JPH0517023A - Granular powder quantitative supply apparatus - Google Patents

Granular powder quantitative supply apparatus

Info

Publication number
JPH0517023A
JPH0517023A JP3197104A JP19710491A JPH0517023A JP H0517023 A JPH0517023 A JP H0517023A JP 3197104 A JP3197104 A JP 3197104A JP 19710491 A JP19710491 A JP 19710491A JP H0517023 A JPH0517023 A JP H0517023A
Authority
JP
Japan
Prior art keywords
granular material
spiral surface
supply
powder
supply hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3197104A
Other languages
Japanese (ja)
Other versions
JPH06104495B2 (en
Inventor
Minoru Ueda
稔 植田
Kunio Uchida
邦夫 内田
Noboru Aso
昇 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3197104A priority Critical patent/JPH06104495B2/en
Publication of JPH0517023A publication Critical patent/JPH0517023A/en
Publication of JPH06104495B2 publication Critical patent/JPH06104495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jigging Conveyors (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Discharge Of Articles From Conveyors (AREA)

Abstract

PURPOSE:To provide a granular powder quantitative supply apparatus which can supply a small quantity of granular powder quantitatively without lowering the magnitude of vibration applied to a vibration type granular powder supply device to such a degree as to obstruct a flow of granular powder. CONSTITUTION:It is possible to freely control the space between a gate 3 for limiting the amount of passing of a granular powder flow F of a spiral surface 2 of the uppermost portion of a vibration type granular powder supply device and the outer peripheral wall 1 of the spiral surface, the distance of a supply hole 6 for granular powder from the gate 3, the position on the width of the spiral surface of the hold, and the diameter thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてセラミックか
ら製薬までの非常に広範囲の分野及び微小部品に適用す
ることができ、特に振動式粉粒体供給器等に適用して、
少量の粉粒体を定量的に供給するための粉粒体定量供給
装置に関するものである。
INDUSTRIAL APPLICABILITY The present invention can be applied mainly to a very wide range of fields from ceramics to pharmaceuticals and minute parts, and in particular to a vibrating powder feeder,
The present invention relates to a powder and granular material quantitative supply device for quantitatively supplying a small amount of powder and granular material.

【0002】[0002]

【従来の技術】粉粒体貯留器を兼ねるボウルの内面に設
けた螺旋面を振動により粉粒体が登り、ボウル最上部の
螺旋面にあけた供給孔からその粉粒体が重力落下して供
給される従来の振動式粉粒体供給器における粉粒体供給
量は、供給器に与えられる振動の強度により粉粒体の移
動速度が変化することにより調節される。
2. Description of the Related Art A spiral surface provided on the inner surface of a bowl which also functions as a powder and granular material reservoir is vibrated so that the powder and granular material climbs up, and the powder and granular material falls by gravity from a supply hole formed in the spiral surface at the top of the bowl. The supply amount of the granular material in the conventional vibrating type granular material supplying device is adjusted by changing the moving speed of the granular material according to the intensity of the vibration applied to the supplying device.

【0003】振動による粉粒体の移動は、粒子の径が大
きい程速い。すなわち、粒子径が大きいと、通常その重
量が大きいので、重量で表した移動速度である重量供給
速度は粒子の移動速度よりさらに速くなる。定量供給を
行うためには、その粉粒体の粒子径を一定にする必要が
ある。しかしながら、粉粒体の粒子径を一定にするた
め、篩により分級しても、粒子径の分布範囲が狭くなる
だけであり、従って、粒子径の大きい粉粒体から供給さ
れ、次第に粒子径が小さくなるので、供給速度が次第に
低下することは不可避である。
The larger the diameter of the particles, the faster the movement of the particles due to vibration. That is, when the particle diameter is large, the weight is usually large, so that the moving speed represented by weight, that is, the weight supplying speed, becomes faster than the moving speed of the particles. In order to supply a fixed amount, it is necessary to make the particle diameter of the powder or granule constant. However, in order to keep the particle size of the powder particles constant, even if the particles are classified by a sieve, the distribution range of the particle size is only narrowed. Therefore, the particles are supplied from the powder particles having a large particle size, and the particle size gradually increases. Since it becomes smaller, it is unavoidable that the supply rate gradually decreases.

【0004】また、細かく分級して粒子径の分布範囲を
非常に狭くするか、または供給量に対して多量の分級し
た粉粒体を貯留器のボウル内に用いれば、供給速度が低
下する割合を小さくできる。しかし、いずれも分級に多
大の経費を要し、しかも、本質的には定量性が確保され
ないという問題がある。一方、少量の粉粒体の供給時
に、その粉粒体の供給速度を遅くするため、供給器に与
える振動の強度を弱く調節するが、この場合、粒子の径
が僅かに小さくなっても、移動速度が遅くなり、定量供
給が困難となり、甚だしい場合には粉粒体が全く移動し
ないという問題がある。
Further, if the finely classified particles have a very narrow particle size distribution range, or if a large amount of classified particles are used in the bowl of the reservoir, the rate of decrease of the supply rate is increased. Can be made smaller. However, all of them have a problem that classification requires a large amount of cost, and in addition, quantitativeness cannot be essentially secured. On the other hand, when supplying a small amount of powder or granules, the supply speed of the powder or granules is slowed, so that the intensity of vibration given to the feeder is adjusted weakly, but in this case, even if the diameter of the particles becomes slightly smaller, There is a problem that the moving speed becomes slow, it becomes difficult to supply a fixed amount, and in extreme cases, the granular material does not move at all.

