JPH05170562A - Connection of superplastic ceramic wire - Google Patents

Connection of superplastic ceramic wire

Info

Publication number
JPH05170562A
JPH05170562A JP4045032A JP4503292A JPH05170562A JP H05170562 A JPH05170562 A JP H05170562A JP 4045032 A JP4045032 A JP 4045032A JP 4503292 A JP4503292 A JP 4503292A JP H05170562 A JPH05170562 A JP H05170562A
Authority
JP
Japan
Prior art keywords
wires
superplastic
connection
temperature
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4045032A
Other languages
Japanese (ja)
Other versions
JPH0647506B2 (en
Inventor
Fumihiro Wakai
史博 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4045032A priority Critical patent/JPH0647506B2/en
Publication of JPH05170562A publication Critical patent/JPH05170562A/en
Publication of JPH0647506B2 publication Critical patent/JPH0647506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Ceramic Products (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable the connection of wires with each other by superposing the end parts of a pair of wires composed of an electrically conductive superplastic ceramic and pressing the superposed part at a specific temperature, thereby increasing the contact area by the deformation of the wires. CONSTITUTION:In the connection of a pair of wires made of an electrically conductive superplastic ceramic material containing at least one kind of ion, conduction electron and hole as a carrier (e.g. zirconia solid solution and alumina incorporated with Y2O3, MgO, CaO, etc.), the end parts of both wires are superposed one upon another and subjected to superplastic processing at a straining rate of 10<-2> to 10<-5>S<-1> while keeping at a temperature between 0.5Tm and 0.8Tm (Tm is melting point) to enable the connection of the wires. Concretely, a sintered ceramic material is heated to a temperature to exhibit superplasticity and subjected to constrictive wire-drawing by extrusion or drawing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気伝導性を有するセ
ラミックス線材の接合方法、さらに詳しくは、ち密に焼
結したセラミック多結晶体を超塑性変形させることによ
り線材の拡散接合による結線を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of joining ceramic wire rods having electrical conductivity, and more specifically, to a connection by diffusion joining of the wire rods by superplastically deforming a densely sintered ceramic polycrystalline body. Regarding the method.

【0002】[0002]

【従来の技術】酸化物セラミックスはイオン、伝導電
子、正孔を担体としだ電気伝導性を示す。高いイオン伝
導を示す材料にはβ−アルミナ構造の酸化物や螢石構造
の酸化物、例えばイットリウム安定化ジルコニアがあ
る。遷移元素を含むある種の酸化物や不定比化合物例え
ばTiOやNiOでは、伝導電子と正孔の移動による大
きな電気伝導度をもつ。さらに、不定比組成をもつある
種のペロブスカイト型酸化物、例えばYBaCu
7−xやSrLa2−xCuO4−yではある臨界温
度以下で超伝導となる。これらの電気伝導性材料は酸素
センサー、固体電解質等に応用されている。しかし、セ
ラミックスを金属と同様に、電気伝導性の線材として利
用する試みはほとんどなされていない。これは焼結した
セラミックスがもろく、塑性加工ができないために、線
材として取り扱うことが極めて困難であったためであ
る。超伝導を示すセラミックスの線材を製造するための
方法として、金属パイプに粉末を充填して線引き加工
後、焼成することが行われている。しかし、この方法で
は金属被覆を通して焼成するために、セラミックスのち
密化と不定比性の制御が困難であり、大きな臨界電流が
得られない。また、巻線加工の際に内部のセラミックス
が折れて断線するため再現性、信頼性に乏しいという欠
点があった。
2. Description of the Related Art Oxide ceramics exhibit electric conductivity with ions, conduction electrons and holes as carriers. Materials exhibiting high ionic conductivity include β-alumina structure oxides and fluorite structure oxides such as yttrium-stabilized zirconia. Certain oxides and nonstoichiometric compounds containing transition elements, such as TiO and NiO, have a large electric conductivity due to the movement of conduction electrons and holes. Furthermore, certain perovskite type oxides having a non-stoichiometric composition, such as YBa 2 Cu 3 O
In 7-x and Sr x La 2-x CuO 4 -y becomes superconducting below a certain critical temperature. These electrically conductive materials are applied to oxygen sensors, solid electrolytes and the like. However, almost no attempts have been made to use ceramics as electrically conductive wires, as with metals. This is because the sintered ceramics are brittle and cannot be plastically processed, and it is extremely difficult to handle them as a wire rod. As a method for producing a wire rod of ceramics exhibiting superconductivity, a metal pipe is filled with powder, drawn, and fired. However, in this method, since firing is performed through the metal coating, it is difficult to densify the ceramic and control the nonstoichiometry, and a large critical current cannot be obtained. In addition, there is a drawback that reproducibility and reliability are poor because the internal ceramics are broken and broken during the winding process.

