様の原料粉末の50重量%を実施
例1と同じ方法で衝撃圧縮処理した。得られた粉末を実
施例1と同様に30〜40μmに粉砕後、残りの原料粉末と
ボールミル中で再混合した。得られた処理粉末を造粒
し、実施例1と同様に成形、焼結した。得られた焼結体
の物性を実施例1と同様の方法で測定した。結果を表1
に示す。
Example 2 50% by weight of the same raw material powder as that used in Example 1 was subjected to impact compression treatment in the same manner as in Example 1. The obtained powder was crushed to 30 to 40 μm in the same manner as in Example 1 and then remixed with the remaining raw material powder in a ball mill. The obtained treated powder was granulated, shaped and sintered in the same manner as in Example 1. The physical properties of the obtained sintered body were measured by the same methods as in Example 1. The results are shown in Table 1.
Shown in.

【0025】実施例3 実施例1で用いたのと同様の原料粉末の20重量%を実施
例1と同じ方法で衝撃圧縮処理した。得られた粉末を実
施例1と同様に30〜40μmに粉砕後、残りの原料粉末と
ボールミル中で再混合した。得られた処理粉末を造粒
し、実施例1と同様に成形、焼結した。得られた焼結体
の物性を実施例1と同様の方法で測定した。結果を表1
に示す。
Example 3 20% by weight of the same raw material powder as that used in Example 1 was subjected to impact compression treatment in the same manner as in Example 1. The obtained powder was crushed to 30 to 40 μm in the same manner as in Example 1 and then remixed with the remaining raw material powder in a ball mill. The obtained treated powder was granulated, shaped and sintered in the same manner as in Example 1. The physical properties of the obtained sintered body were measured by the same methods as in Example 1. The results are shown in Table 1.
Shown in.

【0026】比較例1 実施例1で用いたのと同様の原料粉末を、衝撃圧縮処理
を行わない以外は実施例1と同様に成形、焼結した。得
られた焼結体の物性を実施例1と同様の方法で測定し
た。結果を表1に示す。
Comparative Example 1 The same raw material powder as that used in Example 1 was molded and sintered in the same manner as in Example 1 except that the impact compression treatment was not performed. The physical properties of the obtained sintered body were measured by the same methods as in Example 1. The results are shown in Table 1.

【0027】比較例2 実施例1で用いたのと同様の原料粉末を、衝撃圧縮処理
を行わない以外は実施例1と同様に成形し、酸素気流中
で1600℃にて5時間焼結を行った。得られた焼結体の物
性を実施例1と同様の方法で測定した。結果を表1に示
す。
Comparative Example 2 The same raw material powder as that used in Example 1 was molded in the same manner as in Example 1 except that impact compression treatment was not carried out, and sintering was performed at 1600 ° C. for 5 hours in an oxygen stream. went. The physical properties of the obtained sintered body were measured by the same methods as in Example 1. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明のITO焼結体をスパッタリング
用ターゲットとして使用すれば、スパッタリングに際し
ての異常放電現象が有効に抑制され、良質の透明導電膜
を形成することが可能である。
When the ITO sintered body of the present invention is used as a sputtering target, an abnormal discharge phenomenon during sputtering can be effectively suppressed and a high quality transparent conductive film can be formed.

【0030】また、本発明のITO焼結体は、スパッタ
リングにより、基板加熱温度が 200℃以下の低温であっ
ても比抵抗が2×10-4Ω・cm以下の低抵抗の膜を得るこ
とができるターゲットを提供することができる。本発明
のITO焼結体は、カラーフィルター上へのITO膜の
コーティングやプラスチック基板上へのITO膜のコー
ティングに極めて有用である。
The ITO sintered body of the present invention can be sputtered to obtain a low resistance film having a specific resistance of 2 × 10 −4 Ω · cm or less even at a substrate heating temperature of 200 ° C. or less. We can provide targets that can The ITO sintered body of the present invention is extremely useful for coating an ITO film on a color filter and an ITO film on a plastic substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における原料粉末の衝撃圧縮処理に適用
できる円筒衝撃装置の一実施例を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an embodiment of a cylindrical impact device applicable to impact compression treatment of raw material powder in the present invention.