【0005】[0005]

【発明の解決しようとする課題】本発明は、前記従来の
問題点を解決するためになされたものであり、供給器に
与える振動の強度を、粉粒体の円滑な移動、すなわち粉
粒体の流れを妨げるまで弱くせずに、少量の粉粒体を定
量供給することのできる粉粒体定量供給装置を提供する
ことを解決課題としたものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems of the prior art. The strength of vibration applied to the feeder is determined by the smooth movement of the granular material, that is, the granular material. It is an object of the present invention to provide a powder and granular material quantitative supply device capable of quantitatively supplying a small amount of powder and granular material without weakening the flow of the powder.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決たるた
めの手段として、本発明の粉粒体定量供給装置は、振動
式粉粒体供給器の最上部の螺旋面の粉粒体流の通過量を
制限するゲートと螺旋面外周壁との間隔及び粉粒体の供
給孔のゲートからの距離と、螺旋面幅上の位置と、その
径とを適宜な手段で調節自在とすることにより構成され
るものである。また、粉粒体の供給孔に気体を流し、か
つ粉粒体が流入しない位置に設けたバイパスを通る気体
流量を制御自在とすること、及び供給孔に導く粉粒体流
の分岐量を調節自在にすることも好ましい構成である。
Means for Solving the Problems As a means for solving the above-mentioned problems, a powdery granular material supply device of the present invention is provided with a powdery granular material flow on the uppermost spiral surface of a vibrating powdery granular material feeder. By making it possible to adjust the distance between the gate that limits the passage amount and the outer peripheral wall of the spiral surface, the distance from the gate of the supply hole for the powder and granules, the position on the width of the spiral surface, and the diameter thereof by appropriate means. It is composed. In addition, the flow rate of gas is controlled to flow through a bypass provided at a position where the powder and granules do not flow, and the amount of branching of the powder and granule flow to the supply hole is adjusted. Freedom is also a preferred configuration.

【0007】[0007]

【実施例】以下図面を参照して本発明の粉粒体定量供給
装置の実施例を説明する。まず図1は、本発明を適用す
る振動式粉粒体供給器のボウルの最上部の螺旋面の供給
孔付近の作動状況を模式的に示した平面図である。図1
において、1は螺旋面外周壁、2は最上部の螺旋面で、
網目状部分Fは粉粒体流を表し、そして3は最上部の螺
旋面2の粉粒体流Fの通過量を制限するゲート、さらに
4は最上部の螺旋面2の内周で、かつ下段螺旋面5の外
周壁でもあり、6は粉粒体の供給孔で、7は還流溝であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a powder and granular material quantitative supply device of the present invention will be described below with reference to the drawings. First, FIG. 1 is a plan view schematically showing an operating condition in the vicinity of a supply hole on the uppermost spiral surface of a bowl of a vibrating powder and granular material feeder to which the present invention is applied. Figure 1
In, 1 is the outer peripheral wall of the spiral surface, 2 is the uppermost spiral surface,
The mesh portion F represents the granular material flow, and 3 is a gate that limits the amount of passage of the granular material flow F on the uppermost spiral surface 2, and 4 is the inner circumference of the uppermost spiral surface 2, and It also serves as an outer peripheral wall of the lower spiral surface 5, 6 is a powder supply hole for the granular material, and 7 is a reflux groove.

【0008】次に、ゲート3は、螺旋面外周壁1との間
隔を調節することにより、粉粒体流Fの通過幅を調節
し、粉粒体の通過量を制限することでその供給量を調節
するようになっている。ゲート3により移動を制限され
た粉粒体流Fはゲート3の前面に沿って移動し、最上部
の螺旋面2の内周4から下段螺旋面5に落下する。
Next, the gate 3 adjusts the passage width of the granular material flow F by adjusting the space between the gate 3 and the outer peripheral wall 1 of the spiral surface, and restricts the passage amount of the granular material to supply it. Is adjusted. The granular material flow F whose movement is restricted by the gate 3 moves along the front surface of the gate 3 and drops from the inner circumference 4 of the uppermost spiral surface 2 to the lower spiral surface 5.

【0009】そこで、この振動式粉粒体供給器に与える
振動強度を、粉粒体流Fの円滑な移動を妨げるまで弱め
ずに、ゲート3の螺旋面外周壁1との間隔を狭くするこ
とにより、ある程度定量的に定量供給することは可能で
ある。しかしながら、供給量を少なくするため、上記ゲ
ート3の間隔を極端に狭くすると、そこに粉粒体の固着
が起こり易く、円滑に移動しなくなり、また振動を強め
れば、固着を防止できるが、供給量も多くなる。
Therefore, it is necessary to reduce the distance between the gate 3 and the outer peripheral wall 1 of the spiral surface without weakening the vibration intensity applied to the vibrating powder feeder until it interferes with the smooth movement of the powder flow F. Therefore, it is possible to quantitatively supply a certain amount of quantity. However, if the interval between the gates 3 is extremely narrowed in order to reduce the supply amount, the powder particles are apt to adhere to them, and the particles do not move smoothly. If the vibration is strengthened, the adhesion can be prevented. The supply will also increase.

【0010】一方、ゲート3の間隔を通過した粉粒体流
Fは、通常、図1に網目で示したごとく、螺旋面外周壁
1から次第に広がり、帯状に移動して供給孔6に達す
る。しかしながら、強振動をこの供給器に与えると、螺
旋面外周壁1から殆んど広がらず移動して供給孔6付近
に達する。この理由は、振動により粉粒体流Fがボウル
内面に設けた螺旋面を登り易いように、螺旋面外周壁1
側が内周側より僅かに低くなるように加工されており、
かつ強振動では粉粒体流Fの移動が速いので、粉粒体流
Fの移動帯が広がる前に供給孔6付近に達するためであ
る。
On the other hand, the granular material flow F which has passed through the space between the gates 3 usually spreads gradually from the outer peripheral wall 1 of the spiral surface as shown by meshes in FIG. However, when a strong vibration is applied to this feeder, the feeder moves almost without spreading from the outer peripheral wall 1 of the spiral surface and reaches the vicinity of the feed hole 6. The reason for this is that the spiral-shaped outer peripheral wall 1 is designed so that the granular material flow F can easily climb the spiral surface provided on the inner surface of the bowl due to vibration.
It is processed so that the side is slightly lower than the inner peripheral side,
Moreover, since the movement of the granular material flow F is fast under strong vibration, it reaches the vicinity of the supply hole 6 before the moving zone of the granular material flow F spreads.

