JPH05170424A - Production of silica sol - Google Patents

Production of silica sol

Info

Publication number
JPH05170424A
JPH05170424A JP34142191A JP34142191A JPH05170424A JP H05170424 A JPH05170424 A JP H05170424A JP 34142191 A JP34142191 A JP 34142191A JP 34142191 A JP34142191 A JP 34142191A JP H05170424 A JPH05170424 A JP H05170424A
Authority
JP
Japan
Prior art keywords
particle size
silica sol
silica
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34142191A
Other languages
Japanese (ja)
Inventor
Kouichi Kaneo
浩一 鐘尾
Toshinobu Yanou
敏展 野納
Taketoshi Fujiwara
武利 藤原
Masahiro Maeno
昌弘 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP34142191A priority Critical patent/JPH05170424A/en
Publication of JPH05170424A publication Critical patent/JPH05170424A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To provide a silica sol for which the average particle diameter and the sharp particle diameter distribution suitable for the thickness of a polyester film are arbitrarily controlled in a polar solvent such as ethylene glycol and no particles of large size of >=3.0mum is included and particles are uniformly and stably dispersed and such a form that they easily stick to the film and are hard to separate or fall from the film surface is provided. CONSTITUTION:Silica hydrogel for which an alkali silicate solution is decomposed and precipitated by neutralization reaction to obtain or the dried one is wetcrushed in a polar solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂、熱硬化性
樹脂、とりわけポリエステルフィルムのアンチブロッキ
ング材として使用されるシリカ微粒子に関する。さらに
詳しくは、ポリエステルフィルムの滑り性および耐削れ
性を改善させるために、ポリエステルフィルムの出発原
料であるエチレングリコール等の極性溶媒中で均一、安
定に分散し、かつ平均粒子径、粒度分布を任意にコント
ロール可能なシリカゾルの製造方法に関する。本発明に
よるシリカゾルは、例えば、ゴム、化粧品、塗料、歯磨
剤、製紙、研磨材等に用いられる。
FIELD OF THE INVENTION The present invention relates to a thermoplastic resin, a thermosetting resin, and more particularly to silica fine particles used as an anti-blocking material for polyester films. More specifically, in order to improve the slipperiness and abrasion resistance of the polyester film, the polyester film is uniformly and stably dispersed in a polar solvent such as ethylene glycol which is a starting material, and the average particle size and the particle size distribution are arbitrarily set. The present invention relates to a method for producing a silica sol that can be controlled. The silica sol according to the present invention is used, for example, in rubber, cosmetics, paints, dentifrices, papermaking, abrasives and the like.

【0002】[0002]

【従来の技術】シリカゾルの製造方法として、ハロゲン
化ケイ素を高温で酸化分解して得られるシリカの微粉末
を溶媒中に分散させる方法、水−アルコール溶媒中で金
属(シリコン)アルコキシドをアルカリ触媒の存在下で
加水分解する方法、アルカリケイ酸塩溶液に水素型イオ
ン交換樹脂を用いることによりアルカリイオンを水素イ
オンと交換する方法、アルカリケイ酸塩溶液を鉱酸等と
の中和反応により分解沈殿させる方法等が工業的に実用
化されている。アルカリケイ酸塩溶液を水素型イオン交
換樹脂で処理して、あるいは中和反応により得られる沈
降性シリカを酸またはアルカリで解膠することにより得
られるシリカゾルも知られている。
2. Description of the Related Art As a method for producing a silica sol, fine silica powder obtained by oxidative decomposition of silicon halide at high temperature is dispersed in a solvent, and a metal (silicon) alkoxide is used as an alkali catalyst in a water-alcohol solvent. Method of hydrolysis in the presence, method of exchanging alkali ions with hydrogen ions by using hydrogen type ion exchange resin in alkali silicate solution, decomposition precipitation by neutralization reaction of alkali silicate solution with mineral acid etc. The method of making it practical is industrially used. There is also known a silica sol obtained by treating an alkaline silicate solution with a hydrogen ion exchange resin or by deflocculating precipitated silica obtained by a neutralization reaction with an acid or an alkali.

【0003】また、このようなシリカゾルの有望な用途
であるポリエステルフィルムは優れた物理的、化学的諸
特性を有し、磁気記録材料用、写真フィルム用、コンデ
ンサー用等の主なベース材料の他、包装用、繊維用、容
器用等として幅広い使途がある。
Polyester film, which is a promising application of such silica sol, has excellent physical and chemical properties and is used as a main base material for magnetic recording materials, photographic films, capacitors, etc. It has a wide range of uses such as packaging, textiles, and containers.

【0004】上記使途の中でも最近急速な発展をしてい
るのが磁気記録材料であり、ポリエステルフィルムをベ
ースに磁性層を塗布してオーディオやビデオテープ、フ
ロッピーディスク等に使用されている。特にオーディオ
やビデオテープのような磁気記録用テープはAV機器の
開発動向に対応して高密度化、高性能化が進んでおり、
フィルムの表面特性を向上させることが最近の重要課題
となっている。また、磁気記録用テープの小型化、長時
間録音(録画)化に伴い、そのベースとなるポリエステ
ルフィルムの薄膜化が求められている。
Among the above-mentioned uses, magnetic recording materials have been rapidly developing in recent years, and are used for audios, video tapes, floppy disks, etc. by coating a magnetic layer on a polyester film as a base. In particular, magnetic recording tapes such as audio and video tapes are becoming higher in density and performance in response to the development trend of AV equipment.
Improving the surface properties of films has become an important issue recently. Further, along with the miniaturization of magnetic recording tapes and the recording for a long time (recording), it has been required to reduce the thickness of a polyester film as a base thereof.

