JPH0517022B2 - - Google Patents

Info

Publication number
JPH0517022B2
JPH0517022B2 JP59212379A JP21237984A JPH0517022B2 JP H0517022 B2 JPH0517022 B2 JP H0517022B2 JP 59212379 A JP59212379 A JP 59212379A JP 21237984 A JP21237984 A JP 21237984A JP H0517022 B2 JPH0517022 B2 JP H0517022B2
Authority
JP
Japan
Prior art keywords
film
die
bubble
inflation
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59212379A
Other languages
Japanese (ja)
Other versions
JPS6189827A (en
Inventor
Terumitsu Kotani
Toshio Taka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59212379A priority Critical patent/JPS6189827A/en
Publication of JPS6189827A publication Critical patent/JPS6189827A/en
Publication of JPH0517022B2 publication Critical patent/JPH0517022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/902Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はポリオレフイン系樹脂を用いて、溶融
押出により引取方向と直角の方向(以下、横方向
又はT方向と称する)の引裂強度を改良した極薄
フイルムを高速にて製造できる方法に関する。 従来技術 インフレーシヨン法によつてフイルムを製造す
る場合には、樹脂溶融温度、冷却エアーリングの
風量、リングスリツトの形状、角度等の冷却条件
を細かく調整することにより、綜合的な冷却状態
の規制が出来る外、膨張比や引取速度等の加工条
件によつてフイルム物性の選択が可能である。 結晶性のポリオレフイン系樹脂からインフレー
シヨン法によりフイルムを製造する際、溶融樹脂
が冷却固化するまでに受ける樹脂の流れ或いは変
形によつて生ずるその方向への分子配向により、
一面では物性の向上が得られるが、インフレーシ
ヨン法の特性上横方向に比し引取方向(以下縦方
向又はM方向と称する)の配向が格段に大きく、
そのバランスのよいものを得ることが重要な課題
となる。しかし、インフレーシヨンフイルムの製
造においては、通常、管状フイルムの横方向に対
して縦方向への分子分配がまさつているため、押
出される管状フイルム内に圧力気体を封入し、膨
らますことにより、バブルを形成せしめ、横方向
へ延伸することにより横方向への分子配向を加え
て縦方向への分子配向とバランスさせることが行
なわれている。 すなわち、縦方向および横方向の強度が共に高
い、極めて薄いフイルムを高生産性で得るために
は、高速で引取るとともに、膨張比を大きく取る
ことが必要となる。しかし、大きな膨張比を持つ
バブルを高速で引取ると、バブルがゆれたり、膨
張開始点やフロストラインが上下したりして、甚
しいときは成形不能となることがある。またバブ
ルが不安定となると、成形されたフイルムには厚
みむら、しわ、たるみおよび折径の変動等となつ
て現われる。 このため、特に高密度ポリエチレンを用いるイ
ンフレーシヨン法において、第2図a,b,cに
示すように、ダイス1の面中央に、ダイスの樹脂
押出ダイスリツト2の径より小さい径を有する円
筒状のバブル安定体3を突出させ、エアーリング
4より空気を噴出させながら樹脂を押出し、上記
安定体3にバブル5のくびれ部分5aを接触さ
せ、次いで膨張させフロストライン5bで樹脂を
結晶化せしめ、ニツプロール(図示せず)で引取
り畳んだ後、巻取る方法(特公昭55−2180)が行
なわれるようになつた。 従来技術の問題点 ところで、上記方法によつて、バブルは安定化
され高速の引取が可能となるが、膨張比を大きく
とるとフイルムの厚みが薄くなつた場合、製袋後
の使用時の荷重によつては、横方向に裂ける、い
わば、輪切れする現象が発生する。通常、インフ
レーシヨンフイルムを袋にするためには、引取方
向に直角にヒートシールを行ない製袋するが、輪
切れ現象は中に物を入れるとその荷重によつて発
生するため、袋として至命的欠陥となる。 発明の目的 本発明は上記の事情に鑑み、ポリオレフイン系
樹脂を用いなかでも好適には高密度ポリエチレン
を用いて、インフレーシヨン法によつて縦および
横方向の強度の共に高い極薄フイルムを高速で成
形する方法を提供することを目的とする。 発明の構成 本発明は、上記の目的を達成するためになされ
たもので、その要旨は、ポリオレフイン系樹脂を
用いてインフレーシヨン法によりフイルムを製造
するにあたり、マンドレル外周面に流れ方向に凹
溝を有するダイスリツトから樹脂を溶融押出し、
ダイス面にバブル安定体を突出させ該安定体にバ
ブルのくびれ部分を接触せしめ、次いで膨張させ
ながら引取るインフレーシヨンフイルム成形法に
ある。 第1図a,bは本発明に係るインフレーシヨン
フイルム成形法を実施する装置の一例を示すもの
で、第2図a,b,cと同一部分には同一符号を
付してその説明を省略する。 第1図aは、ダイス1の一部平面拡大図で、ダ
イスリツト2′を形成するマンドレル6の外周面
には所定の間隔で流れ方向の凹溝7が設けられて
いる。このダイスリツト2′より溶融して押出さ
れたポリオレフイン系樹脂管状体内面には縦方向
の多数の凸条が形成され、膨張比を大きくとつて
も前記輪切れ現象が発生しないことを見出した。
またダイス1の面にはバブル安定体が突出されて
いるので、これにバブル5のくびれ部分が密接
し、バブル5を安定化するとともに凹凸面を有す
るフイルムの面はある程度フラツトとなる。この
場合フイルムには、凸条の痕跡や稿模様の残る可
能性はあるが、従来の成形法で得られるフイルム
に比較して輪切れのないT方向の耐引裂性の改良
されたフイルムを高速度で得ることが出来る。す
なわち、第1図bに示すように、ダイスリツト
2′より押出され凹溝7…によつて多数の凸条が
内面に形成された範囲8の管状樹脂は、くびれ部
分5aにおいてバブル安定体3に密着し、バブル
が安定化されると共に凸条が縦すじの履歴を残し
て凸条の痕跡や稿模様の残る可能性はあるがある
程度フラツトにならされ、範囲9で所定の比率で
膨張され、フロストライン5b以降10において
固化したフイルムとなつて、ニツプロルにより畳
まれ巻取られる。なお凹溝は前述のようにマンド
レルに設けることにより、ダイスに設ける場合よ
り、フイルムの製袋後の外観上好都合となる。ま
た形成されたフイルムの凸条の痕跡や稿模様は幅
方向7mmの間に少なくとも1本あるのが好まし
い。 実施例、比較例 実施例 1〜4 MI(メルトインデツクス):0.5g/10min、密
度:0.958g/c.c.の高密度ポリエチレンを、マン
ドレル外周面に深さ;0.5mm、幅;1.0mmのV字形
の流れ方向の溝240本が設けられたマンドレル外
径(非溝部)59mmφ、ダイ内径60mmφのダイスリ
ツトを有し、面中央に外径55mmφ、高さ700mmの
円筒状のバブル安定体が突出されているダイスが
取付けられた65mmφの押出機を使用して、膨張比
(ブロー比):3および4、引取速度:80m/min
および100m/min、で厚み:12μmのインフレー
シヨンフイルムを作成して試料とし、各試料のエ
ルメンドルフ式引裂強度、衝撃強度を測定した。 比較例 1〜4 ダイスリツトをマンドレル外面に溝のない通常
の平滑環状のダイスリツトとした外は、実施例と
全く同じ装置、条件によつてインフレーシヨンフ
イルムを作成し、各試料のエルメンドルフ式引裂
強度、衝撃強度を測定した。 実施例、比較例の測定結果を第1表に示す。