【0011】本発明者等は、上記に関し、振動式粉粒体
供給器で種々実験及び考察を重ねた結果、その現象を見
い出し、本発明に到達した。そこで、供給孔6は、この
現象のよく現れるゲート3からの距離における螺旋面幅
のほぼ中央に、螺旋面幅のほぼ半分の径で設けることが
望ましく、それにより、供給器に与えられる振動によ
り、粉粒体流Fの帯が図1に網目で示したごとく螺旋面
外周壁1から次第に広がり、供給孔6に達して、重力落
下により供給されることになる。また、供給孔6に達し
なかった粉粒体流Fは、ボウル最上部に設けられた還流
溝7により、最上部の螺旋面の内周4から下段螺旋面5
に落下する。次に、供給器の振動強度の増加に伴い、粉
粒体流Fの帯の螺旋面外周壁1からの広がりが減少し、
供給孔6に達する粉粒体流Fも減少することになる。振
動がある強度を越えると、粉粒体流Fの帯は殆んど広が
らず、螺旋面外周壁1と供給孔6との間を移動し、還流
溝7に達する、すなわち、粉粒体は供給されなくなる。
ここまでの振動範囲が、少量の粉粒体を定量供給可能な
範囲であり、本発明の主要な部分である。
The inventors of the present invention have found the phenomenon as a result of various experiments and studies on the vibrating powder and granular material feeder, and arrived at the present invention. Therefore, it is desirable that the supply hole 6 should be provided in the center of the spiral surface width at a distance from the gate 3 where this phenomenon often appears, with a diameter of approximately half of the spiral surface width. As shown by the mesh in FIG. 1, the band of the granular material flow F gradually spreads from the outer peripheral wall 1 of the spiral surface, reaches the supply hole 6, and is supplied by gravity falling. Further, the flow of the granular material F that has not reached the supply hole 6 is caused by the reflux groove 7 provided at the uppermost portion of the bowl from the inner circumference 4 of the uppermost spiral surface to the lower spiral surface 5.
To fall. Next, as the vibration intensity of the feeder increases, the spread of the band of the granular material flow F from the outer peripheral wall 1 of the spiral surface decreases,
The granular material flow F reaching the supply hole 6 is also reduced. When the vibration exceeds a certain strength, the band of the granular material flow F hardly spreads, moves between the spiral surface outer peripheral wall 1 and the supply hole 6, and reaches the reflux groove 7, that is, the granular material is Will not be supplied.
The vibration range up to this point is the range in which a small amount of powder or granular material can be supplied in a fixed amount, and is the main part of the present invention.

【0012】また、供給孔6の位置が最強振動において
移動する粉粒体流Fの帯にあれば、粉粒体は供給され、
この場合には、供給器の振動強度の増加に伴って、供給
量は増加する可能性が大きいが、供給器に与えられる弱
い振動により粉粒体流Fの円滑な移動が妨げられずに、
少量の粉粒体を定量供給するという目的は達成される。
振動強度の増加に伴い、供給粉粒体量が増加するか、
減少するかは、本発明の装置の各部の位置関係と、供給
粉粒体の性質により決まる。
Further, if the position of the supply hole 6 is in the band of the granular material flow F which moves at the strongest vibration, the granular material is supplied,
In this case, the supply amount is likely to increase as the vibration intensity of the feeder increases, but the smooth movement of the granular material flow F is not hindered by the weak vibration applied to the feeder,
The purpose of metering a small amount of powder is achieved.
Whether the amount of powder or granular material supplied increases with the increase in vibration intensity,
Whether or not the amount is reduced depends on the positional relationship of each part of the apparatus of the present invention and the property of the supplied powder or granular material.

【0013】特に重要な因子は、粉粒体流Fの帯の広が
り方と供給孔6であり、粉粒体流Fの帯の広がり方は、
ゲート3の螺旋面外周壁1との間隔及びゲート3からの
供給孔6の距離、ボウル内面の螺旋面の登り勾配及び螺
旋面の内周側から外周壁側への傾き、供給粉粒体の移動
の性質などに影響される。しかしなから、いずれの因子
も一義的に定めることができる。すなわち、供給孔6
は、その位置と径とを上記の要件を満たすように設ける
必要があり、供給孔6の位置は、粉粒体流Fの帯がゲー
ト3から適当に広がる(ゲート3の間隔により調節自
在)距離の、螺旋面幅のほぼ中央が適当である。また、
供給孔6の径は、螺旋面幅のほぼ半分が適当であるが、
供給孔6の設けられているボウルと同材の管材をねじ込
むことなどにより調節することができる。
Particularly important factors are how the band of the granular material flow F spreads and the supply holes 6, and how the band of the granular material flow F spreads is
The distance between the gate 3 and the outer peripheral wall 1 of the spiral surface, the distance of the supply hole 6 from the gate 3, the climbing slope of the spiral surface of the bowl inner surface, the inclination of the spiral surface from the inner peripheral side to the outer peripheral wall side, It is affected by the nature of movement. However, any of these factors can be uniquely determined. That is, the supply hole 6
Needs to be provided so that its position and diameter satisfy the above requirements, and the position of the supply hole 6 is such that the band of the granular material flow F spreads appropriately from the gate 3 (adjustable by the interval of the gate 3). A suitable distance is approximately the center of the spiral surface width. Also,
It is appropriate that the diameter of the supply hole 6 is approximately half the width of the spiral surface,
It can be adjusted by, for example, screwing in a tubing made of the same material as the bowl in which the supply hole 6 is provided.

【0014】次に、粉粒体を気体と共に供給する場合
は、粉粒体の供給孔6から気体も供給する方式が簡便で
あるが、本発明の装置の供給孔6の径は小さい場合が多
いため、多量の気体を流すと、供給孔6入口での気体流
速が大きくなり、付近の粉粒体を供給孔6に吸引する。
この原理は、霧吹きにおける水の吸引と同じである。
Next, when the powder and granules are supplied together with the gas, it is convenient to supply the gas from the powder and granule supply hole 6 as well, but the diameter of the supply hole 6 of the apparatus of the present invention may be small. Therefore, when a large amount of gas is flown, the gas flow velocity at the inlet of the supply hole 6 becomes large, and the powder particles in the vicinity are sucked into the supply hole 6.
This principle is the same as the suction of water in spraying.

