JPH05171302A - Method for melting and reducing chromium ore - Google Patents

Method for melting and reducing chromium ore

Info

Publication number
JPH05171302A
JPH05171302A JP34067291A JP34067291A JPH05171302A JP H05171302 A JPH05171302 A JP H05171302A JP 34067291 A JP34067291 A JP 34067291A JP 34067291 A JP34067291 A JP 34067291A JP H05171302 A JPH05171302 A JP H05171302A
Authority
JP
Japan
Prior art keywords
ore
slag
melting
reduction
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34067291A
Other languages
Japanese (ja)
Inventor
Haruhiko Ishizuka
晴彦 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34067291A priority Critical patent/JPH05171302A/en
Publication of JPH05171302A publication Critical patent/JPH05171302A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the melting and reducing rates of a Cr ore and the yield of Cr. CONSTITUTION:A chromium ore sand is briquetted and introduced into a converter-type refining vessel, and the chromium ore is melted and reduced. In this case, quick lime necessary for melting and reducing is previously mixed into the chromium ore sand to briquette the sand, the briquette is introduced into the refining vessel, and the ore is melted and reduced. Since the quick lime is added along with the ore, the melting and reducing rates are increased, and the yield of chromium is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉型の容器を用いたク
ロム鉱石の溶融還元方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting and reducing chromium ore using a converter type vessel.

【0002】[0002]

【従来の技術】一般にステンレス鋼の精錬方法において
はCr源として、FeCrなどの合金鉄、ステンレススクラッ
プ屑などを用いる方法がとられている。FeCrは電力を用
いて製造するため非常に高価であり、溶融還元法による
FeCrの製造に関する研究も行なわれている。
2. Description of the Related Art Generally, in a method for refining stainless steel, a method of using ferroalloy such as FeCr or stainless scrap scrap as a Cr source is adopted. FeCr is very expensive because it is produced using electric power, and it is produced by the smelting reduction method.
Studies on the production of FeCr are also being conducted.

【0003】また、FeCrまでもいかないものの、ステン
レス鋼精錬時のFeCrに替わるCr源としてCr鉱石を用い
て、溶融還元する方法は、工業的に実施されている。さ
らに、Cr鉱石の塊状化の際にフラックス等をあらかじめ
混合させる方法も周知で、たとえば塊状化後の製品の強
度を得るために、少量の生石灰、珪砂などを混合するも
のとして、特開昭52-46317号、特開昭61−117234号、特
開昭60−243233号公報が開示されている。
Further, although not including FeCr, a method of smelting reduction using Cr ore as a Cr source in place of FeCr at the time of refining stainless steel is industrially carried out. Further, a method of previously mixing a flux or the like during agglomeration of Cr ore is also well known. For example, in order to obtain the strength of the agglomerated product, a small amount of quick lime, silica sand, etc. are mixed, as disclosed in JP-A-52 -46317, JP-A-61-117234 and JP-A-60-243233 are disclosed.

【0004】一方、特公昭46-43695号公報では、珪砂、
石灰などを添加し、表面に緻密強固な酸化物皮膜を有
し、内部が還元層からなる還元ペレットを得るものが開
示されているが、後工程を電気炉と想定しており、低塩
基度となっている。特開昭63−130728号公報に開示され
ている技術もクロム鉱石の還元ペレットの製造の際にS
を固定するため、CaO を含有させるものが開示されてい
るがSを固定することに限定されているため、CaO の含
有量は少ない。
On the other hand, in Japanese Patent Publication No. 46-43695, silica sand,
It has been disclosed that lime or the like is added to obtain a reduced pellet having a dense and strong oxide film on the surface and a reducing layer inside, but it is assumed that the post-process is an electric furnace and low basicity Has become. The technique disclosed in JP-A-63-130728 is also used for the production of reduced pellets of chromium ore.
However, the content of CaO is small because it is limited to fixing S.