【0005】基本的に音質、画質に関する電磁変換特性
の向上からは平滑な面が要求されるが、フィルム表面を
一定以上平滑化するとフィルム同士が密着して剥離しに
くくなり、その結果、巻取り性やテープ走行性が不良に
なる。そこで、電磁変換特性を維持し、かつ走行安定性
を向上させるため、磁性面と反対側面、いわゆる裏面に
突起を形成させて、フィルム同士の接触面積を低下さ
せ、適度に粗面化を図る試みがなされている。
Basically, a smooth surface is required in order to improve the electromagnetic conversion characteristics relating to sound quality and image quality, but if the surface of the film is smoothed to a certain level or more, the films adhere to each other and become difficult to peel off, resulting in winding. Performance and tape runnability become poor. Therefore, in order to maintain electromagnetic conversion characteristics and improve running stability, a protrusion is formed on the side opposite to the magnetic surface, the so-called back surface, to reduce the contact area between the films and to achieve an appropriate roughening. Has been done.

【0006】一般には、ポリエステルの出発原料である
エチレングリコール等のグリコール類に平均粒子径0.
05〜3.0μm程度のシリカ、炭酸カルシウム、二酸
化チタン、タルク、カオリン等の不活性無機粒子を分散
させポリエステルフィルムを製造することによって、フ
ィルム表面に突起を形成させ、フィルムの滑り性、摩擦
係数を改善する方法が採用されている(例えば、特開平
3−160033号公報、特開平3−185033号公
報参照)。
In general, glycols such as ethylene glycol, which is a starting material for polyester, have an average particle size of 0.
A polyester film is produced by dispersing inert inorganic particles such as silica, calcium carbonate, titanium dioxide, talc, and kaolin having a particle size of about 05 to 3.0 μm to form projections on the film surface, and the film has a slip property and a friction coefficient. A method for improving the above is adopted (see, for example, Japanese Patent Laid-Open Nos. 3-160033 and 3-185033).

【0007】しかし、不活性無機粒子に3.0μm以上
の粗大粒子が存在するとフィルム製膜時に粗大突起を生
じ、磁性層塗布後においても磁性層面に突起が生じ、こ
れがS/N比の低下や信号の欠落(ドロップアウト)を
引き起こしたり、またポリエステルフィルムとのなじみ
が悪かったり、更に粒子の形状が球状であるとテープの
繰り返し走行が原因で、突起を形成しているフィルム表
面の粒子が剥離、脱落しやすい等、製品に悪影響を及ぼ
すことも知られている。
However, when coarse particles of 3.0 μm or more are present in the inert inorganic particles, coarse projections are formed during film formation, and projections are formed on the surface of the magnetic layer even after coating the magnetic layer, which causes a decrease in S / N ratio. Drops of signals (dropout), poor compatibility with the polyester film, and spherical particle shape caused by repeated running of the tape causes particles on the film surface that form protrusions to peel off. It is also known to have a bad influence on the product, such as easy falling off.

【0008】これら問題を解決するために、ポリエステ
ルフィルムのアンチブロッキング材として使用される不
活性無機粒子には次のような性質が要求される。即ち、
(1)エチレングリコール等のグリコール中でフィルム
膜厚に適応する平均粒子径、シャープな粒度分布を有
し、かつ3.0μm以上の粗大粒子を含まない、(2)
エチレングリコール等のグリコール中で均一、安定に分
散している、(3)フィルムとのなじみが良い、(4)
フィルム表面から剥離、脱落しにくい形状を有する、等
が挙げられる。ここでいう平均粒子径、粒度分布は粒度
測定装置により測定される値であり、電子顕微鏡により
観察される一次粒子径ではなく、一次粒子が適度に任意
の粒子径に凝集した二次粒子を指し、フィルムに突起を
形成させるのに最も重要な物性となる。
In order to solve these problems, the following properties are required for the inert inorganic particles used as the anti-blocking material for the polyester film. That is,
(1) An average particle diameter adapted to the film thickness in glycol such as ethylene glycol, having a sharp particle size distribution, and containing no coarse particles of 3.0 μm or more, (2)
Uniformly and stably dispersed in glycol such as ethylene glycol, (3) Good compatibility with film, (4)
It has a shape that does not easily peel off or fall off the film surface. The average particle size here, the particle size distribution is a value measured by a particle size measuring device, not the primary particle size observed by an electron microscope, and refers to secondary particles in which the primary particles are appropriately aggregated into any particle size. , Is the most important physical property for forming protrusions on the film.

【0009】前記したシリカゾルにおいて、水−アルコ
ール溶媒中で金属(シリコン)アルコキシドをアルカリ
触媒の存在下で加水分解する方法により得られるシリカ
ゾルは、粒子径のコントロールがしやすく、単分散した
ゾルが得られるが、粒子が球状であるため、テープの繰
り返し使用の際、フィルム表面から剥離、脱落しやすい
上に、原料が高価である欠点を有する。
In the silica sol described above, a silica sol obtained by a method of hydrolyzing a metal (silicon) alkoxide in a water-alcohol solvent in the presence of an alkali catalyst is easy to control the particle size, and a monodispersed sol is obtained. However, since the particles are spherical, they have the drawback that they are easily peeled off from the film surface when the tape is repeatedly used and the raw material is expensive.

【0010】ハロゲン化ケイ素を高温で酸化分解して得
られるシリカの微粉末を溶媒中に分散させて得られるシ
リカゾルも、一次粒子は球状に近く、上記方法と同様の
欠点を有することに加え、アルカリケイ酸塩溶液に水素
型イオン交換樹脂を用いることによりアルカリイオンを
水素イオンと交換して得るシリカゾルと共に、二次粒子
の最大粒子径が0.1μm以下であるためフィルム表面
に突起を形成させる効果が不充分となる。
A silica sol obtained by dispersing fine silica powder obtained by oxidative decomposition of silicon halide at a high temperature in a solvent has a primary particle close to a spherical shape and has the same drawbacks as the above method. With a silica sol obtained by exchanging alkali ions with hydrogen ions by using a hydrogen type ion exchange resin in an alkali silicate solution, projections are formed on the film surface because the maximum particle size of secondary particles is 0.1 μm or less. The effect is insufficient.