TECHNICAL FIELD The present invention relates to a method for producing ultrathin films with improved tear strength in the direction perpendicular to the drawing direction (hereinafter referred to as the transverse direction or T direction) by melt extrusion using polyolefin resins at high speed. Prior Art When producing film using the inflation method, the overall cooling state can be achieved by finely adjusting cooling conditions such as the resin melting temperature, the air volume of the cooling air ring, and the shape and angle of the ring slit. In addition to being able to regulate the film properties, it is also possible to select the physical properties of the film depending on processing conditions such as expansion ratio and take-up speed. When manufacturing a film from a crystalline polyolefin resin by the inflation method, molecular orientation in the direction caused by the flow or deformation of the molten resin before it cools and solidifies.
On the one hand, physical properties can be improved, but due to the characteristics of the inflation method, the orientation in the take-up direction (hereinafter referred to as the longitudinal direction or M direction) is much greater than that in the horizontal direction.
Obtaining a good balance is an important issue. However, in the production of blown film, the distribution of molecules in the longitudinal direction is usually better than in the lateral direction of the tubular film, so by filling the extruded tubular film with pressurized gas and inflating it, By forming bubbles and stretching in the transverse direction, molecular orientation in the transverse direction is added to balance the molecular orientation in the longitudinal direction. That is, in order to obtain an extremely thin film with high strength in both the longitudinal and transverse directions with high productivity, it is necessary to take it off at high speed and to have a large expansion ratio. However, if a bubble with a large expansion ratio is drawn at high speed, the bubble may sway or the expansion start point or frost line may move up and down, and in severe cases, it may become impossible to form the bubble. Furthermore, if the bubble becomes unstable, uneven thickness, wrinkles, sagging, and fluctuations in fold diameter appear in the formed film. For this reason, especially in the inflation method using high-density polyethylene, a cylindrical shape having a diameter smaller than the diameter of the resin extrusion die slit 2 of the die is placed at the center of the surface of the die 1, as shown in Fig. 2 a, b, and c. The bubble stabilizer 3 is projected, the resin is extruded while blowing out air from the air ring 4, the constriction 5a of the bubble 5 is brought into contact with the stabilizer 3, and the resin is then expanded and crystallized at the frost line 5b. A method (Japanese Patent Publication No. Sho 55-2180) came to be used after the paper was collected and folded using a Nippro roll (not shown) and then rolled up. Problems with the prior art By the way, the above method stabilizes the bubbles and enables high-speed take-up, but if the expansion ratio is set high, the film becomes thinner, and the load during use after bag making becomes smaller. Depending on the situation, a phenomenon of horizontal tearing, so to speak, occurring. Normally, blown film is made into bags by heat-sealing it at right angles to the take-up direction, but the phenomenon of ring breakage occurs due to the load when objects are placed inside, so it is difficult to make bags. It becomes a fatal defect. Purpose of the Invention In view of the above circumstances, the present invention uses a polyolefin resin, preferably high-density polyethylene, to produce an ultra-thin film with high strength in both longitudinal and transverse directions at high speed by an inflation method. The purpose is to provide a method for molding. Composition of the Invention The present invention has been made to achieve the above object, and the gist thereof is that when manufacturing a film using a polyolefin resin by an inflation method, grooves are formed on the outer peripheral surface of the mandrel in the flow direction. Melt and extrude the resin from a die slit with