【0003】また、線材同士を結線するに際しても、金
属材料では溶接やハンダ付けが容易であることに対し、
セラミックスに対しては適用が困難であるという問題が
ある。
In addition, even when wires are connected to each other, it is easy to weld and solder with a metal material.
There is a problem that it is difficult to apply to ceramics.

【0004】本発明は、従来のかかる問題を解決するも
ので、セラミックスの超塑性変形現象を利用することに
より、金属線材と同様な拡散接合による結線方法の提供
を目的とする。
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a connection method by diffusion bonding similar to that of a metal wire rod by utilizing the superplastic deformation phenomenon of ceramics.

【0005】[0005]

【問題を解決するための手段】本発明者は、部分安定化
ジルコニアの微細結晶粒から構成される焼結体が超塑性
変形を示すことを見い出し、焼結後のセラミックスに対
し超塑性加工が適用できることを明らかにした。さらに
本発明者は部分安定化ジルコニアの超塑性変形機構の研
究を続け、酸化物系セラミックスの超塑性と金属や合金
の超塑性とが同一の構成方程式で記述されることを突き
とめ、超塑性は原子間結合の種類によらず、等軸形状、
微細結晶粒を有する多結晶体に共通の性質であるとの結
論に達した。これをもとに超微細結晶粒酸化物多結晶体
の研究を行った結果、螢石型結晶構造のジルコニアだけ
でなく、アルミナやペロブスカイト型結晶構造のYBa
Cu7−xでも超塑性に対応する変形挙動を示す
ことを確認した。さらに、超塑性変形の生じる温度及び
応力で超塑性セラミック線材を加圧して拡散接合を行わ
しめると、円形断面を有する線材が互いに変形すること
により接触面積が増加し、強固な結合が得られることを
見出し、本発明を完成するに至った。
The inventors of the present invention have found that a sintered body composed of fine grains of partially stabilized zirconia exhibits superplastic deformation, and that the ceramics after sintering can be processed by superplastic processing. Clarified that it is applicable. Further, the present inventor has continued to research the superplastic deformation mechanism of partially stabilized zirconia, and has found that the superplasticity of oxide ceramics and the superplasticity of metals and alloys are described by the same constitutive equation, Is an equiaxed shape, regardless of the type of interatomic bond,
It is concluded that it is a common property for polycrystalline bodies with fine grains. As a result of research on an ultra-fine crystal grain oxide polycrystal based on this, not only zirconia having a fluorite type crystal structure but also YBa having an alumina or perovskite type crystal structure is obtained.
It was confirmed that even 2 Cu 3 O 7-x exhibits a deformation behavior corresponding to superplasticity. Furthermore, if pressure is applied to the superplastic ceramic wire at the temperature and stress at which superplastic deformation occurs, and diffusion bonding is performed, the wires having circular cross sections are deformed to each other, increasing the contact area and obtaining a strong bond. The present invention has been completed and the present invention has been completed.

【0006】すなわち、本発明は、イオン、伝導電子、
正孔のうち少なくとも1種を担体とした電気伝導性を有
する超塑性セラミックスの線材2本を相互に接合するに
際し、各線材の端部を重ね合わせ、0.5Tmから0.
8Tm(ただしTmは融点)の温度に保持して加圧し、
変形による接触面積を増加させることを特徴とする線材
の接合方法を提供するものである。
That is, the present invention relates to ions, conduction electrons,
When two wires of superplastic ceramics having electric conductivity having at least one kind of holes as a carrier are bonded to each other, the ends of the wires are overlapped with each other, and the wire ends of 0.5 Tm to 0.
Hold at a temperature of 8 Tm (Tm is melting point) and pressurize,
The present invention provides a method for joining wire rods, which is characterized by increasing a contact area due to deformation.

【0007】本発明の加工及び結合方法の適用できるセ
ラミックスはイオン、伝導電子、正孔のうち少なくとも
1種を担体とした電気伝導性を有する酸化物多結晶体で
あり、超塑性を発現する材料である。電気伝導性酸化物
のうち、高いイオン伝導を示すものとして、Y
MgO,CaO等を添加したジルコニア固溶体及びアル
ミナが例示できる。超伝導を示すものとしてはYBa
Cu7−x,SrLa2−xCuO4−yが例示
できる。電気伝導性を有するセラミックスはこれら単独
の組成からなる多結晶体に限定されず、他の結晶が共存
した複合体であってもよい。この際の他の結晶体は電気
伝導性である必要はないが、電気伝導性のある結晶と反
応して他の組成の結晶を形成しないものである。このよ
うな結晶の組合せとして、例えばジルコニア固溶体とア
ルミナ、YBaCu7−xとBaCuY
ある。複合体が電気伝導性をもつためには絶縁性結晶の
含有量が70%以下である必要がある。
Ceramics to which the processing and bonding method of the present invention can be applied are oxide polycrystals having electric conductivity with at least one of ions, conduction electrons and holes as a carrier and exhibiting superplasticity. Is. Among the electrically conductive oxides, those exhibiting high ionic conductivity include Y 2 O 3 ,
Examples thereof include zirconia solid solution added with MgO and CaO, and alumina. YBa 2 that exhibits superconductivity
Cu 3 O 7-x, Sr x La 2-x CuO 4-y can be exemplified. The ceramics having electrical conductivity are not limited to the polycrystals composed of these single compositions, and may be a composite in which other crystals coexist. At this time, the other crystal body does not need to be electrically conductive, but it does not react with the electrically conductive crystal to form a crystal having another composition. As a combination of such crystals, for example, zirconia solid solution and alumina, there is a YBa 2 Cu 3 O 7-x and BaCuY 2 O 5. In order for the composite to have electrical conductivity, the content of insulating crystals must be 70% or less.