【0005】[0005]

【発明が解決しようとする課題】前記いずれの従来技術
においても還元炉として電気炉などを想定しており、還
元炉として転炉型容器を対象としていないためCaO の少
ないスラグ組成となっており、耐火物の保護や溶融還元
性の点で不適切である。したがって前述したクロム鉱石
をステンレス鋼精錬に適用する場合、いずれにしても溶
融還元に適したスラグ組成を得るためにクロム鉱石に加
えて、生石灰等のフラックスを添加してやることが必要
で、スラグ組成を均一にコントロールするという点で問
題点があった。
In any of the above-mentioned conventional techniques, an electric furnace or the like is assumed as the reduction furnace, and since the converter type container is not targeted as the reduction furnace, the slag composition is low in CaO, Inadequate for protection of refractories and smelting reduction. Therefore, when applying the above-mentioned chrome ore to stainless steel refining, in any case, in order to obtain a slag composition suitable for smelting reduction, it is necessary to add a flux such as quick lime, in order to obtain a slag composition. There was a problem in that it was controlled uniformly.

【0006】一方、スラグ組成を均一にしてやるという
点で、ハード面から生石灰の投入あるいは吹込みを、ク
ロム鉱石、コークスの投入量に応じて制御するという方
法もないわけではないが設備的に大がかりになり、建設
費が高くなるという問題点があった。本発明は、前記問
題点を解決することができるクロム鉱石の溶融還元方法
を提供することを目的とするものである。
On the other hand, in terms of making the slag composition uniform, it is not impossible to control the charging or blowing of quick lime from the hard side according to the amount of chromium ore or coke charged, but this is a large facility. Therefore, there was a problem that the construction cost becomes high. An object of the present invention is to provide a smelting reduction method for chromium ore that can solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は前記問題点を解
決するため溶融還元時の操業ポイントである、スラグ組
成のコントロールを容易にするものであり、その要旨と
するところは下記のとおりである。本発明は、クロム鉱
石サンドを塊状化し、転炉型容器に上添加し、クロム鉱
石の溶融還元を行う方法において、前記クロム鉱石サン
ドに溶融還元に必要な生石灰分をあらかじめ混合して塊
状化し、転炉型容器に上添加して溶融還元することを特
徴とするクロム鉱石の溶融還元方法である。
The present invention is intended to facilitate control of the slag composition, which is an operation point during smelting reduction in order to solve the above-mentioned problems, and its gist is as follows. is there. The present invention agglomerates the chrome ore sand, added to the converter type vessel, in the method of performing the smelting reduction of the chrome ore, in the chrome ore sand is premixed with quicklime components required for smelting reduction, agglomerate, It is a method for smelting reduction of chromium ore, which is characterized in that the smelting reduction is carried out by adding it to a converter type vessel.

【0008】[0008]

【作用】溶融還元時のCr2O3 の還元は、 Cr2O3 +3C=2Cr+3CO なる反応によって進行し、ここでCとしては溶鉄中のC
もあるが、むしろスラグ中の固体Cによる還元が主であ
る。この反応を促進させるには、Cr2O3 は固体であるよ
り液体である方が良く、したがっていかにスラグ化させ
るかがポイントである。
The reduction of Cr 2 O 3 during smelting reduction proceeds by the reaction of Cr 2 O 3 + 3C = 2Cr + 3CO, where C in molten iron is C.
However, the reduction is mainly due to solid C in the slag. In order to accelerate this reaction, Cr 2 O 3 is better to be liquid than solid, and therefore the point is how to make it slag.