【0011】アルカリケイ酸塩溶液を中和反応により分
解沈殿させて得られるシリカゾルは、上記二法に比べ安
価で、多孔質であるため、フィルムとのなじみが良い
が、粒子が凝集しやすく単分散および二次粒子径のコン
トロールが困難な欠点がある。
The silica sol obtained by decomposing and precipitating an alkali silicate solution by a neutralization reaction is cheaper than the above two methods and is porous, so that it is well compatible with the film, but particles are easily aggregated. There is a drawback that it is difficult to control the dispersion and the secondary particle size.

【0012】上記方法によるシリカゾルは、一般に0.
01〜0.2μm程度の一次粒子がブドウ状に5〜50
μm程度の凝集体を呈しており、乾燥粉末および液中で
も一次粒子が単一に存在するものは少ない。したがっ
て、この方法で生成させたシリカ粒子を反応系で均一に
単分散させることが困難な上、得られたシリカヒドロゲ
ルをホモジナイザー、超音波等を用いて分散を試みて
も、その粒度分布はブロードで3.0μm以上の粗大粒
子が存在してしまう。
The silica sol produced by the above-mentioned method generally has a sol.
Primary particles of about 01 to 0.2 μm are grape-like 5 to 50
It exhibits agglomerates of about μm, and few of the dry powders and liquids have a single primary particle. Therefore, it is difficult to uniformly disperse the silica particles produced by this method uniformly in the reaction system, and even if the obtained silica hydrogel is tried to be dispersed using a homogenizer, ultrasonic waves, etc., the particle size distribution is broad. Therefore, coarse particles of 3.0 μm or more are present.

【0013】そこで、このシリカヒドロゲルを乾燥し、
ジェットミル等の微粉砕機を用いて微粉砕したシリカ微
粒子をエチレングリコール中にホモジナイザーや超音波
等を用いて分散させて使用することが考えられるが、こ
の方法で分散させても粒度分布はブロードで上記と同様
に3.0μm以上の粗大粒子を含みやすい。この問題に
対して、湿式あるいは乾式分級を行うことで3.0μm
以上の粗大粒子を除去する方法があるが、湿式の遠心分
離分級では1.0μm程度、乾式の風力分級では3.0
μm程度以上の除去が困難であり分級精度が悪く、ま
た、歩留まりが低下しコスト高となる欠点である。
Then, the silica hydrogel is dried,
It is considered that silica fine particles finely pulverized with a fine pulverizer such as a jet mill are dispersed in ethylene glycol using a homogenizer or ultrasonic waves, but even if dispersed by this method, the particle size distribution is broad. Therefore, similarly to the above, coarse particles of 3.0 μm or more are likely to be contained. To solve this problem, by performing wet or dry classification, 3.0 μm
There is a method of removing coarse particles as described above, but about 1.0 μm in wet centrifugal classification and 3.0 in dry wind classification.
It is a drawback that removal of about μm or more is difficult, classification accuracy is poor, and the yield is reduced and the cost is increased.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、エチレングリ
コール等の極性溶媒中でポリエステルフィルムの膜厚に
適応した平均粒子径、シャープな粒度分布を任意にコン
トロールすることができ、かつ3.0μm以上の粗大粒
子を含有せず、均一、安定に分散しており、フィルムと
のなじみが良く、フィルム表面から剥離、脱落しにくい
形状を有するシリカゾルを提供することを課題としてい
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has an average particle size and a sharpness suitable for the thickness of a polyester film in a polar solvent such as ethylene glycol. The particle size distribution can be controlled arbitrarily, and it does not contain coarse particles of 3.0 μm or more and is dispersed uniformly and stably. It has a good fit with the film and is difficult to peel off from the film surface. It is an object to provide a silica sol having the same.

【0015】[0015]

【課題を解決するための手段】本発明は、上記の課題
を、アルカリケイ酸塩溶液を中和反応により分解沈殿さ
せて得たシリカヒドロゲルもしくはその乾燥物を極性溶
媒中で湿式粉砕することによって、解決する。
Means for Solving the Problems The present invention is achieved by subjecting the above problems to wet pulverization of silica hydrogel or a dried product thereof obtained by decomposing and precipitating an alkali silicate solution by a neutralization reaction in a polar solvent. ,Solve.

【0016】得られるべきシリカゾルの安定化を図るた
めに、シリカ粒子の安定性に起因するシリカ表面のシラ
ノール基の解離が起こるpH9〜11になるように、場
合によってはアルカリを加えて調整することが望まし
い。アルカリとして、アンモニア、水酸化ナトリウム等
のアルカリ金属水酸化物、アミン類が単独あるいは二種
以上を組み合わせて用いてもよい。アルカリを添加する
時期としては、湿式粉砕時、あるいは/および湿式粉砕
後が望ましい。その他、広いpHの範囲でシリカを安定
化させる公知の方法として、塩化アルミニウム、アルミ
ン酸ナトリウム等を添加し、シリカゾル表面をアルミニ
ウムイオンで修飾する方法もある。
In order to stabilize the silica sol to be obtained, the pH may be adjusted to 9 to 11 by which the silanol groups on the surface of the silica are dissociated due to the stability of the silica particles. Is desirable. As the alkali, ammonia, alkali metal hydroxide such as sodium hydroxide, amines may be used alone or in combination of two or more kinds. The time for adding the alkali is preferably during wet grinding and / or after wet grinding. In addition, as a known method of stabilizing silica in a wide pH range, there is a method of adding aluminum chloride, sodium aluminate or the like and modifying the surface of the silica sol with aluminum ions.

【0017】[0017]

【作用】シリカヒドロゲルもしくはその乾燥物を極性溶
媒中で湿式粉砕することにより、平均粒子径0.03〜
2.0μm、粒度分布0.01〜3.0μmの範囲で任
意にコントロールでき、かつ均一、安定に分散したシリ
カゾルが得られる。また乾燥物の比表面積が20〜80
0m2/gで多孔質であるため、フィルムとのなじみが
良い。
The silica hydrogel or its dried product is wet-ground in a polar solvent to give an average particle size of 0.03 to
A silica sol that can be arbitrarily controlled within a range of 2.0 μm and a particle size distribution of 0.01 to 3.0 μm and is uniformly and stably dispersed can be obtained. The specific surface area of the dried product is 20-80.
Since it is porous at 0 m 2 / g, it fits well with the film.