【0015】そこで、他の実施例における振動式粉粒体
供給器の作動状況を模式的に断面図で説明する。図2に
おいて、図1と同様に1は螺旋面外周壁、2は最上部の
螺旋面で、6は供給孔の断面を示し、4は最上部の螺旋
面2の内周で、下段螺旋面5の外周壁でもある。また、
最上部の螺旋面2と下段螺旋面5の上の網目状部分は粉
粒体流Fの断面を模式的に表しており、下段螺旋面5で
は螺旋面の全幅を粉粒体が流れ、最上部の螺旋面2で
は、図1に示したと同様にゲート3により通過幅を制限
された粉粒体流Fが、螺旋面外周壁1から次第に広が
り、供給孔6に達して落下する。さらに、図中の8は、
最上部の螺旋面の内周4でもある下段螺旋面5の外周壁
4から供給孔6の内部に通したバイパスである。
Therefore, the operating condition of the vibrating granular material feeder according to another embodiment will be schematically described with reference to sectional views. In FIG. 2, as in FIG. 1, 1 is the outer peripheral wall of the spiral surface, 2 is the uppermost spiral surface, 6 is the cross section of the supply hole, 4 is the inner circumference of the uppermost spiral surface 2, and the lower spiral surface. It is also the outer peripheral wall of No. 5. Also,
The mesh portion on the uppermost spiral surface 2 and the lower spiral surface 5 schematically represents the cross section of the granular material flow F, and in the lower spiral surface 5, the granular material flows through the entire width of the spiral surface, On the upper spiral surface 2, the granular material flow F whose passage width is limited by the gate 3 similarly to that shown in FIG. 1 gradually spreads from the spiral surface outer peripheral wall 1 and reaches the supply hole 6 and falls. Furthermore, 8 in the figure is
It is a bypass that passes through the inside of the supply hole 6 from the outer peripheral wall 4 of the lower spiral surface 5 that is also the inner circumference 4 of the uppermost spiral surface.

【0016】バイパス8及び供給孔6の径が、粉粒体と
共に、ボウルの内側に供給する気体流量に比べて小さい
場合には、供給孔6入口付近の粉粒体が吸引され、供給
孔6の径は図2の点線で示したAにまで広がったように
仮想される。供給孔6の仮想位置Aは、気体流量が無け
れば、粉粒体流Fが供給孔6と螺旋面外周壁1との間を
通過して図示されていない還流溝7に達する位置であ
る。
When the diameters of the bypass 8 and the supply hole 6 are smaller than the flow rate of the gas supplied to the inside of the bowl together with the powder / granular material, the powder / granular material near the inlet of the supply hole 6 is sucked and the supply hole 6 is supplied. Is assumed to have spread to A shown by the dotted line in FIG. The imaginary position A of the supply hole 6 is a position where the granular material flow F passes between the supply hole 6 and the spiral surface outer peripheral wall 1 and reaches a reflux groove 7 (not shown) if there is no gas flow rate.

【0017】従って、振動強度の増加に伴い、粉粒体の
通過量が増す場合が多く、供給孔6の仮想位置Aが螺旋
面外周壁1に近づくと、少量の供給が難しくなる。上記
の事実は粉粒体の供給量を供給孔6への気体流量でも制
御できることを示している。なお、ボウル内の粉粒体の
供給孔6以外から気体を供給する方式も考えられるが、
供給孔6から供給する方式が簡便である。
Therefore, as the vibration strength increases, the passing amount of the powder or granular material often increases, and when the virtual position A of the supply hole 6 approaches the spiral surface outer peripheral wall 1, it becomes difficult to supply a small amount. The above fact indicates that the supply amount of the powdery or granular material can be controlled also by the gas flow rate to the supply hole 6. A method of supplying gas from a place other than the powder / particle supply hole 6 in the bowl is also conceivable.
The method of supplying from the supply hole 6 is simple.

【0018】また、供給する気体流量は粉粒体の供給量
とは別に定められ、供給孔6の径の大きさにも制限があ
る。そこで、本発明では粉粒体の流入しないバイパス8
への気体流量を自由に制御することにより、供給孔6の
気体流量を間接的に制御し、従って、粉粒体の供給量を
制御することにしている。バイパス8への気体流量の制
御方式は、バイパス8の径の大きさの変化の他に、その
数の変化も用いられる。バイパス8への気体流量が供給
する気体流量に比べて充分に大きければ、気体流による
粉粒体の吸引は無視できるので、供給孔6と仮想位置A
は殆んど一致することになる。
Further, the flow rate of the gas to be supplied is determined separately from the supply amount of the granular material, and the size of the diameter of the supply hole 6 is also limited. Therefore, in the present invention, the bypass 8 in which the granular material does not flow
By freely controlling the gas flow rate to the supply hole 6, the gas flow rate in the supply hole 6 is indirectly controlled, and therefore, the supply amount of the powdery or granular material is controlled. The control method of the gas flow rate to the bypass 8 uses not only the change in the diameter of the bypass 8 but also the change in the number thereof. If the gas flow rate to the bypass 8 is sufficiently larger than the gas flow rate to be supplied, the suction of the powdery particles by the gas flow can be ignored, so the supply hole 6 and the virtual position A
Will almost match.

【0019】次に、バイパス8を用いずに気体流による
粉粒体の吸引を無視できるようにするため、及び粉粒体
の供給孔6の、ゲートからの距離と、螺旋面幅上の位置
と、その径とを調節することを容易かつ確実するため、
粉粒体流Fに分岐を設けた他の実施例における振動式粉
粒体供給器の作動状況を模式的に示した図3で説明す
る。図3において、1から7は図1と全く同じであり、
9が楔状の分岐である。図1と同様に網目で示した粉粒
体流Fは、ゲート3の間隔を通過した後、螺旋面外周壁
1から次第に広がり、帯状に移動して供給孔6に達す
る。供給孔6の直前に設けた楔状の先端を持つ分岐9
は、この粉粒体流Fを、供給孔6に達するものと、還流
溝7に達して最上部の螺旋面の内周4から下段螺旋面5
に落下するものとに確実に分岐する。両者の割合は、分
岐9の楔状の先端と螺旋面外周壁1との間隔により調節
される。
Next, in order to make it possible to ignore the suction of the powdery particles by the gas flow without using the bypass 8, and the distance between the gate of the powdery particle supply hole 6 and the position on the spiral surface width. And to easily and surely adjust its diameter and
An operation state of the vibrating granular material feeder according to another embodiment in which the granular material flow F is branched will be described with reference to FIG. In FIG. 3, 1 to 7 are exactly the same as those in FIG.
9 is a wedge-shaped branch. Similar to FIG. 1, the granular material flow F shown by meshes, after passing through the interval of the gate 3, gradually spreads from the outer peripheral wall 1 of the spiral surface, moves in a band shape, and reaches the supply hole 6. Branch 9 having a wedge-shaped tip provided immediately before the supply hole 6
This powder and granular material flow F reaches the supply hole 6, and reaches the reflux groove 7 and reaches from the inner circumference 4 to the lower spiral surface 5 of the uppermost spiral surface.
Make sure to branch to what falls into. The ratio between the two is adjusted by the distance between the wedge-shaped tip of the branch 9 and the spiral surface outer peripheral wall 1.