【0009】CaO はたとえば生石灰の形で添加される
が、これは(1) 転炉耐火物の保護、(2) スラグの滓化促
進、(3) クロム鉱石を滓化させるためのスラグボリュー
ムの確保、(4) 溶鉄の2次的脱硫のためである。溶融還
元時に炉内に投入される原料、フラックスとして代表的
なものにクロム鉱石、コークス、生石灰があげられる。
クロム鉱石、コークスは、ガス成分としての酸素源、揮
発分等を含有しており、炉内に添加すると同時に大量の
排ガスを生成することになるから分割投入も可能である
が、操業のコントロール性の観点から連続的に投入する
のが一般的である。
CaO is added, for example, in the form of quick lime, which is (1) protection of converter refractory, (2) promotion of slag slag formation, (3) slag volume for slag formation of chromium ore. (4) It is for secondary desulfurization of molten iron. Typical raw materials and fluxes that are put into the furnace during smelting reduction are chromium ore, coke, and quick lime.
Chromium ore and coke contain an oxygen source and volatile matter as gas components, and a large amount of exhaust gas is generated at the same time when they are added to the furnace, so they can be dividedly charged, but operation controllability From the viewpoint of, it is common to continuously charge.

【0010】一方、生石灰は分割投入するのが一般的で
ある。代表的な一例を、図4に示す。スラグ組成の変化
を表わす一例である塩基度CaO/SiO2の変化は、時間的な
平均値としてみれば目標値になっているものの時間軸に
沿ってみれば、CaO/SiO2は高低をくり返していることが
わかる。溶融還元には前述したCaO の役割があり、図1
に示すような塩基度CaO/SiO2の最適値が存在する(図1
ではCaO/SiO2= 2.5〜 3.5が最適範囲)。したがって、
図4のような従来の投入方法では最適組成からCaO/SiO2
が外れることになり、還元能力が低下することになる。
On the other hand, quick lime is generally charged in portions. A typical example is shown in FIG. Change of basicity CaO / SiO 2 is an example showing changes of the slag composition, Come to along the time axis although at the target value Come to a temporal average value, CaO / SiO 2 is repeated height You can see that The smelting reduction has the above-mentioned role of CaO.
There is an optimum value of basicity CaO / SiO 2 as shown in (Fig. 1
Then CaO / SiO 2 = 2.5 to 3.5 is the optimum range). Therefore,
In the conventional charging method as shown in Fig. 4, CaO / SiO 2
Will be lost, and the reducing ability will be reduced.

【0011】これに対して本発明によればクロム鉱石サ
ンドにあらかじめ必要な生石灰分を含ませて塊状化して
おくことから、容易に全時間を通してスラグ組成をコン
トロールすることが可能となる。塊状化の手段はペレッ
ト化、ブリケット化などで常套手段で十分である。図2
に溶融還元精錬時に塩基度が 2.5〜 3.5になるようにク
ロム鉱石中にあらかじめ石灰石を混合して焼成し塊状化
して使用する本発明の方法と、生石灰を単味で使用する
図4に示す従来の方法によるクロム鉱石の見掛けの還元
速度定数K1 とを比較して示した。
On the other hand, according to the present invention, the chrome ore sand is made to agglomerate by previously containing the necessary quicklime, so that the slag composition can be easily controlled throughout the entire time. As a means for agglomerating, conventional means such as pelletizing or briquetting is sufficient. Figure 2
The method of the present invention in which limestone is mixed in advance with chrome ore so as to have a basicity of 2.5 to 3.5 at the time of smelting reduction refining, and the limestone is lumped and used, and quick lime is used as a conventional method shown in FIG. It is shown in comparison with the apparent reduction rate constant K 1 of the chromium ore by the method of.