【0018】このシリカゾルをエチレングリコール等の
グリコールに添加し、これを出発原料としたポリエステ
ルフィルムにはシリカ粒子が凝集することなくフィルム
中に均一に存在する。
This silica sol is added to glycol such as ethylene glycol, and in a polyester film using this as a starting material, silica particles are uniformly present in the film without agglomeration.

【0019】したがって、本発明によるシリカゾルを用
いたポリエステルフィルムにおいては、オーディオやビ
デオテープ等の走行安定性を向上させるための滑り性が
改善され、またテープの繰り返し走行に対してテープ表
面から粒子が剥離、脱落しにくく、耐削れ性が優れ、か
つテープの薄膜化に対応できる等の利点があり、本発明
のシリカゾルは、ポリエステルフィルムのアンチブロッ
キング材として最適である。
Therefore, in the polyester film using the silica sol according to the present invention, the slipperiness for improving the running stability of audio and video tapes is improved, and the particles from the surface of the tape during the repeated running of the tape. The silica sol of the present invention is most suitable as an anti-blocking material for polyester films, because it has the advantages that it does not easily peel off or fall off, it has excellent abrasion resistance, and that it can be used for thinning tapes.

【0020】なお、本発明の上記構成とその作用の顕著
性は、以下の説明から一層明確に理解されよう。
The above constitution of the present invention and the saliency of its operation will be more clearly understood from the following description.

【0021】本発明の方法では、合成したシリカの一次
粒子径は0.01〜0.2μm程度であり、これがブド
ウ状に凝集した大きな単位の二次粒子を形成しているた
め、湿式粉砕による粉砕エネルギーはこの二次粒子を解
砕することに働く。したがって、適度に湿式粉砕を行う
ことによって、最終的には二次粒子が限りなく一次粒子
に近づき、一次粒子は粉砕されることなく、微細粒子や
粗大粒子を含まないシャープな粒度分布が得られる。し
たがって、粗大粒子を分級する必要がなく、処理した全
量が得られるため、歩留りが向上し、安価に製造できる
という利点がある。さらに、該湿式粉砕により、大きな
単位の二次粒子が小さく粒子径の揃った二次粒子になる
ため、得られたシリカゾルの粒子の形状は球形ではな
く、0.01〜0.2μm程度の一次粒子が任意の粒子
径に凝集した不定形を呈し、また比表面積が20〜80
0m2/gで多孔質であるため、フィルムとのなじみが
良く、フィルム表面から剥離、脱落しにくい利点を有す
る。
In the method of the present invention, the synthesized silica has a primary particle diameter of about 0.01 to 0.2 μm, and this forms a large unit of secondary particles that are aggregated in a grape shape. The grinding energy works to break up these secondary particles. Therefore, by appropriately performing wet pulverization, the secondary particles finally approach the primary particles infinitely, and the primary particles are not pulverized, and a sharp particle size distribution containing no fine particles or coarse particles is obtained. .. Therefore, it is not necessary to classify the coarse particles, and the total amount of the treated particles can be obtained. Therefore, there is an advantage that the yield is improved and the manufacturing cost is low. Furthermore, since the secondary particles of large units become secondary particles having a small particle size by the wet pulverization, the shape of the obtained silica sol particles is not spherical but primary particles of about 0.01 to 0.2 μm. The particles have an indefinite shape in which the particles have an arbitrary particle size and a specific surface area of 20 to 80.
Since it is porous at 0 m 2 / g, it has good compatibility with the film and has an advantage that it is unlikely to peel off from the film surface.

【0022】本発明で適用可能な湿式粉砕機としては、
ボールミル、チューブミル、コニカルミル、振動ボール
ミル、遊星ミル等のボールミル、タワーミル、アトライ
ター、ダイノミル、サンドグラインダ、アニラーミル等
の媒体撹拌ミルを挙げることができる。本発明におい
て、上記シリカヒドロゲルもしくはその乾燥物と極性溶
媒とを0.1〜6.0mmφ程度の媒体を充填したポッ
トミルで湿式粉砕することが望ましい。なお本発明者ら
は、湿式粉砕時間を任意に変化させることによって、平
均粒子径0.03〜2.0μm、粒度分布0.01〜
3.0μmの範囲で任意にコントロールできることを見
い出した。
The wet pulverizer applicable in the present invention includes:
Examples thereof include ball mills such as a ball mill, a tube mill, a conical mill, a vibrating ball mill and a planetary mill, a tower mill, an attritor, a dyno mill, a sand grinder and an aniler mill. In the present invention, it is desirable that the silica hydrogel or the dried product thereof and the polar solvent are wet pulverized with a pot mill filled with a medium having a diameter of about 0.1 to 6.0 mm. The inventors of the present invention arbitrarily change the wet pulverization time to obtain an average particle size of 0.03 to 2.0 μm and a particle size distribution of 0.01 to
It has been found that it can be controlled arbitrarily within the range of 3.0 μm.

【0023】このように、アルカリケイ酸塩溶液を中和
反応により分解沈殿させて得た0.01〜0.2μmの
一次粒子径を有するシリカヒドロゲルもしくはその乾燥
粉末を原料として極性溶媒中でゾル化するまで湿式粉砕
することにより、二次粒子の平均粒子径を0.03〜
2.0μm、粒度分布を0.01〜3.0μmの範囲で
任意にコントロールできる上に、均一、安定に分散して
おり、粒子形状が不定形を呈したシリカゾルが得られ
る。
As described above, silica hydrogel having a primary particle size of 0.01 to 0.2 μm obtained by decomposing and precipitating an alkali silicate solution by a neutralization reaction or a dry powder thereof is used as a raw material in a sol in a polar solvent. The average particle diameter of the secondary particles is 0.03 to
It is possible to obtain a silica sol in which the particle size is 2.0 μm and the particle size distribution can be arbitrarily controlled in the range of 0.01 to 3.0 μm, and is uniformly and stably dispersed, and the particle shape is indefinite.