【符号の説明】[Explanation of symbols]

1 原料粉末 2 円筒状容器 3 ダイナマイト火薬 4 爆薬容器 5 雷管 Raw material powder 2 cylindrical container 3 dynamite gunpowder 4 explosive container 5 detonator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 明石 保 北海道赤平市大町4−4−1   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tamotsu Akashi             4-4-1 Omachi, Akabira-shi, Hokkaido

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 実質的にインジウム、スズおよび酸素か
ら成り、相対密度が80%以上であるITO焼結体におい
て、 Sn凝集径が10μm 以下で、かつ平均結晶粒径が10μm 以
下であることを特徴とするITO焼結体。
1. An ITO sintered body which is substantially composed of indium, tin and oxygen and has a relative density of 80% or more has a Sn aggregate diameter of 10 μm or less and an average crystal grain diameter of 10 μm or less. Characteristic ITO sintered body.
【請求項2】 インジウム酸化物およびスズ酸化物を含
有する原料粉末の20重量%以上を衝撃圧縮処理後、粉砕
し、得られた粉末を前記原料粉末の残分が存在する場合
にはそれと再混合し、得られた処理粉末を加圧成形し、
次いで酸化性雰囲気中で焼結することからなる請求項1
に記載のITO焼結体を製造する方法。
2. 20% by weight or more of the raw material powder containing indium oxide and tin oxide is subjected to impact compression treatment and then pulverized, and the obtained powder is re-combined with residual powder of the raw material powder, if any. Mixing, pressure molding the resulting treated powder,
Then, sintering is performed in an oxidizing atmosphere.
A method for producing the ITO sintered body according to 1.
【請求項3】 請求項2のITO焼結体の製造方法であ
って、前記の衝撃圧縮処理が爆薬の爆発による爆轟衝撃
波または高速飛翔体の衝突による衝撃波を前記処理粉末
に伝えることにより行われることを特徴とするITO焼
結体の製造方法。
3. The method for manufacturing an ITO sintered body according to claim 2, wherein the impact compression treatment is performed by transmitting a detonation shock wave due to an explosion of explosive or a shock wave due to collision of a high-speed flying object to the treated powder. A method for producing an ITO sintered body, comprising:
JP3186904A 1991-07-01 1991-07-01 Ito sintered body and production thereof Pending JPH0517201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186904A JPH0517201A (en) 1991-07-01 1991-07-01 Ito sintered body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186904A JPH0517201A (en) 1991-07-01 1991-07-01 Ito sintered body and production thereof

Publications (1)

Publication Number Publication Date
JPH0517201A true JPH0517201A (en) 1993-01-26

Family

ID=16196721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186904A Pending JPH0517201A (en) 1991-07-01 1991-07-01 Ito sintered body and production thereof

Country Status (1)

Country Link
JP (1) JPH0517201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008358A1 (en) * 1995-08-31 1997-03-06 Innovative Sputtering Technology A process for manufacturing ito alloy articles
US6511614B1 (en) * 1993-04-05 2003-01-28 Sumitomo Metal Mining Co., Ltd. Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
JP2011068551A (en) * 2009-08-22 2011-04-07 Kumamoto Univ Method for manufacturing inorganic-compound bulk body and inorganic-compound bulk body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511614B1 (en) * 1993-04-05 2003-01-28 Sumitomo Metal Mining Co., Ltd. Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
WO1997008358A1 (en) * 1995-08-31 1997-03-06 Innovative Sputtering Technology A process for manufacturing ito alloy articles
US6123787A (en) * 1995-08-31 2000-09-26 Innovative Sputtering Technology Process for manufacturing ITO alloy articles
JP2011068551A (en) * 2009-08-22 2011-04-07 Kumamoto Univ Method for manufacturing inorganic-compound bulk body and inorganic-compound bulk body

Similar Documents

Publication Publication Date Title
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
CN102276250A (en) Aluminum doped zinc oxide sputtering targets
TWI644867B (en) Target for forming transparent conductive film and manufacturing method thereof, transparent conductive film and manufacturing method thereof
CN101198565A (en) Method for producing IZO sputtering target
JP3331584B2 (en) Polycrystalline MgO deposited material
CN104710163A (en) method for producing IZO sputtering target
JPH0570943A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JPH0517201A (en) Ito sintered body and production thereof
JP2001098359A (en) MANUFACTURE OF Mg-CONTAINING ITO SPUTTERING TARGET AND Mg-CONTAINING ITO EVAPORATION MATERIAL
JP4508079B2 (en) Manufacturing method of sputtering target
TWI707967B (en) Spattering target for transparent conductive film
JP4196805B2 (en) Indium oxide target and method for manufacturing the same
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
JP4904645B2 (en) Method for producing Mg-containing ITO sputtering target
TWI768149B (en) Oxide sintered body, sputtering target and transparent conductive film
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP4120351B2 (en) High concentration tin oxide ITO target and manufacturing method thereof
JPH05179439A (en) Target for sputtering made of indium oxide-tin oxide sintered compact
JP3030913B2 (en) Manufacturing method of ITO sintered body
JP2602390B2 (en) High density ITO sintered body and method of manufacturing the same
JP3870446B2 (en) ITO sintered body manufacturing method and sputtering target
JP4755453B2 (en) Manufacturing method of IZO sputtering target
JP2003002749A (en) Indium oxide powder and method for manufacturing ito sputtering target
JP2523251B2 (en) Method for manufacturing ITO sintered body
JPH05339721A (en) Production of indium oxide-tin oxide sputtering target