【0012】ここで見掛けの還元速度定数K1 は下記の
式で表わされる。 d(T・Cr)/dt=K1 (T・Cr) T・Cr:スラグ中のトータルCr濃度 本発明の方法では、従来法に比較して滓化のバラツキが
ないため見掛けの還元速度が向上していることがわか
る。また、図3にはその結果であるCrペレットを規定量
(10t・Cr)添加後のスラグ中のT・Cr(%)を示して
おり、本発明の方法によればスラグ中のT・Cr量が従来
の方法に比較して低くなっており本発明の効果がよくわ
かる。
Here, the apparent reduction rate constant K 1 is expressed by the following equation. d (T · Cr) / dt = K 1 (T · Cr) T · Cr: Total Cr concentration in slag In the method of the present invention, there is no variation in slag formation as compared with the conventional method, so that the apparent reduction rate is You can see that it is improving. Further, FIG. 3 shows the T / Cr (%) in the slag after the addition of the specified amount of Cr pellets (10 t · Cr) as a result of the result. According to the method of the present invention, T / Cr in the slag is shown. Since the amount is lower than that of the conventional method, the effect of the present invention can be clearly understood.

【0013】[0013]

【実施例】85t上底吹転炉を用いて、Cr鉱石の溶融還元
を実施した。Cr鉱石は比較のため次の2種類を用いた。 (A) Cr鉱石のみを焼成してペレット化したもの(成
分を表1に示す従来法) (B) Cr鉱石に生石灰を添加(Cr鉱石: CaO=1:0.
18)し、焼成してペレット化したもの(成分を表2に示
す本発明法) なお、本実験ではCr鉱石サンドはいずれもロータリーキ
ルンによって予備還元したものを用いた。
EXAMPLE A smelting reduction of Cr ore was carried out using an 85t top-bottom blow converter. The following two types of Cr ores were used for comparison. (A) Cr ore only fired and pelletized (conventional method whose components are shown in Table 1) (B) Cr ore to which quicklime is added (Cr ore: CaO = 1: 0.
18) and then pelletized by firing (the method of the present invention whose components are shown in Table 2) In this experiment, all the Cr ore sands used were those previously reduced by a rotary kiln.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】溶融還元条件は下記のとおりである。 1.溶銑装入量 60t 2.溶融還元温度 1550℃ 一定 3.溶融還元溶鉄中C 5.5% 4.吹錬O2 流量 300Nm3/min 5.Cr鉱石添加速度 900kg/min 6.コークス添加速度 400kg/min 7.生石灰添加速度(Aの場合のみ) Cr鉱石1400kg/ 毎に、250kg/毎添加 8.最終スラグ組成塩基度 310 Cr鉱石はCr純分で10t/チャージ(Cr鉱石30t/チャー
ジ)で統一した。本実験結果によれば本発明法による精
錬終了後のスラグ中のT・Crは1.87wt%であったのに対
し従来法ではT・Crは 5.2%であった。この結果から本
発明法の方が従来法に比較してCrの還元歩留りが向上し
ておりその有効性がわかった。
The smelting reduction conditions are as follows. 1. Hot metal charge 60t 2. Melt reduction temperature 1550 ℃ constant 3. C 5.5% in molten reduced molten iron 4. Blowing O 2 flow rate 300Nm 3 / min 5. Cr ore addition rate 900kg / min 6. Coke addition rate 400kg / min 7. Quick lime addition rate (only in case of A) Cr ore added every 1400kg /, 250kg / every 8. Final slag composition basicity 310 Cr ore was unified with Cr pure content of 10 t / charge (Cr ore 30 t / charge). According to the results of this experiment, T.Cr in the slag after the completion of refining by the method of the present invention was 1.87 wt%, whereas T.Cr was 5.2% by the conventional method. From this result, the reduction yield of Cr was improved by the method of the present invention as compared with the conventional method, and its effectiveness was found.

【0017】[0017]

【発明の効果】本発明によれば吹錬の全期間にわたり、
スラグ組成を一定にコントロールすることが可能となる
ため、見掛けの還元速度の向上、Cr還元歩留りの向上が
達成される。
According to the present invention, over the entire period of blowing,
Since the slag composition can be controlled to be constant, the apparent reduction rate and the Cr reduction yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラグ中の塩基度CaO/SiO2とスラグ中のT・Cr
(wt%)の関係を示すグラフである。
[Figure 1] Basicity CaO / SiO 2 in slag and T ・ Cr in slag
It is a graph which shows the relationship of (wt%).