【0024】[0024]

【実施例】以下に、本発明の実施例および比較例をあげ
てさらに具体的に説明するが、本発明はこれら実施例に
より限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0025】なお、これら実施例および比較例中、一次
粒子径、平均粒子径、粒度分布の測定法およびフィルム
の滑り性、耐削れ性の表示法をまず以下に示す。
In these Examples and Comparative Examples, the methods for measuring the primary particle diameter, average particle diameter, particle size distribution, and methods for indicating the slipperiness and abrasion resistance of the film will be shown below.

【0026】[一次粒子径]走査型もしくは透過型電子
顕微鏡により確認される粒子径を任意に50個測定し、
その平均値を用いた。
[Primary particle size] The particle size confirmed by a scanning electron microscope or a transmission electron microscope is measured arbitrarily at 50 particles,
The average value was used.

【0027】[平均粒子径、粒度分布]光透過型遠心沈
降式粒度測定装置(島津製作所製;SA−CP3L)に
より極性溶媒中に分散させたシリカ粒子の平均粒子径、
粒度分布を測定した。平均粒子径は積算50%、粒度分
布は微分形粒度分布のデータを用いた。
[Average Particle Size, Particle Size Distribution] The average particle size of silica particles dispersed in a polar solvent by a light transmission type centrifugal sedimentation type particle size measuring apparatus (manufactured by Shimadzu Corporation; SA-CP3L),
The particle size distribution was measured. The average particle size was 50% in total, and the particle size distribution was data of differential type particle size distribution.

【0028】[フィルムの滑り性、耐削れ性]下記の実
施例および比較例で得られたシリカゾルをその固形分濃
度がポリマーに対して1.0%添加したポリエチレンテ
レフタレートを用い、このポリマーを290℃で溶融押
し出しして、90℃で縦方向に3.5倍、130℃で横
方向に3.5倍延伸した後、220℃で熱処理し、厚さ
15μmのフィルムを作製した。
[Sliding and Scratch Resistance of Film] Polyethylene terephthalate obtained by adding the silica sol obtained in the following Examples and Comparative Examples in a solid content concentration of 1.0% to the polymer was used. The film was melt extruded at 90 ° C., stretched 3.5 times in the longitudinal direction at 90 ° C. and 3.5 times in the transverse direction at 130 ° C., and then heat-treated at 220 ° C. to produce a film having a thickness of 15 μm.

【0029】各実施例および比較例により得られたシリ
カゾルを添加して上記方法により作製したフィルムを横
幅にスリットしたものを巻取機にかけ、中間に設置した
金属製ガイドロールにこすりつけて高速で長時間走行さ
せた。このときのテープ張力の大小、および発生した白
粉量を測定し滑り性、耐削れ性を以下のような表示で表
1に示した。
The film prepared by adding the silica sol obtained in each of the Examples and Comparative Examples and slitting it in the widthwise direction was put on a winder, and rubbed on a metal guide roll installed in the middle for a long time at a high speed. I ran for hours. At this time, the magnitude of the tape tension and the amount of white powder generated were measured, and the slipperiness and abrasion resistance are shown in Table 1 as follows.

【0030】滑り性 張力小・・・○ 張力中・・・△ 張力大・・・× 耐削れ性 白粉発生量少・・・○ 白粉発生量中・・・△ 白粉発生量多・・・×実施例1 3号ケイ酸ナトリウム溶液3070gを純水12800
mlで希釈し、撹拌しながら90℃に加温した後、当該
ケイ酸ナトリウム水溶液がpH10.5になるまで22
7g/l硫酸溶液を10分かけて滴下した。硫酸溶液滴
下後、90℃を保ちながら60分間エージングを行なっ
た。エージング後直ちに急冷した後、吸引、ろ過、水
洗、脱水し、固形分濃度23.8%のシリカヒドロゲル
を得た。
Sliding Low tension ・ ・ ・ ○ Medium tension ・ ・ ・ △ High tension ・ ・ ・ × Scraping resistance Small amount of white powder ・ ・ ・ ○ Medium amount of white powder ・ ・ ・ △ Large amount of white powder ・ ・ ・ × Example 1 3070 g of No. 3 sodium silicate solution in 12800 pure water
After diluting with ml and heating to 90 ° C with stirring, the sodium silicate aqueous solution is adjusted to pH 10.5 until 22.
A 7 g / l sulfuric acid solution was added dropwise over 10 minutes. After dropping the sulfuric acid solution, aging was performed for 60 minutes while maintaining 90 ° C. Immediately after aging, it was rapidly cooled, then suctioned, filtered, washed with water and dehydrated to obtain a silica hydrogel having a solid content concentration of 23.8%.

【0031】このシリカヒドロゲル840gとエチレン
グリコール1160gとをポットミルで44時間湿式粉
砕を行ないゾル化した。
840 g of this silica hydrogel and 1160 g of ethylene glycol were wet milled in a pot mill for 44 hours to form a sol.

【0032】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.08μm、粒度分布0.04〜
0.15μmであった。粒度分布を図1に示す。また、
走査型電子顕微鏡で観察したところ0.05μm程度の
一次粒子が凝集し、不定形を呈した二次粒子が確認され
た。この写真を図10に示す。
As shown in Table 1, the obtained silica sol had an average particle diameter of 0.08 μm and a particle size distribution of 0.04 to 0.04.
It was 0.15 μm. The particle size distribution is shown in FIG. Also,
When observed with a scanning electron microscope, primary particles of about 0.05 μm were aggregated and secondary particles having an irregular shape were confirmed. This photograph is shown in FIG.

【0033】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0034】実施例2 湿式粉砕を31時間行う以外は実施例1と同様の方法で
シリカゾルを得た。
Example 2 A silica sol was obtained in the same manner as in Example 1 except that wet pulverization was carried out for 31 hours.

