JPH05170469A - Production of quartz fiber - Google Patents

Production of quartz fiber

Info

Publication number
JPH05170469A
JPH05170469A JP35680991A JP35680991A JPH05170469A JP H05170469 A JPH05170469 A JP H05170469A JP 35680991 A JP35680991 A JP 35680991A JP 35680991 A JP35680991 A JP 35680991A JP H05170469 A JPH05170469 A JP H05170469A
Authority
JP
Japan
Prior art keywords
fiber
particles
quartz
irradiation
electron beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35680991A
Other languages
Japanese (ja)
Inventor
Emu Ajiyayan Pii
エム アジャヤン ピー
Sumio Iijima
澄男 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP35680991A priority Critical patent/JPH05170469A/en
Publication of JPH05170469A publication Critical patent/JPH05170469A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To work quartz glass fiber of nanometer size by irradiating it with electron beams in an electron microscope. CONSTITUTION:The fiber made by this method has a diameter of several nanometers and a length of several microns and is the thinnest of all the fiber that has been produced. In the production of this fiber, silicon fine particles 1 whose surface is oxidized (composite particles of silicon-oxide) are irradiated with convergent electron beams on their joined parts with each other. The joined part 2 of the particles is deformed and elongated by the irradiation, causing thin quartz fiber to be formed between the particles. Drawing of the fiber is easily controlled by changing the irradiation intensity of electron beams on the joined parts of the particles. The interesting application to optical fiber or semiconductor techniques or structural materials of the next generation is developed by the quartz fiber thus produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ技術に興味
ある応用が開ける直径数ナノメータ以下の石英繊維の製
造方法に関する。これらの極微細繊維は、微細金属セラ
ミック複合材料よびMOS(金属−酸化物−半導体)デ
バイスにも応用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz fibers having a diameter of several nanometers or less, which is applicable to optical fiber technology. These ultrafine fibers can also be applied to fine metal-ceramic composite materials and MOS (metal-oxide-semiconductor) devices.

【0002】[0002]

【発明が解決しようとする課題】本発明の目的は、直径
数ナノメータ以下の極微細石英遷移の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an ultrafine quartz transition having a diameter of several nanometers or less.

【0003】[0003]

【課題を解決するための手段】サブミクロン・サイズの
シリコン粒子を、気体蒸着法を用いて作り、数時間、〜
1000℃の大気中で酸化する。表面を酸化したシリコ
ン微粒子は、シリコン核と、通常厚さが幾ナノメータの
一様な石英外層とから構成される。以後、これらを便宜
上(シリコン核は観察中は安定状態にあるので)、石英
微粒子と呼ぶことにする。灰色の酸化粉末は、その間を
細いブリッジ(接合部分)で結合された多くの石英微粒
子からなる。図1(a)によると、これらの粒子1への
均一な電子線照射は、粒子間の接合部分2を埋めること
により、緩やかに結合した構造の焼結(sinteri
ng)および凝固(compaction)を生じさせ
る。任意の2粒子間の焼結は、全表面エネルギーの減少
と、高い蒸気圧の領域(曲率が正)から接合部分(曲率
が負で、そのため蒸気圧が低い)への物質の移動とによ
って推進される。
[Means for Solving the Problems] Submicron-sized silicon particles are produced by a vapor deposition method for several hours.
Oxidizes in the atmosphere at 1000 ° C. The surface-oxidized silicon fine particles are composed of silicon nuclei and a uniform outer quartz layer having a thickness of several nanometers. Hereinafter, these are referred to as quartz fine particles for convenience (since the silicon nuclei are in a stable state during observation). The gray oxide powder is composed of many fine quartz particles that are connected by thin bridges (junctions) between them. According to FIG. 1 (a), the uniform irradiation of the particles 1 with an electron beam is performed by filling the joint portion 2 between the particles, thereby sintering the slowly bonded structure (sinteri).
ng) and coagulation. Sintering between any two particles is driven by the reduction in total surface energy and the transfer of material from the region of high vapor pressure (positive curvature) to the interface (negative curvature and therefore low vapor pressure). To be done.