【図2】本発明によるCr鉱石(B)を用いた場合と、従
来のCr鉱石(A)を用いた場合の見掛けの還元速度定数
1 を示すグラフである。
FIG. 2 is a graph showing an apparent reduction rate constant K 1 when the Cr ore (B) according to the present invention is used and when the conventional Cr ore (A) is used.

【図3】本発明によるCr鉱石(B)を使用した場合と、
従来のCr鉱石(A)を用いた場合のスラグ中のT・Cr濃
度(wt%)を示すグラフである。
FIG. 3 shows the case where Cr ore (B) according to the present invention is used,
It is a graph which shows T * Cr concentration (wt%) in slag when the conventional Cr ore (A) is used.

【図4】従来の精錬中におけるスラグ中の塩基度CaO/Si
O2の推移を示すグラフである。
FIG. 4: Basicity CaO / Si in slag during conventional refining
It is a graph which shows changes of O 2 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クロム鉱石サンドを塊状化し、転炉型精
錬容器に上添加し、クロム鉱石の溶融還元を行う方法に
おいて、前記クロム鉱石サンドに溶融還元に必要な生石
灰分をあらかじめ混合して塊状化し、転炉型精錬容器に
上添加して溶融還元することを特徴とするクロム鉱石の
溶融還元方法。
1. A method in which chrome ore sand is lumped and added to a converter-type refining vessel to perform smelting reduction of chrome ore, and the lime ore sand necessary for smelting reduction is mixed in advance to form lumps. A method for smelting and reducing chromium ore, which comprises liquefying and adding it to a converter-type refining vessel to perform smelting reduction.
JP34067291A 1991-12-24 1991-12-24 Method for melting and reducing chromium ore Pending JPH05171302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34067291A JPH05171302A (en) 1991-12-24 1991-12-24 Method for melting and reducing chromium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34067291A JPH05171302A (en) 1991-12-24 1991-12-24 Method for melting and reducing chromium ore

Publications (1)

Publication Number Publication Date
JPH05171302A true JPH05171302A (en) 1993-07-09

Family

ID=18339213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34067291A Pending JPH05171302A (en) 1991-12-24 1991-12-24 Method for melting and reducing chromium ore

Country Status (1)

Country Link
JP (1) JPH05171302A (en)

Similar Documents

Publication Publication Date Title
CA2302244C (en) Method of making iron and steel
JP4691827B2 (en) Granular metal iron
JPH08337827A (en) Method for reducing metal oxide in rotary hearth furnace heated with oxidizing flame
US20010025550A1 (en) Process for manufacturing molten metal iron
US3323907A (en) Production of chromium steels
JPS6164807A (en) Melt reduction method of iron ore
US3947267A (en) Process for making stainless steel
Jagannath et al. Performance assessment of partially pre-fused synthetic flux in basic oxygen steel making
JPH05171302A (en) Method for melting and reducing chromium ore
US3165398A (en) Method of melting sponge iron
JPS61194125A (en) Simultaneous treatment of sludge and steel making slag
US3942977A (en) Process for making iron or steel utilizing lithium containing material as auxiliary slag formers
JPH0563541B2 (en)
JPS6250544B2 (en)
US1428061A (en) Manufacture of iron and steel
RU2756057C2 (en) Method for obtaining vanadium cast iron from iron-vanadium raw materials
JPH0635604B2 (en) Blast furnace operation method
JPS58197208A (en) Melt reduction method of metallic oxide ore
SU1696478A1 (en) Method of melting titanium-magnetite ores in blast furnace
JPS62167809A (en) Production of molten chromium iron
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPS62167808A (en) Production of molten chromium iron
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JP3603969B2 (en) Method for producing hot metal containing chromium and / or nickel
JPS61106744A (en) Melting and manufacturing method of stainless steel