This is an inflation film forming method in which a bubble stabilizer is projected from the die surface, the narrow part of the bubble is brought into contact with the stabilizer, and then the bubble is taken off while being expanded. Figures 1a and 1b show an example of an apparatus for carrying out the blown film forming method according to the present invention, and the same parts as in Figures 2a, b, and c are given the same reference numerals and explanations will be given. Omitted. FIG. 1a is a partially enlarged plan view of the die 1, in which grooves 7 in the flow direction are provided at predetermined intervals on the outer peripheral surface of the mandrel 6 forming the die slit 2'. It has been found that a large number of longitudinal protrusions are formed on the inner surface of the polyolefin resin tubular body melted and extruded from the die slit 2', and that the ring breakage phenomenon does not occur even when the expansion ratio is increased.
Further, since a bubble stabilizer is protruded from the surface of the die 1, the constriction of the bubble 5 comes into close contact with the bubble stabilizer, thereby stabilizing the bubble 5 and flattening the surface of the film having an uneven surface to some extent. In this case, there is a possibility that traces of protrusions or draft patterns may remain on the film, but compared to films obtained by conventional molding methods, the film has improved tear resistance in the T direction and is free from cuts. You can get it with speed. That is, as shown in FIG. 1b, the tubular resin in the range 8, which is extruded from the die slit 2' and has a large number of protrusions formed on the inner surface by the grooves 7, is attached to the bubble stabilizer 3 at the constriction part 5a. The bubbles are brought into close contact, the bubbles are stabilized, and the ridges leave a history of vertical streaks, and although traces of the ridges and draft patterns may remain, they are flattened to some extent, and expanded at a predetermined ratio in range 9. From the frost line 5b onward, the film becomes a solidified film and is folded and wound up by Nitzprol. Note that by providing the grooves on the mandrel as described above, the appearance after film bag making is more convenient than when providing the grooves on the die. Further, it is preferable that the formed film has at least one trace or pattern of protrusions within 7 mm in the width direction. Examples, Comparative Examples Examples 1 to 4 High-density polyethylene with MI (melt index): 0.5 g/10 min, density: 0.958 g/cc, and a V with a depth of 0.5 mm and a width of 1.0 mm are placed on the outer peripheral surface of the mandrel. The mandrel has a die slit with an outer diameter of 59 mmφ (non-grooved part) and a die inner diameter of 60 mmφ, with 240 grooves in the flow direction in the shape of a cylindrical shape, and a cylindrical bubble stabilizer with an outer diameter of 55 mmφ and a height of 700 mm protrudes from the center of the surface. Expansion ratio (blow ratio): 3 and 4, withdrawal speed: 80 m/min using a 65 mmφ extruder equipped with a die.
Inflation films with a thickness of 12 μm were prepared at a speed of 100 m/min and used as samples, and the Elmendorf tear strength and impact strength of each sample were measured. Comparative Examples 1 to 4 Inflation films were prepared using the same equipment and conditions as in Examples, except that the die slit was a normal smooth annular die slit with no grooves on the outer surface of the mandrel, and the Elmendorf tear strength of each sample was determined. , the impact strength was measured. Table 1 shows the measurement results of Examples and Comparative Examples.