【0020】次に、市販のアルミニウム合金製パーツフ
ィーダ用ボウル最上部の螺旋面2に、本発明を適用した
実施例について図1を用いて、具体的に説明する。ボウ
ル最上部の螺旋面外周壁1の半径は90mm、その螺旋面外
周壁1の半径と下段螺旋面5の外周壁でもある最上部の
螺旋面2の内周4との差、すなわちその最上部の螺旋面
2の幅は10.5mmであり、最上部の螺旋面2の螺旋面外周
壁1側が最上部の螺旋面の内周4側より1.55mm低くなる
ように加工されている。
Next, an embodiment in which the present invention is applied to the spiral surface 2 on the uppermost part of a commercially available aluminum alloy parts feeder bowl will be specifically described with reference to FIG. The radius of the spiral surface outer peripheral wall 1 at the top of the bowl is 90 mm, and the difference between the radius of the spiral surface outer peripheral wall 1 and the inner circumference 4 of the uppermost spiral surface 2 that is also the outer peripheral wall of the lower spiral surface 5, that is, the uppermost part The width of the spiral surface 2 is 10.5 mm, and the spiral surface outer peripheral wall 1 side of the uppermost spiral surface 2 is processed to be 1.55 mm lower than the inner circumference 4 side of the uppermost spiral surface.

【0021】また、粉粒体の貯留器を兼ねるボウルの最
下部から、3周の螺旋で、還流溝7が設けられる高さ53
mmの最上部の螺旋面2に達するようになっている。次
に、ゲート3は板厚3mmのアルミニウムを図1の形状に
加工し、最上の螺旋面2に、供給孔6とボウルの中心か
らの開き角度20°または45°となるようにねじ留めして
いる。
Further, from the bottom of the bowl which doubles as a reservoir for the granular material, the height 53 at which the reflux groove 7 is provided in a spiral of three revolutions.
It is designed to reach the top spiral surface 2 of mm. Next, the gate 3 is made by processing aluminum with a plate thickness of 3 mm into the shape shown in FIG. 1 and screwed to the uppermost spiral surface 2 so that the opening angle from the center of the feed hole 6 and the bowl is 20 ° or 45 °. ing.

【0022】また、ゲート3と螺旋面外周壁1との間隔
は、ねじ留めするゲート3のアルミニウム板の位置によ
り調節できるが、この実施例では 1.5mmとし、供給孔6
は螺旋面幅10.5mmの中央に、径 4.0mmで設けた。還流溝
7は、供給孔6とボウルの中心からの開き角度で約20°
上部の螺旋面の全幅に幅3mm、深さ2mmで設け、螺旋面
外周壁1付近では強振動により粉粒体が越えないように
幅5mmとした。
The distance between the gate 3 and the outer peripheral wall 1 of the spiral surface can be adjusted by the position of the aluminum plate of the gate 3 to be screwed, but in this embodiment, it is 1.5 mm and the supply hole 6 is provided.
Was installed at the center of the spiral surface width of 10.5 mm with a diameter of 4.0 mm. The reflux groove 7 has an opening angle of about 20 ° from the supply hole 6 and the center of the bowl.
The entire width of the upper spiral surface was 3 mm wide and 2 mm deep, and the width was 5 mm in the vicinity of the outer peripheral wall 1 of the spiral surface so that the granular material would not exceed due to strong vibration.

【0023】上記ボウルの振動強度は印加電圧により調
節され、粒径150 〜 180μm の粒状化水酸アパタイト10
gをボウル最下部にとり、2分間に供給孔6から落下し
た重量を、振動強度に対して測定した。印加電圧に対す
る単位時間当りの重量供給速度を、図4の線図に示して
おり、細線で結んだ三角の各点はゲート3と供給孔6と
のボウル中心からの開き角度が 45 °、太線で結んだ丸
い各点は、この角度が20°の場合を各々表している。
The vibration intensity of the bowl is adjusted by the applied voltage, and the granular hydroxyapatite 10 having a particle size of 150 to 180 μm is used.
g was taken at the bottom of the bowl, and the weight dropped from the supply hole 6 in 2 minutes was measured against the vibration strength. The weight supply rate per unit time with respect to the applied voltage is shown in the diagram of Fig. 4. Each triangular point connected by a thin line has an opening angle of 45 ° from the bowl center between the gate 3 and the supply hole 6, and a thick line. Each round point connected by means the case where this angle is 20 °.

【0024】印加電圧80Vで、縦に並んだ3つの丸点は
重量供給速度のバラツキを、四角の点は10分間で測定し
た重量供給速度を示しており、0.2g/min という少量の
供給においても、バラツキが少なく、定量供給が行われ
ていることが判った。また、図4においては、ゲート3
から供給孔6までの開き角度が大きい三角点の場合の重
量供給速度は、印加電圧75Vでは粉粒体流Fの帯が広が
るため、大きく印加電圧の増加に伴って粉粒体流Fの帯
が充分広がらない速さで移動するため、減少した。ゲー
ト3から供給孔6までの開き角度が小さい丸点の印加電
圧75Vの場合は、ゲート3から粉粒体流Fの帯が充分広
がるための移動距離が少ないので、重量供給速度が小さ
い。
At an applied voltage of 80 V, three vertically aligned circles represent variations in the weight supply rate, and square points represent the weight supply rate measured in 10 minutes. In the case of a small supply of 0.2 g / min. However, there was little variation and it was found that a fixed amount was supplied. Further, in FIG. 4, the gate 3
When the applied voltage is 75 V, the band of the granular material flow F spreads at a triangular point where the opening angle from the to the supply hole 6 is large. Therefore, the band of the granular material flow F greatly increases as the applied voltage increases. However, it moved at a speed that did not spread enough, so it decreased. When the voltage applied to the round point with a small opening angle from the gate 3 to the supply hole 6 is 75 V, the moving distance for the band of the granular material flow F to spread sufficiently from the gate 3 is small, so the weight supply speed is small.