【0004】この石英繊維製造技術は、接合部分に電子
線を集束させると、エネルギー(圧力)が他の部分に比
較してより高い接合部分を形成し、均衡を逆転させると
いう事実に基づいている。この結果、図1(b)による
と、接合部分から表面の凸部へ物質が流れ出し、接合部
分が細くなって伸びる。最初、接合部分の伸びは、離間
した粒子を有する亜鈴形状をなすが(図2(a))、電
子線を十分な時間照射すると、長く細い繊維状に変形し
た石英の接合部分を形成する(図2(b))。接合部分
の伸びは、電子線をデフォーカスしたり強度を下げるこ
とにより制御できる。なお、図2(b)において、粒子
の上に見える黒い部分は接合部分の流れおよび変形に追
従して表面に蒸着した金クラスタである。図3による
と、こうして得られた繊維は、直径が数ナノメータで、
長さは数ミクロンになる。
This quartz fiber manufacturing technique is based on the fact that when an electron beam is focused on a joint, the energy (pressure) forms a joint having a higher energy than that of other portions, and the balance is reversed. .. As a result, according to FIG. 1B, the substance flows out from the joint portion to the convex portion on the surface, and the joint portion becomes thin and extends. Initially, the elongation of the bonded portion is dumbbell-shaped having separated particles (FIG. 2 (a)), but when the electron beam is irradiated for a sufficient time, the bonded portion of quartz deformed into long and thin fibrous is formed ( FIG. 2B). The elongation of the bonded portion can be controlled by defocusing the electron beam or lowering the strength. In addition, in FIG. 2B, the black portion visible on the particle is a gold cluster deposited on the surface following the flow and deformation of the joining portion. According to FIG. 3, the fibers thus obtained have a diameter of a few nanometers,
The length will be a few microns.

【0005】[0005]

【実施例】図2および図3は、十分な時間の照射によっ
て形成される変形した接合部分と最終繊維を電子顕微鏡
で観察した実験像を示す。この結果は、AKASHI透
過電子顕微鏡を用い、200keVおよびベース圧力1
-6torrで操作し、電流密度を〜10乃至100a
mps/cm2 にして得られた。接合部分が変形し繊維
を線引きする速度は、使用される実際の電流密度に依存
するが、ビームのデフォーカシングによって容易に制御
することができる。実験結果はUHV(Ultra H
igh Vacuum:超高真空)(10-10 tor
r)顕微鏡で検査され、再現可能であるということがわ
かった。UHV顕微鏡は、滑らかな表面を有する繊維を
生成することができ、実際の応用に非常に有用である。
酸化したシリコン微粒子の石英外層に対して適切な合金
処理を施し、接合部分を照射にさらすことにより、任意
のガラス組成の繊維を生成することもできる。
EXAMPLES FIGS. 2 and 3 show electron microscope images of deformed joints and final fibers formed by irradiation for a sufficient time. The results were obtained using an AKASHI transmission electron microscope at 200 keV and a base pressure of 1.
Operated at 0 -6 torr and current density of -10 to 100a
It was obtained at mps / cm 2 . The rate at which the bond deforms and draws the fiber depends on the actual current density used, but can be easily controlled by beam defocusing. The experimental results are UHV (Ultra H
high Vacuum: Ultra high vacuum (10 -10 torr)
r) Microscopically examined and found to be reproducible. The UHV microscope can produce fibers with a smooth surface, which is very useful for practical applications.
Fibers of any glass composition can also be produced by subjecting the quartz outer layer of oxidized silicon particles to a suitable alloying treatment and exposing the joints to irradiation.