【表】 表より明かなように、本発明に係る方法によつ
てつくられたインフレーシヨンフイルムは、従来
法によつてつくられたインフレーシヨンフイルム
に比較して、T方向の引裂強度、衝撃強度が格段
に高い。 発明の効果 以上述べたように本発明に係るインフレーシヨ
ンフイルムの成形法は、多数の凸条が形成された
バブルのくびれ部分がバブル安定体に密接して凸
条がならされるが履歴が残存し、またバブルが安
定化されるので、T方向の引裂強度が高く、かつ
衝撃強度の強いインフレーシヨンフイルムを高速
で成形することが出来る方法である。
[Table] As is clear from the table, the blown film produced by the method of the present invention has a higher tear strength in the T direction than the blown film produced by the conventional method. Extremely high impact strength. Effects of the Invention As described above, in the method for forming a blown film according to the present invention, the constriction of a bubble in which a large number of protrusions are formed is brought into close contact with the bubble stabilizer, and the protrusions are smoothed out. Since the bubbles remain and are stabilized, it is a method that enables high-speed molding of an inflation film with high tear strength in the T direction and high impact strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは、本発明に係るインフレーシヨ
ンフイルム成形法の概略説明図で、第1図aはダ
イスの一部拡大平面図(第2図b相当図)、第1
図bは、第1図aのダイスを用いてインフレーシ
ヨンフイルムをつくる状態を示す側面図、第2図
a,b,cは、従来の方法の概略説明図で、第2
図aは側面図、第2図bは、第2図aの−線
視一部断面平面図、第2図cは第2図aの′−
′線視断面図である。 1……ダイス、2′……ダイスリツト、3……
バブル安定体(安定体)、5……バブル、5a…
…くびれ部分、5b……フロストライン、6……
マンドレル、7……凹溝。
Figures 1a and 1b are schematic explanatory views of the inflation film forming method according to the present invention; Figure 1a is a partially enlarged plan view of the die (corresponding to Figure 2b);
Figure b is a side view showing the state in which a blown film is made using the die of Figure 1 a, and Figures 2 a, b, and c are schematic illustrations of the conventional method;
Figure 2a is a side view, Figure 2b is a partially sectional plan view taken along the - line in Figure 2a, and Figure 2c is a -'-- in Figure 2a.
FIG. 1...Dice, 2'...Dice slit, 3...
Bubble stabilizer (stable body), 5...Bubble, 5a...
...Neck part, 5b...Frost line, 6...
Mandrel, 7...concave groove.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフイン系樹脂を用いてインフレーシ
ヨン法によりフイルムを製造するにあたり、マン
ドレル外周面に流れ方向に凹溝を有するダイスリ
ツトから樹脂を溶融押出し、ダイス面にバブル安
定体を突出させ、該安定体にバブルのくびれ部分
を接触せしめ、次いで膨張させながら引取る事を
特徴とするインフレーシヨンフイルム成形法。
1. When manufacturing a film using a polyolefin resin by the inflation method, the resin is melted and extruded through a die slit having grooves in the flow direction on the outer circumferential surface of the mandrel, a bubble stabilizer is protruded from the die surface, and the stabilizer is An inflation film forming method characterized by bringing the constrictions of bubbles into contact and then taking them off while expanding.
JP59212379A 1984-10-09 1984-10-09 Inflation film molding method Granted JPS6189827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212379A JPS6189827A (en) 1984-10-09 1984-10-09 Inflation film molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212379A JPS6189827A (en) 1984-10-09 1984-10-09 Inflation film molding method