【0035】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.10μm、粒度分布0.04〜
0.3μmであった。粒度分布を図2に示す。
As shown in Table 1, the obtained silica sol had an average particle size of 0.10 μm and a particle size distribution of 0.04 to 0.04.
It was 0.3 μm. The particle size distribution is shown in FIG.

【0036】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0037】実施例3 実施例1で得たシリカヒドロゲル2000gをポットミ
ルで15時間湿式粉砕しゾル化した。
Example 3 2000 g of the silica hydrogel obtained in Example 1 was wet pulverized with a pot mill for 15 hours to form a sol.

【0038】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.21μm、粒度分布0.08〜
0.6μmであった。粒度分布を図3に示す。
As shown in Table 1, the obtained silica sol had an average particle size of 0.21 μm and a particle size distribution of 0.08-
It was 0.6 μm. The particle size distribution is shown in FIG.

【0039】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0040】実施例4 実施例1で得たシリカヒドロゲルを固形分濃度が15%
になるように水で希釈した後、湿式粉砕により前処理し
たシリカゾルをスプレードライヤー(東京理化器械製;
SD−1)を用いて噴霧乾燥し、シリカの乾燥物を得
た。
Example 4 The silica hydrogel obtained in Example 1 had a solid content of 15%.
Silica sol pre-treated by wet pulverization after diluting with water so that it becomes a spray dryer (manufactured by Tokyo Rika Kikai;
Spray drying was performed using SD-1) to obtain a dried silica product.

【0041】この乾燥物400gとエチレングリコール
1600gとをポットミルで7時間湿式粉砕を行いシリ
カゾルを得た。
400 g of this dried product and 1600 g of ethylene glycol were wet pulverized in a pot mill for 7 hours to obtain a silica sol.

【0042】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.29μm、粒度分布0.08〜
1.0μmであった。粒度分布を図4に示す。
As shown in Table 1, the obtained silica sol had an average particle size of 0.29 μm and a particle size distribution of 0.08-.
It was 1.0 μm. The particle size distribution is shown in FIG.

【0043】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0044】実施例5 湿式粉砕を4時間行う以外は実施例4と同様の方法でシ
リカゾルを得た。
Example 5 A silica sol was obtained in the same manner as in Example 4 except that wet pulverization was carried out for 4 hours.

【0045】得られたシリカゾルは、表1される示すよ
うに、平均粒子径0.43μm、粒度分布0.1〜1,
5μmであった。粒度分布を図5に示す。
The obtained silica sol has an average particle size of 0.43 μm and a particle size distribution of 0.1 to 1, as shown in Table 1.
It was 5 μm. The particle size distribution is shown in FIG.

【0046】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0047】実施例6 湿式粉砕を1時間行う以外は実施例4と同様の方法でシ
リカゾルを得た。
Example 6 A silica sol was obtained in the same manner as in Example 4 except that wet pulverization was carried out for 1 hour.

【0048】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.87μm、粒度分布0.2〜3.
0μmであった。粒度分布を図6に示す。
As shown in Table 1, the obtained silica sol had an average particle size of 0.87 μm and a particle size distribution of 0.2 to 3.
It was 0 μm. The particle size distribution is shown in FIG.

【0049】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0050】実施例7 3号ケイ酸ナトリウム溶液2500mlを純水1280
0mlで希釈し、撹拌しながら90℃に加温した後、2
27g/l硫酸溶液をpH3.0になるまで60分かけ
て滴下した。硫酸溶液滴下後、90℃を保ちながら60
分間エージングを行なった。エージング後直ちに急冷し
た後、吸引、ろ過、水洗、脱水し、固形分濃度21.2
%のシリカヒドロゲルを得た。
Example 7 2500 ml of No. 3 sodium silicate solution was diluted with 1280 pure water.
Dilute with 0 ml, warm to 90 ° C with stirring and then 2
A 27 g / l sulfuric acid solution was added dropwise over 60 minutes until the pH reached 3.0. After dropping the sulfuric acid solution, keep the temperature at 90 ° C.
Aged for minutes. Immediately after aging, it is rapidly cooled, then suctioned, filtered, washed with water and dehydrated to obtain a solid content of 21.2.
% Silica hydrogel was obtained.

【0051】このシリカヒドロゲル2000gをポット
ミルで24時間湿式粉砕を行ないゾル化したが、得たシ
リカゾルは沈降しやすく、使用の際沈降物をほぐす必要
があり、取り扱いが困難であった。そこで、シリカ粒子
の安定化を図るために、10%水酸化ナトリウム溶液を
pH10.0になるまで撹拌しながら添加したところ、
安定に分散したシリカゾルが得られた。
2000 g of this silica hydrogel was wet-milled in a pot mill for 24 hours to form a sol. The obtained silica sol was liable to settle, and it was necessary to loosen the precipitate at the time of use, and it was difficult to handle. Therefore, in order to stabilize the silica particles, a 10% sodium hydroxide solution was added with stirring until the pH reached 10.0,
A stable dispersed silica sol was obtained.

【0052】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.16μm、粒度分布0.05〜
0.4μmであった。粒度分布を図7に示す。また、走
査型電子顕微鏡で観察したところ0.02μm程度の一
次粒子が凝集し、不定形を呈した二次粒子が確認され
た。
As shown in Table 1, the obtained silica sol had an average particle diameter of 0.16 μm and a particle size distribution of 0.05 to
It was 0.4 μm. The particle size distribution is shown in FIG. Further, when observed with a scanning electron microscope, primary particles of about 0.02 μm were aggregated, and secondary particles having an irregular shape were confirmed.

【0053】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0054】比較例1 実施例1と同様の方法でシリカヒドロゲルを得、これを
乾燥、粗粉砕した後、ジェットミル(セイシン企業製)
を用いて微粉砕した。この微粉シリカ200gとエチレ
ングリコール1800gとを湿式粉砕せずに強力撹拌し
分散させた。
Comparative Example 1 Silica hydrogel was obtained in the same manner as in Example 1, dried, coarsely crushed, and then jet mill (manufactured by Seishin Enterprise Co., Ltd.).
Was finely pulverized. 200 g of this finely divided silica and 1800 g of ethylene glycol were dispersed by vigorous stirring without wet grinding.