【0006】前述のようにして得られた繊維は、強度の
電子照射の下で不安定になり、照射スパッタ損傷の際に
形成された表面の凸凹のところで切れる(P.M.Aj
ayan and S.Iijima,Phil.Ma
g.lett.,in press)。しかし、通常の
デフォーカスされた照射状態においては繊維は非常に安
定で、多数の石英微粒子の重畳をその先端で持ちこたえ
ることができる。本発明者は、繊維の軸に沿った繊維の
強度は、既知の石英繊維よりも良好でないにしても同程
度に良好であると考えている。事実、(スパッタリング
によって)損傷された繊維の表面は、繊維を、デフォー
カスされた電子線に十分な時間さらすことによって、滑
らかにすることができる。表面の凸凹を除去するので、
これは機械的な強度を何倍にも強化する。よって、強化
した繊維を形成する典型的なシーケンスによれば、集束
した電子線を用いて繊維を所望の長さまで線引きし、繊
維をデフォーカスした照射に十分な時間さらし、滑らか
な表面を形成し、集束した電子線を用いて繊維を両端で
最終的に切断する。繊維の強度は、繊維を第2の相でコ
ーティングする(光導波路として異なる屈折率の物質で
ガラス繊維を被覆する)ことにより改良でき、さらに光
学特性も改良することができる。
The fibers obtained as described above become unstable under intense electron irradiation and break at the surface irregularities formed during irradiation sputter damage (PM Aj).
ayan and S.A. Iijima, Phil. Ma
g. lett. , In press). However, under normal defocused irradiation conditions, the fibers are very stable and can withstand the superposition of numerous quartz particles at their tip. The inventor believes that the strength of the fibers along the fiber axis is equally good, if not better than known quartz fibers. In fact, the surface of the fiber damaged (by sputtering) can be smoothed by exposing the fiber to the defocused electron beam for a sufficient time. Since it removes irregularities on the surface,
This enhances the mechanical strength many times. Thus, according to a typical sequence of forming a reinforced fiber, a focused electron beam is used to draw the fiber to the desired length and expose the fiber to defocused irradiation for a sufficient time to form a smooth surface. Finally, the fiber is finally cut at both ends using a focused electron beam. The strength of the fibers can be improved by coating the fibers with a second phase (coating the glass fibers with a material of different refractive index as an optical waveguide) and also improving the optical properties.

【0007】[0007]

【発明の効果】本明細書により、かつて製造された中で
一番小さい石英(ガラス)繊維を製造するための技術を
開示した。本発明により製造された繊維は、より小さい
サイズのファイバの使用がデバイスのより高性能および
高効率を意味する光ファイバ産業において、重要な実際
的な応用をもたらす。本発明者は、より良好な極微細な
セラミック・ファイバ構造材料の製造、および酸化物半
導体デバイスにおいてこの技術が有用であると考えてい
る。
The present specification discloses a technique for producing the smallest quartz (glass) fiber ever produced. The fibers produced according to the present invention provide important practical applications in the optical fiber industry where the use of smaller size fibers means higher performance and efficiency of the device. The inventor believes that this technique is useful in better fabrication of finer ceramic fiber structure materials and in oxide semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】石英微粒子間の接合部分の変形における電子線
照射の効果を示す略図であり、(a)は均一な照射が原
子種の拡散のために活性化エネルギーを与え、その結
果、微粒子の焼結が全表面積と自由エネルギーを減少さ
せる様子を示し、(b)は接合部分での集束した電子線
照射が高エネルギーと不安定な接合部分を生成し、接合
部分から集合体の凸部までの物質の流れによって、接合
部分が弾力的に変形される様子を示す。
FIG. 1 is a schematic diagram showing the effect of electron beam irradiation on the deformation of the junction between quartz particles, where (a) uniform irradiation gives activation energy for diffusion of atomic species, and as a result, It shows that sintering reduces the total surface area and free energy. (B) Focused electron beam irradiation at the joint produces high energy and unstable joints, from the joint to the convex part of the assembly. It shows that the joint part is elastically deformed by the flow of the substance.

【図2】(a)は、集束させた電子線照射の際の2つの
石英微粒子間の変形した接合部分のTEM像の写真であ
り、(b)は、多数の粒子の集合体における2つの石英
微粒子間の、ほぼ完全に変形した接合部分を示す写真で
ある。
FIG. 2 (a) is a photograph of a TEM image of a deformed joint between two quartz fine particles upon irradiation with a focused electron beam, and FIG. It is a photograph which shows a substantially completely deformed joint between quartz particles.