Publications (2)

Publication Number Publication Date
JPS6189827A JPS6189827A (en) 1986-05-08
JPH0517022B2 true JPH0517022B2 (en) 1993-03-08

Family

ID=16621593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212379A Granted JPS6189827A (en) 1984-10-09 1984-10-09 Inflation film molding method

Country Status (1)

Country Link
JP (1) JPS6189827A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290516A (en) * 1986-06-10 1987-12-17 Kuriron Kasei Kk Corrugated tubular film and manufacture thereof

Also Published As

Publication number Publication date
JPS6189827A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
CA1162371A (en) Process and apparatus for forming a plastic film
JPH0517022B2 (en)
JPH09109274A (en) Manufacture for inflation film
KR920007036B1 (en) Method of blow-moulding a container having portions with differing wall thickness
US4204819A (en) Shaping apparatus for tubular film
JPH0543502B2 (en)
JP4002363B2 (en) Tubular film manufacturing method and manufacturing apparatus thereof
JP3602568B2 (en) Polyethylene resin for blown film molding and method for producing film
JP3792889B2 (en) Film inflation molding method and apparatus
JPS6049911A (en) Formation of inflation film
JPH0450888B2 (en)
JP2626945B2 (en) Method and apparatus for forming blown film
JPH01127315A (en) Manufacture of modified film
JPS5913967B2 (en) Molding method of tubular film
JPH0452203B2 (en)
JPH0431292B2 (en)
JPH0551452B2 (en)
JPS6133695B2 (en)
JPS6015122A (en) Method of forming polyethylene blown film
JP2923817B2 (en) Method of forming tubular film
JP3407899B2 (en) Soft transparent film molding method
JPS6131230A (en) Manufacture of inflation film
JP2626944B2 (en) Method and apparatus for forming blown film
CA1099467A (en) Method and apparatus for shaping of tubular film
JP3761677B2 (en) How to weld chuck nails