【0008】本発明において超塑性を示す酸化物多結晶
体は等軸形状の微細結晶粒から構成され、粒径が2μm
以上の粗大粒子を含まないことが好ましい。結晶粒径が
小さいほど、高温において粒界すべりによる超塑性変形
が容易となる。
The oxide polycrystal exhibiting superplasticity in the present invention is composed of equiaxed fine crystal grains having a grain size of 2 μm.
It is preferable not to include the above coarse particles. The smaller the crystal grain size, the easier the superplastic deformation due to the grain boundary slip at high temperature.

【0009】本発明方法では、前記した電気伝導性セラ
ミックスを融点の0.5から0.8の温度範囲において
10−2〜10−5−1のひずみ速度で超塑性加工を
行う。融点の0.5以下の温度では原子の拡散が遅く、
高温変形を生じる以前に破壊するため好ましくない。融
点の0.8以上の温度では著しい粒成長が生じ、粒子が
粗大化するので粒界すべりによる超塑性が起こらない。
In the method of the present invention, the above-mentioned electrically conductive ceramics are superplastically worked at a strain rate of 10 −2 to 10 −5 S −1 within a temperature range of 0.5 to 0.8 of the melting point. At temperatures below the melting point of 0.5, diffusion of atoms is slow,
It is not preferable because it breaks before high temperature deformation occurs. At temperatures above the melting point of 0.8, remarkable grain growth occurs and the grains become coarse, so superplasticity due to grain boundary slip does not occur.

【0010】次に、本発明方法で用いられる線材の製造
方法を具体的に説明する。
Next, the method of manufacturing the wire used in the method of the present invention will be specifically described.

【0011】捧状に焼結したセラミックスを超塑性を生
じる温度に加熱し、押し出し又は引き抜き加工により、
断面積を縮小して伸線を行う。押し出し又は引き抜きの
ダイス自体も高温に保持する必要があり、素材として耐
熱合金、窒化ケイ素、炭化ケイ素等の耐熱セラミックス
を使用することが好ましい。
By heating the ceramics sintered in a special shape to a temperature at which superplasticity is generated, and extruding or drawing,
The cross-sectional area is reduced and wire drawing is performed. The extrusion or drawing die itself must be kept at a high temperature, and it is preferable to use a heat-resistant alloy such as a heat-resistant alloy, silicon nitride, or silicon carbide as a raw material.

【0012】焼結あるいは超塑性加工により得られた線
材に対し、曲げ加工あるいはコイル状に巻線加工を施す
に際し、線材を超塑性温度に加熱し、加工により線材に
与えられるひずみ10−2〜10−5−1である速度
で変形する。
When bending or coiling a wire obtained by sintering or superplastic working, the wire is heated to a superplastic temperature and the strain applied to the wire by the working is 10 −2 to It deforms at a rate of 10 −5 S −1 .

【0013】次に、本発明の線材の接合方法を具体的に
説明する。
Next, the method for joining the wire rods of the present invention will be specifically described.

【0014】図1と図2は本発明に係わる方法の実施要
領を説明する断面図で、先ず図1に示すように、この2
本の線材1,2の端部を重ね合わせ、超塑性温度に保持
して加圧する。前記線材は図2に示すように、変形によ
り接触面積が増加し、さらに拡散接合により強固に接合
される。このようにしてセラミック線材の結線が達成さ
れる。
FIGS. 1 and 2 are sectional views for explaining the procedure of the method according to the present invention. First, as shown in FIG.
The ends of the two wire rods 1 and 2 are overlapped with each other, and the superplastic temperature is maintained and pressure is applied. As shown in FIG. 2, the wire material is deformed to increase the contact area and is firmly bonded by diffusion bonding. In this way, the connection of the ceramic wire is achieved.