【図3】本発明によって製造された石英繊維の像を示す
写真である。
FIG. 3 is a photograph showing an image of a quartz fiber produced according to the present invention.

【符号の説明】[Explanation of symbols]

1 粒子 2 接合部分 1 particle 2 junction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表面を酸化したシリコン微粒子の互いに接
合した部分に、集束させた電子線を照射し、接合部分の
石英を変形し延ばして、直径数ナノメータ以下の極微細
石英繊維とすることを特徴とする石英繊維の製造方法。
1. An ultrafine quartz fiber having a diameter of a few nanometers or less is formed by irradiating a focused electron beam to a bonded portion of silicon fine particles whose surfaces are oxidized to deform and extend quartz in the bonded portion. A method for producing a characteristic quartz fiber.
JP35680991A 1991-12-26 1991-12-26 Production of quartz fiber Pending JPH05170469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35680991A JPH05170469A (en) 1991-12-26 1991-12-26 Production of quartz fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35680991A JPH05170469A (en) 1991-12-26 1991-12-26 Production of quartz fiber

Publications (1)

Publication Number Publication Date
JPH05170469A true JPH05170469A (en) 1993-07-09

Family

ID=18450885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35680991A Pending JPH05170469A (en) 1991-12-26 1991-12-26 Production of quartz fiber

Country Status (1)

Country Link
JP (1) JPH05170469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511282A (en) * 2005-10-12 2009-03-19 アデレード リサーチ アンド イノヴェーション ピーティーワイ エルティーディー Manufacture of nanowires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511282A (en) * 2005-10-12 2009-03-19 アデレード リサーチ アンド イノヴェーション ピーティーワイ エルティーディー Manufacture of nanowires

Similar Documents

Publication Publication Date Title
US7279686B2 (en) Integrated sub-nanometer-scale electron beam systems
JP4888128B2 (en) Electron source chip and manufacturing method thereof
Matsui et al. In situ observation on electron‐beam‐induced chemical vapor deposition by transmission electron microscopy
DE2621138A1 (en) METHOD OF CONNECTING A WIRE TO A SEMICONDUCTOR CHIP AND APPARATUS
CN108389806B (en) A kind of chopper improving Wire bonding strength
DE112019001985B4 (en) Bonded body of a single crystal piezoelectric substrate and a support substrate
CN101602484B (en) Method for welding amorphous silicon oxide nanowires
DE112019002430B4 (en) Connected body and acoustic wave element
JPH05170469A (en) Production of quartz fiber
US7777403B2 (en) Photonic-crystal filament and methods
DE112019001960T5 (en) Connected body made of a substrate made of a piezoelectric material and a carrier substrate
Zhang et al. Single-step maskless nano-lithography on glass by femtosecond laser processing
KR20010055134A (en) Fabrication method for metal nano-wires by using carbon nanotube mask
Rödel et al. Microdesigned Interfaces New Opportunities for Materials Science
JP2003300200A (en) Engineering processing method of defect and electric conductivity of conductive nanoscale structure
US6943356B2 (en) Tip for nanoscanning electron microscope
KR100464222B1 (en) Field Emission Material and manufacturing method thereof
EP1141753B1 (en) Method for producing optical fibers with subwavelength apertures
Khan et al. Multi-walled carbon nanotubes under focused electron beam: metal passivation effect and nanoscaled curvature effect
WO2020147170A1 (en) Silicon nitride ceramic with surface-modifiable micro-nano structure, and processing method therefor
KR100400084B1 (en) Method of manufacturing stainless steel composites
Suh et al. Nanostructure manipulation device for transmission electron microscopy: application to titania nanoparticle chain aggregates
JPH08318378A (en) Method for joining minute object
US20080003415A1 (en) Surface Pairs
Cahay et al. Characterization and field emission properties of lanthanum monosulfide nanoprotrusion arrays obtained by pulsed laser deposition on self-assembled nanoporous alumina templates