【0055】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径0.91μm、粒度分布0.2〜5.
0μmであった。粒度分布を図8に示す。
As shown in Table 1, the obtained silica sol had an average particle size of 0.91 μm and a particle size distribution of 0.2 to 5.
It was 0 μm. The particle size distribution is shown in FIG.

【0056】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0057】比較例2 実施例1と同様の方法でシリカヒドロゲルを得、このシ
リカヒドロゲル840gとエチレングリコール1160
gとをホモジナイザーを用いて分散させた。
Comparative Example 2 Silica hydrogel was obtained in the same manner as in Example 1, and 840 g of this silica hydrogel and 1160 of ethylene glycol were used.
and g were dispersed using a homogenizer.

【0058】得られたシリカゾルは、表1に示されるよ
うに、平均粒子径2.19μm、粒度分布0.1〜1
0.0μmであった。粒度分布を図9に示す。
The silica sol thus obtained has an average particle size of 2.19 μm and a particle size distribution of 0.1 to 1, as shown in Table 1.
It was 0.0 μm. The particle size distribution is shown in FIG.

【0059】さらに、得られたシリカゾルを用いて作製
したフィルムの特性を表1に示す。
Further, Table 1 shows the characteristics of the film produced by using the obtained silica sol.

【0060】[0060]

【発明の効果】以上説明したことから明かなように本発
明は、以下の効果を奏するものである。
As is apparent from the above description, the present invention has the following effects.

【0061】本発明によるシリカゾルは、その湿式粉砕
の程度により、二次粒子の平均粒子径0.03〜2.0
μm、粒度分布0.01〜3.0μmの範囲で任意にコ
ントロール可能であり、例えば、ポリエステルフィルム
のアンチブロッキング材として使用する場合、(1)エ
チレングリコール等のグリコール中でフィルムの膜厚に
適応する平均粒子径、シャープな粒度分布を有し、かつ
3.0μm以上の粗大粒子を含まない、(2)エチレン
グリコール等のグリコール中で均一、安定に分散してい
る、(3)フィルムとのなじみが良い、(4)フィルム
表面から剥離、脱落しにくい形状を有する等、ポリエス
テルフィルムのアンチブロッキング材としての優れた性
質を有している。したがって、本発明によるシリカゾル
を使用したポリエステルフィルムをベースフィルムとす
るオーディオやビデオテープの走行安定性を向上させる
ための滑り性、摩擦係数が改善され、フィルム表面から
粒子が剥離、脱落しにくく耐削れ性に優れ、かつテープ
の薄膜化に対応できる等、その実用上の効果が極めて懸
著となる。
The silica sol according to the present invention has an average secondary particle size of 0.03 to 2.0 depending on the degree of wet pulverization.
It can be controlled arbitrarily in the range of μm and particle size distribution of 0.01 to 3.0 μm. For example, when it is used as an anti-blocking material for polyester film, (1) it is adapted to the film thickness in glycol such as ethylene glycol. Having an average particle size, a sharp particle size distribution, and not containing coarse particles of 3.0 μm or more, (2) uniformly and stably dispersed in glycol such as ethylene glycol, (3) with film It has excellent properties as an anti-blocking material for polyester films, such as good compatibility and (4) having a shape that does not easily peel off from the film surface. Therefore, the sliding property for improving the running stability of the audio or video tape having the polyester film using the silica sol according to the present invention as the base film, the friction coefficient is improved, and the particles are not easily peeled off from the film surface and are resistant to abrasion. It has excellent properties and can cope with thinning of the tape.

【0062】なお、本発明によるシリカゾルはプラスチ
ックフィルム、ゴム、化粧品、塗料歯磨剤、製紙、研磨
材等に有効に適用することができる。
The silica sol according to the present invention can be effectively applied to plastic films, rubbers, cosmetics, paint dentifrices, papermaking, abrasives and the like.

【0063】[0063]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたシリカゾルの微分形粒度分
布を示す図である。
FIG. 1 is a diagram showing a differential particle size distribution of a silica sol obtained in Example 1.

【図2】実施例2で得られたシリカゾルの微分形粒度分
布を示す図である。
FIG. 2 is a diagram showing a differential particle size distribution of silica sol obtained in Example 2.

【図3】実施例3で得られたシリカゾルの微分形粒度分
布を示す図である。
FIG. 3 is a diagram showing a differential particle size distribution of the silica sol obtained in Example 3.

【図4】実施例4で得られたシリカゾルの微分形粒度分
布を示す図である。
FIG. 4 is a diagram showing a differential particle size distribution of the silica sol obtained in Example 4.

【図5】実施例5で得られたシリカゾルの微分形粒度分
布を示す図である。
5 is a diagram showing a differential particle size distribution of the silica sol obtained in Example 5. FIG.

【図6】実施例6で得られたシリカゾルの微分形粒度分
布を示す図である。
FIG. 6 is a diagram showing a differential particle size distribution of the silica sol obtained in Example 6.

【図7】実施例7で得られたシリカゾルの微分形粒度分
布を示す図である。
FIG. 7 is a diagram showing a differential particle size distribution of the silica sol obtained in Example 7.

【図8】比較例1で得られたシリカゾルの微分形粒度分
布を示す図である。
8 is a diagram showing a differential particle size distribution of the silica sol obtained in Comparative Example 1. FIG.

【図9】比較例2で得られたシリカゾルの微分形粒度分
布を示す図である。
9 is a diagram showing a differential particle size distribution of the silica sol obtained in Comparative Example 2. FIG.