【0015】[0015]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0016】実施例 YBaCu7−x多結晶体(平均粒径0.5μ
m)の直径1mmの線材を900℃において、端部を重
ね合わせて5kgで加圧し、30分保持して、拡散接合
を行った。結線後の臨界電流は、素材の臨界電流の90
%であった。
Example YBa 2 Cu 3 O 7-x polycrystal (average grain size 0.5 μm)
The wire rod having a diameter of 1 mm of m) was overlapped at 900 ° C., pressed at 5 kg for 5 minutes and held for 30 minutes for diffusion bonding. The critical current after connection is 90% of the critical current of the material.
%Met.

【0017】[0017]

【発明の効果】以上のように本発明によれば電気伝導性
セラミックスの超塑性加工により、線材相互の結線が可
能となり、特に、液体窒素温度以上で作動する超伝導マ
グネット用コイル成形や配線における、ち密に焼結した
セラミック線材の適用と取り扱いが可能となる。
As described above, according to the present invention, it is possible to connect wires to each other by superplastic working of electrically conductive ceramics, and particularly in coil forming and wiring for superconducting magnets that operate at liquid nitrogen temperature or higher. Therefore, it is possible to apply and handle a densely sintered ceramic wire rod.

【図面の簡単な説明】[Brief description of drawings]

【図1】 接合前の線材の接触状態を示す断面図。FIG. 1 is a cross-sectional view showing a contact state of wires before joining.

【図2】 接合後の線材の接触面積が拡大した状態を示
す断面図。
FIG. 2 is a cross-sectional view showing a state where the contact area of the wire rod after joining is enlarged.

【符号の説明】[Explanation of symbols]

1,2 線材 1,2 wire rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオン、伝導電子、正孔のうち少なくとも
1種を担体とした電気伝導性を有する超塑性セラミック
スの線材2本を相互に接合するに際し、各線材の端部を
重ね合わせ、0.5Tmから0.8Tm(ただしTmは
融点)の温度に保持して加圧し、変形による接触面積を
増加させることを特徴とする線材の接合方法。
1. When two wire rods of superplastic ceramics having electric conductivity using at least one of ions, conduction electrons and holes as a carrier are bonded to each other, the end portions of the wire rods are overlapped and A method for joining wire rods, which comprises maintaining a temperature of 0.5 Tm to 0.8 Tm (where Tm is a melting point) and applying pressure to increase the contact area due to deformation.
JP4045032A 1992-01-18 1992-01-18 Joining method for superplastic ceramic wire Expired - Lifetime JPH0647506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045032A JPH0647506B2 (en) 1992-01-18 1992-01-18 Joining method for superplastic ceramic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045032A JPH0647506B2 (en) 1992-01-18 1992-01-18 Joining method for superplastic ceramic wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62217693A Division JPS6458503A (en) 1987-08-31 1987-08-31 Method for processing and connecting wire material of superplastic ceramics

Publications (2)

Publication Number Publication Date
JPH05170562A true JPH05170562A (en) 1993-07-09
JPH0647506B2 JPH0647506B2 (en) 1994-06-22

Family

ID=12708003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045032A Expired - Lifetime JPH0647506B2 (en) 1992-01-18 1992-01-18 Joining method for superplastic ceramic wire

Country Status (1)

Country Link
JP (1) JPH0647506B2 (en)

Also Published As

Publication number Publication date
JPH0647506B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
EP0556837B1 (en) Method of joining superconducting wire using oxide high-temperature superconductor
JP2754564B2 (en) Method for producing superconducting composite
US6246007B1 (en) Oxide superconductive wire and process for manufacturing the same
JP4995284B2 (en) Joining method of oxide superconductor tube and superconducting joint
EP0311337A2 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP0310033B1 (en) Superconducting wire and method of producing the same
Arendt et al. The fabrication of high critical current capability bismuth superconductor tape
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH05170562A (en) Connection of superplastic ceramic wire
JPH0442163B2 (en)
JPS63284767A (en) Connecting structure for superconducting wire
WO1989001706A1 (en) Machine workable, thermally conductive, high strength, ceramic superconducting composite
JPH06111862A (en) Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture
JPH0697625B2 (en) Method of joining electrode terminals to oxide superconductor
JP2549684B2 (en) Oxide-based superconducting wire connection method
JP2583901B2 (en) Superconducting electrical circuit
JP2563564B2 (en) Superconducting oxide wire
JP2770247B2 (en) Method for producing superconducting composite with electrode
JP2727565B2 (en) Superconductor manufacturing method
EP0303311A1 (en) Method of manufacturing an electrically conductive contact
JPH0883519A (en) Manufacture of high temperature superconducting junction body
JP3466758B2 (en) Boron-containing metal oxide wire and method for producing metal oxide wire
JPS63225410A (en) Compound superconductive wire and its manufacture
JPH04171871A (en) Oxide superconductor and manufacture thereof
JPH0196905A (en) Manufacture of superconducting coil

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term