【0025】しかしながら、印加電圧80Vでは、粉粒体
流Fの移動速度の増加のみが顕著であるため、重量供給
速度も増す。開き角度が大きい三角点の場合も、印加電
圧70V以下になると、粉粒体流Fの帯の広がりはあまり
大きくならず、粉粒体流Fの移動速度が減少するので、
重量供給速度が減る可能性が大きい。両者共、印加電圧
80V以上では粉粒体流Fの帯が広がらない効果が顕著に
なり、印加電圧の増加に伴い、重量供給速度は減少し、
90Vでは粉粒体流Fの帯は殆んど広がらず、螺旋面外周
壁1と供給孔6との間を移動し、供給速度0となる。
However, when the applied voltage is 80 V, only the moving speed of the powder or granular material flow F is significantly increased, so that the weight supply speed is also increased. Even in the case of a triangular point with a large opening angle, when the applied voltage becomes 70 V or less, the spread of the band of the granular material flow F does not become so large and the moving speed of the granular material flow F decreases.
Weight supply rate is likely to decrease. Both applied voltage
At 80 V or higher, the effect of not spreading the band of the powder or granular material flow F becomes remarkable, and the weight supply rate decreases as the applied voltage increases,
At 90 V, the band of the granular material flow F hardly spreads, moved between the outer peripheral wall 1 of the spiral surface and the supply hole 6, and the supply speed became 0.

【0026】次に、上記実施例と同じパーツフィーダ用
ボウルの中心から供給孔6との開き角度20°下部の最上
部の螺旋面2にゲート3のアルミニウム板を螺旋面外周
壁1との間隔1.0mm で固定し、供給孔6は、螺旋面幅1
0.5mmの中央に、径 4.0mmで設けた。粒径80〜 100μm
の粒状化水酸アパタイト10gをボウル最下部にとり、2
または5分間に供給孔6から落下した重量を、振動強度
を調節する印加電圧及びボウル内に供給する気体流量に
対して測定した。気体流量は他の実験の都合からアルゴ
ン:2.0dm3/min と酸素:1.0dm3/min の混合気体流の
有無とした。
Next, the aluminum plate of the gate 3 is provided on the uppermost spiral surface 2 at the lower part of the opening angle of 20 ° from the center of the parts feeder bowl, which is the same as the above embodiment, and the gap between the aluminum plate of the gate 3 and the outer peripheral wall 1 of the spiral surface. It is fixed at 1.0 mm, and the supply hole 6 has a spiral surface width of 1
The diameter was 4.0mm at the center of 0.5mm. Particle size 80-100 μm
Take 10 g of granulated hydroxyapatite from the bottom of the bowl and
Alternatively, the weight dropped from the supply hole 6 in 5 minutes was measured with respect to the applied voltage for adjusting the vibration intensity and the gas flow rate supplied into the bowl. The gas flow rate was set to be the presence or absence of a mixed gas flow of argon: 2.0 dm 3 / min and oxygen: 1.0 dm 3 / min for the convenience of other experiments.

【0027】気体流の有る時は、バイパス8の径を最大
に絞った場合に、無い時は、バイパス8の径を最大に開
いた場合の両極端に対応する。その結果を下記の表に示
している。 本発明の請求項2を適用すると、上記の表に示したよう
に定量供給の範囲が広くなり、印加電圧の高い方が、気
体を流した時の重量供給速度の増加比は大きい。この理
由は次のごとく説明される。すなわち、気体流速が印加
電圧によらず一定であるので、供給孔6の仮想位置Aも
印加電圧によらず一定であるが、しかし、印加電圧が高
いと、振動も強く、仮想位置Aを通過する粉粒体量が多
いので、気体を流した時の重量供給速度の増加比は大き
い。
It corresponds to both extremes when the diameter of the bypass 8 is narrowed to the maximum when there is a gas flow, and to when the diameter of the bypass 8 is opened to the maximum when there is no gas flow. The results are shown in the table below. When claim 2 of the present invention is applied, the range of quantitative supply becomes wider as shown in the above table, and the higher the applied voltage is, the larger the increase ratio of the weight supply rate when the gas is caused to flow. The reason for this is explained as follows. That is, since the gas flow velocity is constant regardless of the applied voltage, the virtual position A of the supply hole 6 is also constant regardless of the applied voltage. However, when the applied voltage is high, the vibration is strong and the gas passes through the virtual position A. Since the amount of powder and granules generated is large, the ratio of increase in the weight supply rate when a gas is flown is large.

【0028】次に、上記実施例と同じパーツフィーダ用
ボウルの中心から供給孔6との開き角度20°下部の最
上部の螺旋面2にゲート3のアルミニウム板を螺旋面外
周壁1との間隔 1.0mmで固定し、供給孔6は、螺旋面幅
10.5mmの中央に、径 4.0mmで設けた。バイパス8の径は
5.5mmとした。アルミニウム板製の分岐9を、楔状の先
端と螺旋面外周壁1との間隔を 1.0mmとし、ねじ留めし
て取り付けた。粒径125〜 150μm の粒状化水酸アパタ
イト20g をボウル最下部にとり、振動強度を調節する印
加電圧を73.5Vとして、1分間に供給孔6から落下した
重量を測定した。
Next, the aluminum plate of the gate 3 is provided on the uppermost spiral surface 2 below the opening angle of 20 ° with respect to the center of the bowl for parts feeder, which is the same as the above embodiment, and the space between the aluminum plate of the spiral surface and the outer peripheral wall 1. Fixed at 1.0 mm, the supply hole 6 has a spiral surface width
The diameter was 4.0mm at the center of 10.5mm. The diameter of the bypass 8 is
It was set to 5.5 mm. A branch 9 made of an aluminum plate was attached by screwing it with a gap between the wedge-shaped tip and the outer peripheral wall 1 of the spiral surface being 1.0 mm. 20 g of granulated hydroxyapatite having a particle size of 125 to 150 μm was placed at the bottom of the bowl, the applied voltage for adjusting the vibration strength was set to 73.5 V, and the weight dropped from the supply hole 6 in one minute was measured.

【0029】重量供給速度は 0.285及び0.295g/minであ
った。次にボウルの内にアルゴン気体を流量4.0dm3/min
で供給した場合、5分間に供給孔6から落下した重量か
ら求めた重量供給速度は0.311g/minであった。バイパス
があるとは言っても、前記の実施例の場合よりも多い気
体量を流したが、重量供給速度の増加は僅かであり、実
験誤差の範囲である。このように、本発明の請求項3を
適用すると、粉粒体と共に供給するために気体を、供給
孔6に流した場合においても、重量供給速度は気体を流
さない場合と変化なく、定量性が向上する。
The weight feed rates were 0.285 and 0.295 g / min. Next, flow Argon gas into the bowl at a flow rate of 4.0 dm 3 / min.
In the case of the above-mentioned feeding, the weight feeding rate calculated from the weight dropped from the feeding hole 6 in 5 minutes was 0.311 g / min. Even though there was a bypass, a larger amount of gas was flowed than in the case of the above-mentioned embodiment, but the increase in the weight supply rate was slight, which is within the range of experimental error. As described above, by applying claim 3 of the present invention, even when a gas is supplied to the powder holes for supplying together with the powdery or granular material, the weight supply rate is the same as that when the gas is not supplied, and the quantitative property is maintained. Is improved.

【0030】[0030]

【発明の効果】以上に説明した本発明の最大の効果は供
給速度の高い定量性が確保されることである。一般に粉
粒体の粒子径が大きい程、重く、かつ振動による移動は
速いので、重量供給速度は速くなる。定量性を保つため
には、粉粒体を篩等により分級して、粒子径を一定にす
る必要があるが、限度がある。しかし、本発明の粉粒体
定量供給装置を用いると、粒子径が大きい粉粒体は、速
く移動するので、螺旋面外周壁から広がらず、分岐の楔
状先端または供給孔との間を通過して、供給されない割
合が多い。従って、粉粒体の実用的な分級でも、供給速
度の定量性が確保できる。このように、従来は困難であ
った粉粒体の本質的な定量供給が、本発明により確保で
きた意義は大きい。この本質的に高い定量性は、特に、
微少量の粉粒体の定量供給や各種各流量での気体と粉粒
体との併用定量供給に著しい効果を発揮する。
The greatest effect of the present invention described above is to secure a high quantitative rate of supply rate. Generally, the larger the particle size of the powdery particles, the heavier the particles are, and the faster the movement due to vibration is, the faster the weight supply rate becomes. In order to maintain the quantitative property, it is necessary to classify the powder and granules with a sieve or the like to make the particle diameter constant, but there is a limit. However, when using the powder / quantitative-quantity supply device of the present invention, the powder / granular material having a large particle size moves quickly, so that it does not spread from the outer peripheral wall of the spiral surface and passes between the wedge-shaped tip of the branch or the supply hole. In many cases, it is not supplied. Therefore, it is possible to secure the quantitativeness of the feeding rate even in the practical classification of the powder and granules. As described above, it is significant that the present invention has ensured the essential quantitative supply of the granular material, which was difficult in the past. This inherently high quantification
It exerts a remarkable effect on the quantitative supply of a minute amount of powder or granular material and the combined quantitative supply of gas and granular material at various flow rates.

【0031】また、比較的強い振動で多量に螺旋面を登
る粉粒体流の大部分は、ゲート及び還流溝から下段螺旋
面に落下し、再び螺旋面を登り、循環するが、このこと
は、貯留器を兼ねるボウル内に用意する粉粒体の量が、
供給量に対して大過剰で無くても良いことを意味する。
従って、供給する粉粒体を細かく分級して性質を揃え、
定量供給の精度を更に向上すると共に、研究実験や製造
の条件制御を容易にするという利点がある。
Further, most of the granular material flow that climbs a large amount on the spiral surface due to relatively strong vibration falls from the gate and the return groove to the lower spiral surface, climbs the spiral surface again, and circulates. The amount of powder and granules prepared in the bowl that doubles as a reservoir
This means that it does not have to be a large excess with respect to the supply amount.
Therefore, the powder and granules to be supplied are finely classified to have uniform properties,
It has the advantages of further improving the accuracy of the quantitative supply and facilitating the control of conditions for research experiments and manufacturing.

【0032】さらに、大部分の粉粒体の移動距離が短い
ことは、粒度による移動速度の違いの影響を受け難いこ
とを意味し、定量精度が向上するという利点がある。定
量精度の向上が不用の場合には、分級を荒くできる利点
もある。また、供給器の振動強度の増加に伴い、供給孔
に達する粉粒体は一見相当量減少するように思えるが、
粉粒体流の移動速度が早くなっているので、重量供給量
は見かけより減少割合が少なく、増加している場合もあ
る。このことは、振動強度の変化による供給量の変動が
少ないことを意味している。供給器の振動強度は通常、
振動器に加える電圧により調節されるので、電源の電圧
が多少変動しても、供給量の変動は僅かで、定量供給が
維持される可能性が大きい。
Furthermore, the fact that the moving distance of most of the particles is short means that it is unlikely to be affected by the difference in moving speed depending on the particle size, and there is an advantage that the quantitative accuracy is improved. There is also an advantage that the classification can be roughened when the improvement of the quantitative accuracy is unnecessary. Also, with the increase in the vibration intensity of the feeder, it seems that the amount of powder and granules reaching the feed hole decreases at a glance.
Since the moving speed of the granular material flow is high, the weight supply amount is decreasing at a smaller rate than it is apparent and may be increasing. This means that the fluctuation of the supply amount due to the change of the vibration intensity is small. The vibration intensity of the feeder is usually
Since the voltage is adjusted by the voltage applied to the vibrator, even if the voltage of the power supply fluctuates to some extent, the fluctuation of the supply amount is small and there is a high possibility that the constant supply can be maintained.

【0033】本発明の請求項3の装置を用いると、粉粒
体を気体と共に供給するために、供給孔に気体を流す場
合においても、重量供給速度が実施例に示したように気
体を流さない場合と誤差範囲内で一致する。従って、定
量供給の速度やその範囲を気体のバイパスの径により調
節出来ないが、バイパスを作る必要や気体を流した場合
の供給速度を測定する必要がない。また、本発明におい
ては、供給孔の位置と径を適切に設定する必要がある
が、これとほぼ等価の効果を請求項3に述べた分岐の楔
状の先端と螺旋面外周壁との間隔を調節することにより
得られる。
When the apparatus according to the third aspect of the present invention is used, in order to supply the powdery particles together with the gas, even when the gas is flown through the supply hole, the weight supply rate is such that the gas flows as shown in the embodiment. There is a match with the error range within the error range. Therefore, it is not possible to adjust the rate of fixed amount supply and its range by the diameter of the gas bypass, but it is not necessary to make a bypass or to measure the supply rate when gas is flowed. Further, in the present invention, it is necessary to appropriately set the position and the diameter of the supply hole, but an effect substantially equivalent to this is obtained by setting the interval between the wedge-shaped tip of the branch and the outer peripheral wall of the spiral surface described in claim 3. It is obtained by adjusting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粉粒体定量供給装置の一実施例の作動
状況を模式的に示した説明図である。
FIG. 1 is an explanatory view schematically showing an operating condition of an embodiment of a powdery- or granular-material quantitative supply device of the present invention.

【図2】本発明の粉粒体定量供給装置の他の実施例の作
動状況を模式的に示した断面図である。
FIG. 2 is a cross-sectional view schematically showing an operating condition of another embodiment of the powder / particles quantitative supply device of the present invention.

【図3】本発明の請求項3の作動状況を模式的に示した
説明図である。
FIG. 3 is an explanatory diagram schematically showing an operating condition of claim 3 of the present invention.

【図4】本発明の効果を説明するための線図である。FIG. 4 is a diagram for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 螺旋面外周壁 2 最上部の
螺旋面 3 ゲート 4 最上部の
螺旋面の内周 5 下段螺旋面 6 供給孔 7 還流溝 8 バイパス 9 分岐 A 供給孔の仮想位置 F 粉粒体流
1 spiral surface outer peripheral wall 2 top spiral surface 3 gate 4 inner circumference of top spiral surface 5 lower spiral surface 6 supply hole 7 return groove 8 bypass 9 branch A virtual position of supply hole F granular material flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 振動式粉粒体供給器の最上部の螺旋面の
粉粒体流の通過量を制限するゲートと螺旋面外周壁との
間隔及び粉粒体の供給孔のゲートからの距離と、螺旋面
幅上の位置と、その径とを調節自在とする粉粒体定量供
給装置。
1. A distance between a gate and a spiral surface outer peripheral wall for restricting the passage amount of the granular material flow on the uppermost spiral surface of the vibrating granular material feeder, and a distance from the gate of the granular material supply hole. A powder and granular material quantitative supply device in which the position on the spiral surface width and its diameter can be adjusted.
【請求項2】 粉粒体の供給孔に気体を流し、かつ粉粒
体が流入しない位置に設けたバイパスを通る気体流量を
制御自在とする請求項1記載の粉粒体定量供給装置。
2. The powder / granule quantitative supply device according to claim 1, wherein a gas is caused to flow through the powder / granule supply hole, and a gas flow rate through a bypass provided at a position where the powder / granule does not flow is controllable.
【請求項3】 供給孔に導く粉粒体流の分岐量を調節自
在とする請求項1記載の粉粒体定量供給装置。
3. An apparatus for quantitatively supplying powdery or granular material according to claim 1, wherein the branching amount of the powdery or granular material flowing to the supply hole is adjustable.
JP3197104A 1991-07-11 1991-07-11 Granular material quantitative supply device Expired - Lifetime JPH06104495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197104A JPH06104495B2 (en) 1991-07-11 1991-07-11 Granular material quantitative supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197104A JPH06104495B2 (en) 1991-07-11 1991-07-11 Granular material quantitative supply device

Publications (2)

Publication Number Publication Date
JPH0517023A true JPH0517023A (en) 1993-01-26
JPH06104495B2 JPH06104495B2 (en) 1994-12-21

Family

ID=16368798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197104A Expired - Lifetime JPH06104495B2 (en) 1991-07-11 1991-07-11 Granular material quantitative supply device

Country Status (1)

Country Link
JP (1) JPH06104495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958309A (en) * 1996-03-06 1999-09-28 Idemitsu Petrochemical Co., Ltd. Method for manufacturing thermoplastic sheets bearing embossed patterns thereon and an apparatus therefor
US6260887B1 (en) 1996-06-26 2001-07-17 Idemitsu Petrochemical Co., Ltd. Method of emboss pattern process, emboss pattern processing apparatus, and embossed sheet
USRE38495E1 (en) * 1996-03-06 2004-04-13 Idemitsu Petrochemical Co., Ltd. Method for manufacturing thermoplastic sheets bearing embossed patterns thereon and an apparatus therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524691U (en) * 1975-06-24 1977-01-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524691U (en) * 1975-06-24 1977-01-13

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958309A (en) * 1996-03-06 1999-09-28 Idemitsu Petrochemical Co., Ltd. Method for manufacturing thermoplastic sheets bearing embossed patterns thereon and an apparatus therefor
USRE38495E1 (en) * 1996-03-06 2004-04-13 Idemitsu Petrochemical Co., Ltd. Method for manufacturing thermoplastic sheets bearing embossed patterns thereon and an apparatus therefor
US6260887B1 (en) 1996-06-26 2001-07-17 Idemitsu Petrochemical Co., Ltd. Method of emboss pattern process, emboss pattern processing apparatus, and embossed sheet
US6568931B2 (en) 1996-06-26 2003-05-27 Idemitsu Petrochemical Co., Ltd. Emboss pattern processing apparatus

Also Published As

Publication number Publication date
JPH06104495B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US5656325A (en) Powder coating apparatus and method
US3976332A (en) Powder feed device for flame spray guns
JP2574721B2 (en) Powder spray equipment for coating
JP2010094507A (en) Device for dosing powdery or granular substance into capsule or the like
SK14299A3 (en) Device and method for metering a particulate substance and apparatus comprising a plurality of such devices
CA1062907A (en) Continuous powder feed system for maintaining a uniform powder coating thickness on objects being coated by electrostatic fluidized beds
JPH0517023A (en) Granular powder quantitative supply apparatus
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
US4359175A (en) Adjustable vibrating powder dispensing assembly
WO2021166375A1 (en) Particulate spraying apparatus and particulate spraying method
JPH06205960A (en) Powdery substance feeder
US6417464B2 (en) Extended range feeders
DE2029989B2 (en) Method and device for flame spraying finely divided fluidizable powder
EP1433539B1 (en) Receptacle for powder form substances
FI119379B (en) Ways of streamlining clarification in a mixing reactor and mixing reactor
CN106925417A (en) A kind of micron and sub-micron rank powder hydraulic grading device
WO1989004220A1 (en) Method and apparatus for classifying particles
US5992689A (en) Variable flow rate hopper to reduce feed pulsation to a downstream process
JP2003515447A (en) Conical separator and method for separating fluid or non-fluid aggregate material to a limited extent
BE1028536B1 (en) Discharge device and method for discharging material from a process room
US4421148A (en) Device for feeding particulate material
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
RU2445171C2 (en) Method of automatic control over hydraulic cyclone
EP1433538B1 (en) Receptacle for powder form substances
US9849462B2 (en) Sifting apparatuses

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term