【図10】実施例1で得られたシリカゾルの粒子形状を
示す倍率10,000倍の走査型電子顕微鏡写真であ
る。
10 is a scanning electron micrograph showing the particle shape of the silica sol obtained in Example 1 at a magnification of 10,000. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前野 昌弘 兵庫県宝塚市逆瀬台一丁目8番 A305 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Maeno 1-8-8 Sakasedai, Takarazuka-shi, Hyogo A305

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルカリケイ酸塩溶液を中和反応により分
解沈殿させて得たシリカヒドロゲルもしくはその乾燥物
を極性溶媒中で湿式粉砕することを特徴とするシリカゾ
ルの製造方法。
1. A method for producing a silica sol, which comprises wet pulverizing a silica hydrogel obtained by decomposing and precipitating an alkali silicate solution by a neutralization reaction or a dried product thereof in a polar solvent.
【請求項2】得られるべきシリカゾルがpH9〜11で
あるように調整することを特徴とする請求項1に記載の
シリカゾルの製造方法。
2. The method for producing a silica sol according to claim 1, wherein the silica sol to be obtained is adjusted to have a pH of 9 to 11.
JP34142191A 1991-12-24 1991-12-24 Production of silica sol Pending JPH05170424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34142191A JPH05170424A (en) 1991-12-24 1991-12-24 Production of silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34142191A JPH05170424A (en) 1991-12-24 1991-12-24 Production of silica sol

Publications (1)

Publication Number Publication Date
JPH05170424A true JPH05170424A (en) 1993-07-09

Family

ID=18345945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34142191A Pending JPH05170424A (en) 1991-12-24 1991-12-24 Production of silica sol

Country Status (1)

Country Link
JP (1) JPH05170424A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520177A (en) * 2000-01-19 2003-07-02 株式会社ブリヂストン Stabilized silica and methods of making and using same
JP2004513049A (en) * 1998-07-09 2004-04-30 ダブリュー・アール・グレース・アンド・カンパニー−コーン Dispersion of fine porous inorganic oxide particles and method for producing the dispersion
JP2005126281A (en) * 2003-10-23 2005-05-19 Tosoh Silica Corp Amorphous silica
JP2011006320A (en) * 1998-07-09 2011-01-13 W R Grace & Co Dispersion of fine porous inorganic oxide particle and process for preparing the same
US8052788B2 (en) * 2005-08-10 2011-11-08 Nalco Company Method of producing silica sols with controllable broad size distribution and minimum particle size
JP7129576B1 (en) * 2021-12-23 2022-09-01 扶桑化学工業株式会社 Colloidal silica and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513049A (en) * 1998-07-09 2004-04-30 ダブリュー・アール・グレース・アンド・カンパニー−コーン Dispersion of fine porous inorganic oxide particles and method for producing the dispersion
JP2011006320A (en) * 1998-07-09 2011-01-13 W R Grace & Co Dispersion of fine porous inorganic oxide particle and process for preparing the same
JP2011016717A (en) * 1998-07-09 2011-01-27 W R Grace & Co Dispersion liquid of fine porous inorganic oxide particle and method for producing the liquid
JP2003520177A (en) * 2000-01-19 2003-07-02 株式会社ブリヂストン Stabilized silica and methods of making and using same
JP4879434B2 (en) * 2000-01-19 2012-02-22 株式会社ブリヂストン Stabilized silica and methods for making and using the same
JP2005126281A (en) * 2003-10-23 2005-05-19 Tosoh Silica Corp Amorphous silica
JP4590179B2 (en) * 2003-10-23 2010-12-01 東ソー・シリカ株式会社 Amorphous silica
US8052788B2 (en) * 2005-08-10 2011-11-08 Nalco Company Method of producing silica sols with controllable broad size distribution and minimum particle size
JP7129576B1 (en) * 2021-12-23 2022-09-01 扶桑化学工業株式会社 Colloidal silica and method for producing the same
WO2023119550A1 (en) * 2021-12-23 2023-06-29 扶桑化学工業株式会社 Colloidal silica and production method therefor

Similar Documents

Publication Publication Date Title
KR0176250B1 (en) Monodisperse vaterite type calcium carbonate, its manufacturing method and method of controlling growth of particles and shape thereof
EP0913431B1 (en) Black iron-based composite particles, process for producing the same, paint and rubber or resin composition containing the same
US6120571A (en) Polishing agent for semiconductor and method for its production
JP2862955B2 (en) Polyester composition containing vaterite-type calcium carbonate
JP6843793B2 (en) β-Iron hydroxide compound particles and their production method, ε-iron oxide compound particles production method, and magnetic recording medium production method
JPH05170424A (en) Production of silica sol
JP4485364B2 (en) Aggregated particles and resin composition comprising the same
KR20220103785A (en) Liquid dispersions and powders of cerium-based core-shell particles, processes for producing them and their use in polishing
JP3286304B2 (en) Polyester resin composition for film production
JPH07330337A (en) Dispersion of electro-conductive fine powder and its production
JP3469286B2 (en) Method for producing cubic calcium carbonate
JP3340756B2 (en) Method for producing monodisperse vaterite-type calcium carbonate with controlled morphology
JP2016193825A (en) Granule and method for producing the same
EP1095984B1 (en) Thermoplastic resin composition, process for producing the same, and biaxially oriented film comprising the composition
KR20240008895A (en) Liquid dispersions and powders of cerium-based core-shell particles, processes for producing them and their use in polishing
JP3768540B2 (en) Form control method and particle growth method of vaterite type calcium carbonate
JPH05201724A (en) Ethylene glycol dispersion of crystalline calcium carbonate and crystalline calcium carbonate
JP2000080293A (en) Thermoplastic resin composition, its production and biaxially oriented film composed of the composition
EP1076267A1 (en) Black magnetic toner and black magnetic composite particles therefor
JP2010046630A (en) Manufacturing method of nanoparticle dispersion body
JP4812235B2 (en) Composite non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JPH02257419A (en) Magnetic recording medium
WO1997042125A1 (en) Black ultrafine magnetite particles and process for preparing the same
JPH0248174B2 (en)
JP4471058B2 (en) Composite nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium