JPH05169520A - Forming process analyzing method in blow forming or vacuum forming - Google Patents

Forming process analyzing method in blow forming or vacuum forming

Info

Publication number
JPH05169520A
JPH05169520A JP3343132A JP34313291A JPH05169520A JP H05169520 A JPH05169520 A JP H05169520A JP 3343132 A JP3343132 A JP 3343132A JP 34313291 A JP34313291 A JP 34313291A JP H05169520 A JPH05169520 A JP H05169520A
Authority
JP
Japan
Prior art keywords
parison
forming
analysis
molds
node points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3343132A
Other languages
Japanese (ja)
Inventor
Koichi Nishiura
光一 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3343132A priority Critical patent/JPH05169520A/en
Publication of JPH05169520A publication Critical patent/JPH05169520A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42398Simulation of the blow-moulding process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make the operation of simultaneous equations unnecessary and facilitate analysis by a method wherein the elongations and wall, thicknesses of respective node points are calculated proportionally at every point, where the respective node points abut against molds during the process that parison is elongated with forming and abutted against the molds. CONSTITUTION:In blow forming or the like, parison, which is extruded tubularly from an extruder in molds as forming material, deforms from the initial shape model AB to ACDB with the elapse of time. In this case, the initial wall thickness t0 of the parison, its wall thickness after deformation t1, curvature and elongation (delta) are calculated respectively. On the other hand, the parison is divided into a plurality of elements by a plurality of node points. During the elongation of the parison with forming and its abutment against the molds, the elongations (delta) of the respective elements and the wall thicknesses t0 and t1 are calculated proportionally. After that, at the time point, when the total node points abut against the molds, the analysis is concluded. Thus, the operation of simultaneous equations at the respective node points becomes unnecessary, resulting in facilitating analysis with a small-sized computer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はブロー成形もしくは真空
成形における成形材料の挙動を解析する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for analyzing the behavior of a molding material in blow molding or vacuum molding.

【0002】[0002]

【従来の技術】ブロー成形もしくは真空成形において
は、押出機から成形材料をチューブ状に押し出し(パリ
ソン)、これを金型で挟んだ後、内部に空気を吹き込
み、もしくは金型内部を真空吸引することによって、金
型の内周面に沿った成形品を得る。
2. Description of the Related Art In blow molding or vacuum molding, a molding material is extruded into a tube shape from an extruder (parison), sandwiched by a mold, and then air is blown into the mold or the inside of the mold is vacuumed. By doing so, a molded product along the inner peripheral surface of the mold is obtained.

【0003】このような成形プロセスにおいて、成形過
程の挙動を解析するシミュレーション方法として、汎用
構造解析ソフトを利用した解析手法が実用化されている
(例えば山部他著「ブロー成形シミュレーション」,
「成形加工」第2巻第1号(1990)P-P.15-20 )。
In such a molding process, an analysis method using general-purpose structural analysis software has been put to practical use as a simulation method for analyzing the behavior of the molding process (for example, "Blow Molding Simulation" by Yamabe et al.,
"Molding" Volume 2, No. 1 (1990) PP.15-20).

【0004】この汎用構造解析ソフトを用いた従来の解
析では、ブロー圧等によるパリソンの変形時の力の釣り
合い方程式を、溶融体の構成式を連成させて解くという
手順を繰り返すことによって、刻々の変形状態を決めて
いく方法を採っている。
In the conventional analysis using this general-purpose structural analysis software, the equilibrium equation of the force when the parison is deformed by the blow pressure or the like is solved by repeating the procedure of coupling the constitutive equations of the melt to solve every moment. The method of determining the deformation state of is adopted.

【0005】すなわち、既知の形状から未知の形状を求
めるために、力の釣り合い方程式と構成方程式を解き、
パリソンを構成する節点で連立方程式を成立させてい
る。
That is, in order to obtain an unknown shape from a known shape, the force balance equation and the constitutive equation are solved,
The simultaneous equations are established at the nodes that make up the parison.

【0006】[0006]

【発明が解決しようとする課題】ところで、以上のよう
な従来の解析方法では、上記した連立方程式を解くため
に高速コンピュータが必要となり、例えば設計用ないし
は工場での設備の条件設定等の用途に際して、必要に応
じて随時に利用し得るとは言いがたい。
By the way, in the conventional analysis method as described above, a high-speed computer is required to solve the simultaneous equations described above. For example, in designing or setting conditions of equipment in a factory, etc. , It is hard to say that it can be used as needed.

【0007】本発明はこのような点に鑑みてなされたも
ので、高速コンピュータを用いることなく、例えば卓上
型やノート型のパーソナルコンピュータ等でも解析可能
なブロー成形または真空成形における成形プロセスの解
析方法の提供を目的としている。
The present invention has been made in view of the above circumstances, and a method for analyzing a molding process in blow molding or vacuum molding which can be analyzed without using a high-speed computer, for example, with a desktop or notebook personal computer. Is intended to be provided.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の解析方法は、押し出されたパリソンの初期
形状モデルを設定するとともに、そのパリソンを複数の
節点により複数の要素に分割し、そのパリソンがブロー
圧もしくは真空吸引力により伸びて金型に当接していく
過程で、上記各節点がそれぞれ金型に接する時点ごと
に、各要素の伸び量と肉厚を比例計算によって算出して
いき、全ての節点が金型に接した時点で解析を終了する
ことによって特徴付けられる。
In order to achieve the above object, the analysis method of the present invention sets an initial shape model of an extruded parison and divides the parison into a plurality of elements by a plurality of nodes. During the process in which the parison expands due to blow pressure or vacuum suction force and contacts the mold, the elongation amount and the wall thickness of each element are calculated by proportional calculation at each time when each of the above nodes contacts the mold. It is characterized by ending the analysis when all the nodes come into contact with the mold.

【0009】[0009]

【作用】本発明の解析方法は以下の理論に基づき、前記
した従来の解析手法における連立方程式を解くことを不
要とし、所期の目的を達成している。
The analysis method of the present invention achieves the intended purpose by eliminating the need to solve the simultaneous equations in the conventional analysis method based on the following theory.

【0010】すなわち、まず、ブロー成形または真空成
形において、パリソン温度はほぼ一様であると仮定す
る。これにより成形材料の物性が均質的に一定となり、
パリソンの各部で一定の力(ブロー圧ないしは真空吸引
力)を受けるならばその各部の伸び量は各領域にわたっ
て等しくなる。
That is, first, in blow molding or vacuum molding, it is assumed that the parison temperature is substantially uniform. This makes the physical properties of the molding material uniform and constant,
If a constant force (blowing pressure or vacuum suction force) is applied to each part of the parison, the amount of extension of each part will be equal over each region.

【0011】次に、ブロー成形および真空成形において
は、パリソン内部の圧力は一定であるから、上記のよう
に成形材料の物性が一定で各部の伸び量が一定であると
すると、パリソンモデルの各点は法線方向に移動してい
かざるを得なくなる。
Next, in blow molding and vacuum molding, the pressure inside the parison is constant. Therefore, assuming that the physical properties of the molding material are constant and the amount of elongation of each part is constant as described above, each of the parison models has The points are forced to move in the normal direction.

【0012】パリソンの変形挙動をこのように定める
と、パリソン上の任意の点が変形によって所定距離だけ
上記方向に移動したとき、その移動距離とその点におけ
る肉厚の関係は、質量保存則の適用により一意的に定ま
るから、両者間には比例関係が成立する。
When the deformation behavior of the parison is determined in this way, when an arbitrary point on the parison moves in the above direction for a predetermined distance due to deformation, the relationship between the movement distance and the wall thickness at that point is defined by the law of conservation of mass. Since it is uniquely determined by application, a proportional relationship is established between the two.

【0013】以上のことから、パリソンの初期形状モデ
ルを複数の節点で分割し、そのモデルにブロー圧ないし
は真空吸引力を作用させ、各節点が金型に接するごとに
各部の伸び量と肉厚を比例計算によって求めていくこと
を繰り返すことにより、パリソンの変形時における挙動
を刻々と算出することが可能となり、従来の方法のよう
にパリソンを構成する節点で連立方程式をたてることな
く、成形解析を行うことができる。
From the above, the initial shape model of the parison is divided at a plurality of nodes, blow pressure or vacuum suction force is applied to the model, and the elongation amount and wall thickness of each part are contacted with each node contacting the mold. It is possible to calculate the behavior of the parison when it is deformed by repeating the calculation of proportionality by means of proportional calculation, and without forming simultaneous equations at the nodes that make up the parison as in the conventional method. Analysis can be performed.

【0014】[0014]

【実施例】以下、本発明方法を適用した解析方法の具体
例を述べる。図1は本発明実施例の概略手順を説明する
ためのフローチャートである。この解析を実行するに当
たって必要とするシステム構成は、コンピュータと記憶
装置を主体とし、コンピュータは卓上型やノート型等の
小型パーソナルコンピュータから汎用の大型コンピュー
タまで、任意のものを使用することができ、また、記憶
装置としてはフロッピディスク装置ないしはラムカード
等から大型記憶装置まで、ある程度以上の記憶容量のあ
るものなら任意のものが使用可能である。
EXAMPLES Specific examples of analysis methods to which the method of the present invention is applied will be described below. FIG. 1 is a flow chart for explaining the outline procedure of the embodiment of the present invention. The system configuration required to execute this analysis is mainly composed of a computer and a storage device, and the computer can use any one from a small personal computer such as a desktop type or a notebook type to a general-purpose large computer, Further, as the storage device, any device such as a floppy disk device or a ram card or the like to a large storage device having a storage capacity of a certain level or more can be used.

【0015】さて、まず、解析に必要なデータを作成す
る。この作成に当たっては、パリソンの初期形状や金型
形状等の幾何学的情報と、成形材料の温度並びに材料物
性、およびブロー圧または真空圧等の成形条件に関する
情報等の入力が必要であり、このような情報の入力によ
って、複数の節点によるパリソンの分割等、システムが
自動的に解析に必要とするデータを作成する。
First, data required for analysis is created. In creating this, it is necessary to input geometric information such as the initial shape and mold shape of the parison, the temperature and material properties of the molding material, and information about molding conditions such as blow pressure or vacuum pressure. By inputting such information, data required by the system for analysis, such as parison division by multiple nodes, is automatically created.

【0016】このようなデータを作成した後、データの
論理性のチェックおよび視覚によるチェックを行い、問
題がない場合には、後で詳述するような手法に基づいて
パリソン挙動の計算を行う。ここで、パリソンの解析モ
デルは、前記したように複数の節点により複数の要素に
分割されるが、節点の全てが金型に接触した時点でパリ
ソン挙動の計算を終了し、その計算結果を、CRT等の
表示装置やプロッタ等の印字装置に変形図やグラフ等の
形で出力する。
After creating such data, the logicality of the data and the visual check are performed, and if there is no problem, the parison behavior is calculated based on the method described in detail later. Here, the parison analysis model is divided into a plurality of elements by a plurality of nodes as described above, but when all of the nodes come into contact with the mold, the calculation of the parison behavior is finished, and the calculation result is Output to a display device such as a CRT or a printing device such as a plotter in the form of a modified diagram or a graph.

【0017】以下、本発明実施例のパリソンの挙動計算
の詳細手法について、ブロー成形を例にとって説明す
る。今、図2に斜線で示すようなパリソンの初期形状ハ
ーフカットモデルを考えたとき、その温度が一様である
とすると、このパリソンの物性は一様となる。
The detailed method for calculating the behavior of the parison according to the embodiment of the present invention will be described below by taking blow molding as an example. Now, when considering a parison initial shape half-cut model as shown by the diagonal lines in FIG. 2, assuming that the temperature is uniform, the physical properties of this parison are uniform.

【0018】また、ブロー成形または真空成形における
特性として、パリソン内部の圧力が一定であることか
ら、成形過程においてこのモデルに作用する張力pは各
部において一定となる。
Further, as a characteristic of blow molding or vacuum molding, since the pressure inside the parison is constant, the tension p acting on this model in the molding process is constant in each part.

【0019】以上の2点から、このパリソンモデルは変
形時に各点がそれぞれの法線方向に移動していくことに
なる。具体的には、図3に示すように、モデル中の任意
の点Qは、計算上においてこの点Qに最も近い点Q1
よびQ2 を通る円Jの中心Kと、点Qを結ぶ線L上を移
動するものとする。
From the above two points, each point of this parison model moves in the direction of each normal when it is deformed. Specifically, as shown in FIG. 3, an arbitrary point Q in the model is a line connecting the center Q of the circle J passing through the points Q 1 and Q 2 closest to the point Q in the calculation and the point Q. It shall move on L.

【0020】次に、パリソンの各点の移動距離と肉厚の
関係は、質量保存の法則および比例計算によって算出す
る。すなわち、上記した各条件下で、図2に示すパリソ
ンの初期形状モデルABが、ある時間経過後にその形状
がACDBに変形したとき、初期の肉厚をt0 とし、変
形後のCD間の肉厚をt1 としたとき、金型に接触して
いるAC間およびDB間の肉厚を(t0 +t1 )/2と
する。この条件から、初期状態のABがACDBの状態
に変形した時点におけるAB上の任意の点の移動量δ
は、変形前後におけるパリソンの質量が不変であること
から一意的に定まる。
Next, the relationship between the movement distance of each point of the parison and the wall thickness is calculated by the law of conservation of mass and proportional calculation. That is, under each of the conditions described above, when the initial shape model AB of the parison shown in FIG. 2 is deformed into ACDB after a certain time has elapsed, the initial wall thickness is set to t 0 and the wall thickness between the CDs after deformation is set. When the thickness is t 1 , the thickness between AC and DB in contact with the mold is (t 0 + t 1 ) / 2. From this condition, the moving amount δ of an arbitrary point on AB at the time when AB in the initial state is transformed into the ACDB state
Is uniquely determined because the mass of the parison before and after deformation is invariant.

【0021】そして、パリソンの端部、つまり金型との
接触部位については、図4に示すようにパリソンは金型
に対してある曲率をもって接するものとし、この金型へ
の当接部分の伸び量と、変形による曲率の変化は次のよ
うに求める。
At the end portion of the parison, that is, the contact portion with the die, the parison is in contact with the die with a certain curvature as shown in FIG. 4, and the extension of the contact portion with the die. The amount and the change in curvature due to deformation are obtained as follows.

【0022】すなわち、成形過程においてパリソンAB
がACDに移動するとき、初期曲率R0 を持つ曲線部分
上に存在する点M0 がC点に進行すると仮定する。この
とき、曲線AM0 の長さと直線AMの長さが等しい、つ
まり、 AM0 =AM であるなら、変形によるAM0 の部分の伸び量xは、 AC=AM+x で表される。
That is, in the molding process, the parison AB
When A moves to ACD, it is assumed that the point M 0 existing on the curved portion having the initial curvature R 0 advances to the C point. At this time, if the length of the curve AM 0 is equal to the length of the straight line AM, that is, if AM 0 = AM, then the extension amount x of the AM 0 portion due to the deformation is expressed by AC = AM + x.

【0023】このxは図4にABで示した曲率をR0
有する初期状態におけるパリソンの肉厚をt0 とし、お
なじくACDで示した変形後のパリソンの肉厚をt1
すると、 x=πR0 ・(t0 −t1 )/(t0 +t1 ) によって決定される。
Assuming that the thickness of the parison in the initial state having the curvature R 0 shown by AB in FIG. 4 is t 0 and that the thickness of the parison after deformation shown by ACD is t 1 as shown in FIG. = ΠR 0 · (t 0 −t 1 ) / (t 0 + t 1 ).

【0024】パリソンの金型との当接部分の曲率の変化
は、図5に示すように、ABCDで示されるパリソンの
初期の曲率をR0 、そのときの肉厚をt0 とし、AEF
GHDで示される変形後のパリソンの肉厚をt1 とすれ
ば、その変形後の曲率をR1 は、
As shown in FIG. 5, the change in the curvature of the contact portion of the parison with the die is represented by ABCD, where the initial curvature of the parison is R 0 , and the wall thickness at that time is t 0.
Assuming that the thickness of the parison after deformation shown by GHD is t 1 , the curvature after deformation R 1 is

【0025】[0025]

【数1】 [Equation 1]

【0026】に従って算出できる。さて、実際の解析に
当たっては、まずパリソンの初期モデルの形状を決定
し、そのモデルを複数の節点により複数の要素に分割
し、各節点が金型に当接するごとに、上記した各手法お
よび約束事に基づいて各部の肉厚と伸びおよび曲率を計
算するわけである。図6はその計算過程の模式的説明図
で、複数の節点S・・Sで分割された要素ε・・εについ
て、ひとつの節点が金型に接するごとに各要素の肉厚t
や曲率R等を算出していく。
It can be calculated according to In the actual analysis, first, the shape of the parison's initial model is determined, the model is divided into multiple elements by multiple nodes, and each method and convention described above The wall thickness, elongation and curvature of each part are calculated based on. FIG. 6 is a schematic explanatory diagram of the calculation process. For the element ε ... ε divided by a plurality of nodes S ... S, the wall thickness t of each element is touched each time one node contacts the mold.
And curvature R are calculated.

【0027】そして、全ての節点S・・Sが金型に接した
時点で計算を終了し、その結果を例えば成形品の断面図
によって厚さ分布を表す等の画像情報として出力するこ
とによって、金型形状と成形条件の適合性や、ブロー圧
や成形温度等の適否等を未然に知ることが可能となる。
Then, the calculation is finished when all the nodes S ... S contact the mold, and the result is output as image information such as a thickness distribution represented by a sectional view of the molded product. It is possible to know in advance the suitability of the mold shape and the molding conditions, the suitability of the blow pressure, the molding temperature, and the like.

【0028】なお、上記した曲率算出のための(1)式
はパリソン全体が曲線の場合に適用される式であり、図
7に示すようにパリソンの金型接触部近傍の境界部分を
除く部分BCが直線で推移していく場合には、初期の曲
率R0 と変形後の曲率R1 との関係は、変形前のABC
間の肉厚をt0 、変形後のDEF間の肉厚をt1 、そし
てAD間の肉厚を(t0 +t1 )/2とすると、
The above equation (1) for calculating the curvature is an equation applied when the entire parison is a curve, and as shown in FIG. 7, the part except the boundary part near the die contact part of the parison is excluded. When BC changes in a straight line, the relationship between the initial curvature R 0 and the post-deformation curvature R 1 is as follows:
When the wall thickness between them is t 0 , the wall thickness between DEF after deformation is t 1 , and the wall thickness between AD is (t 0 + t 1 ) / 2,

【0029】[0029]

【数2】 [Equation 2]

【0030】によって算出することができる。なお、式
中δは、図2の説明で述べたように、図7におけるAB
CとADEFの質量が保存する位置として特定できる。
It can be calculated by Note that δ in the formula is AB in FIG. 7 as described in the description of FIG.
It can be specified as the position where the masses of C and ADEF are stored.

【0031】図8および図9は、以上の本発明実施例に
より実際にブロー成形におけるパリソン挙動を解析した
結果を示す図で、それぞれ(A)に最終的な製品の断面
形状を示し、(B)にはその各部の肉厚を表すグラフを
示している。この解析結果は、実際の製品とよく一致し
ていることが確かめられた。
FIG. 8 and FIG. 9 are views showing the results of actually analyzing the parison behavior in blow molding according to the above-mentioned embodiment of the present invention, in which (A) shows the final cross-sectional shape of the product and (B) ) Shows a graph showing the thickness of each part. It was confirmed that this analysis result was in good agreement with the actual product.

【0032】なお、パリソンが曲線状または直線状に推
移していくいずれの場合にでも、材料の粘度が高い場合
には、伸び量x=0として計算を行うことが可能であ
る。また、同じくいずれの場合においても、より簡易な
計算の方法として、ないしは材料の特性によっては、金
型との接触曲率を一定として計算を行うこともできる。
In any case where the parison changes in a curved shape or a linear shape, the elongation amount x = 0 can be calculated when the viscosity of the material is high. In any case, the calculation can be performed as a simpler calculation method, or depending on the characteristics of the material, with the contact curvature with the mold kept constant.

【0033】更にまた、以上の実施例では、パリソン内
部にブロー圧を作用させるブロー成形に本発明を適用し
た場合について述べたが、本発明は、パリソン外部の金
型内圧力を低下させる真空成形法にも同様に適用し得る
ことは勿論である。
Furthermore, in the above-mentioned embodiments, the case where the present invention is applied to blow molding in which blow pressure is applied inside the parison has been described. However, the present invention is vacuum forming for reducing the pressure inside the mold outside the parison. Of course, it can be applied to the law as well.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
ブロー成形もしくは真空成形において、パリソンの温度
が一様であると仮定し、パリソン内部の圧力が一定であ
るというこれらの成形方法における特性を考慮すること
により、成形過程におけるパリソンの変形の方向と肉厚
ないしは伸び量を比例計算によって算出できることに着
目し、これよにり従来のシミュレーション手法において
必要としていた各節点での連立方程式の演算を不要とす
ることができ、もって解析に高速コンピュータを使用す
る必要がなくなり、卓上型やノート型等の小型コンピュ
ータでも充分に計算が可能となった。その結果、より簡
単に随時に成形シミュレーションを行うことができるよ
うになり、例えば机上での設計用として、あるいは工場
での設備条件の設定に、更には客先に持ち込んでの販売
支援等に用途にも使用可能なツールとなり得る。
As described above, according to the present invention,
In blow molding or vacuum forming, it is assumed that the parison temperature is uniform and the pressure inside the parison is constant. Focusing on the fact that the thickness or the amount of elongation can be calculated by proportional calculation, the calculation of simultaneous equations at each node, which was necessary in the conventional simulation method, can be eliminated, and a high-speed computer is used for analysis. There is no need for it, and even small computers such as desktops and notebooks can perform calculations sufficiently. As a result, it becomes possible to easily perform molding simulations at any time, for example, for designing on a desk, setting facility conditions in a factory, or even for sales support brought to customers. Can also be a usable tool.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例の手順を示すフローチャートFIG. 1 is a flowchart showing a procedure of an embodiment of the present invention.

【図2】 本発明実施例におけるパリソンの全体的挙動
の説明図
FIG. 2 is an explanatory diagram of the overall behavior of the parison in the example of the present invention.

【図3】 同じくその変形による移動方向の説明図FIG. 3 is an explanatory view of a moving direction due to the same deformation.

【図4】 同じくパリソンの金型との接触部近傍の挙動
の説明図
FIG. 4 is an explanatory view of a behavior of a parison in the vicinity of a contact portion with a mold.

【図5】 同じく変形によるパリソンの金型との接触部
分の曲率の変化の説明図
FIG. 5 is an explanatory view of a change in curvature of a contact portion of the parison with the mold, which is also caused by deformation.

【図6】 本発明実施例の計算過程の模式的説明図FIG. 6 is a schematic explanatory diagram of a calculation process according to an embodiment of the present invention.

【図7】 パリソンの金型との接触部を除く部分が直線
的に推移していく場合の、変形による金型との接触部分
の曲率の変化の説明図
FIG. 7 is an explanatory view of a change in the curvature of the contact portion with the die due to deformation when the portion of the parison other than the contact portion with the die moves linearly.

【図8】 本発明実施例を用いて実際にブロー成形解析
を行った結果を表す最終製品の断面図(A)およびその
各部の肉厚を示すグラフ(B)
FIG. 8 is a sectional view (A) of the final product showing the results of actual blow molding analysis using the example of the present invention and a graph (B) showing the thickness of each part thereof.

【図9】 同じく本発明実施例を用いた他のブロー成形
解析を行った結果を表す最終製品の断面図(A)および
その各部の肉厚を示すグラフ(B)
FIG. 9 is a sectional view (A) of the final product showing the results of another blow molding analysis using the example of the present invention and a graph (B) showing the thickness of each part thereof.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ブロー成形または真空成形過程における
成形材料の挙動を解析する方法であって、押し出された
パリソンの初期形状モデルを設定するとともに、そのパ
リソンを複数の節点により複数の要素に分割し、そのパ
リソンがブロー圧もしくは真空吸引力により伸びて金型
に当接していく過程で、上記各節点がそれぞれ金型に接
する時点ごとに、各要素の伸び量と肉厚を比例計算によ
って算出していき、全ての節点が金型に接した時点で解
析を終了することを特徴とするブロー成形または真空成
形における成形プロセス解析方法。
1. A method for analyzing the behavior of a molding material in a blow molding or vacuum forming process, wherein an initial shape model of an extruded parison is set, and the parison is divided into a plurality of elements by a plurality of nodes. During the process in which the parison expands due to blow pressure or vacuum suction force and contacts the mold, the elongation amount and the wall thickness of each element are calculated by proportional calculation at each time when each of the above nodes contacts the mold. A method for analyzing a forming process in blow molding or vacuum forming, characterized in that the analysis is finished when all the nodes come into contact with the mold.
JP3343132A 1991-12-25 1991-12-25 Forming process analyzing method in blow forming or vacuum forming Pending JPH05169520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3343132A JPH05169520A (en) 1991-12-25 1991-12-25 Forming process analyzing method in blow forming or vacuum forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343132A JPH05169520A (en) 1991-12-25 1991-12-25 Forming process analyzing method in blow forming or vacuum forming

Publications (1)

Publication Number Publication Date
JPH05169520A true JPH05169520A (en) 1993-07-09

Family

ID=18359165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343132A Pending JPH05169520A (en) 1991-12-25 1991-12-25 Forming process analyzing method in blow forming or vacuum forming

Country Status (1)

Country Link
JP (1) JPH05169520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007349A1 (en) * 1994-09-05 1996-03-14 Flair International Products Pty. Ltd. Improved vacuum formed vanity top
EP1134065A2 (en) * 2000-03-07 2001-09-19 Kao Corporation Method and apparatus for designing molds, extruder dies and cores
WO2002062558A1 (en) * 2001-02-06 2002-08-15 Kao Corporation Method and device for design of preform
US20100154973A1 (en) * 2007-02-05 2010-06-24 Husnu Kalkanoglu Panel of roofing shingles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007349A1 (en) * 1994-09-05 1996-03-14 Flair International Products Pty. Ltd. Improved vacuum formed vanity top
GB2305628A (en) * 1994-09-05 1997-04-16 Flair Int Products Pty Ltd Improved vacuum formed vanity top
GB2305628B (en) * 1994-09-05 1997-11-12 Flair Int Products Pty Ltd Improved vacuum formed vanity top
EP1134065A2 (en) * 2000-03-07 2001-09-19 Kao Corporation Method and apparatus for designing molds, extruder dies and cores
EP1134065A3 (en) * 2000-03-07 2003-04-16 Kao Corporation Method and apparatus for designing molds, extruder dies and cores
WO2002062558A1 (en) * 2001-02-06 2002-08-15 Kao Corporation Method and device for design of preform
US20100154973A1 (en) * 2007-02-05 2010-06-24 Husnu Kalkanoglu Panel of roofing shingles
US8206539B2 (en) * 2007-02-05 2012-06-26 Certainteed Corporation Panel of roofing shingles
US9493952B2 (en) 2007-02-05 2016-11-15 Certainteed Corporation Roofing tile with weather durable coloring matter

Similar Documents

Publication Publication Date Title
US6353768B1 (en) Method and apparatus for designing a manufacturing process for sheet metal parts
US6816820B1 (en) Method and apparatus for modeling injection of a fluid in a mold cavity
JP2775538B2 (en) Forming simulation method and apparatus
US20040210429A1 (en) Apparatus and methods for performing process simulation using a hybrid model
Alfaro et al. Three-dimensional simulation of aluminium extrusion by the α-shape based natural element method
EP0844057A1 (en) Mold designing method and apparatus
Kawka et al. Simulation of multi-step sheet metal forming processes by a static explicit FEM code
JP3840173B2 (en) 3D analysis mesh generation method, 3D analysis mesh generation device, program, and storage medium
CN105188978A (en) Press-forming analysis method
Huang et al. A new approach to solve key issues in multi-step inverse finite-element method in sheet metal stamping
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
JPH05169520A (en) Forming process analyzing method in blow forming or vacuum forming
CN108629110A (en) The method that quick obtaining corrects metal powder compression moulding DPC Parameters of constitutive model
JPH07236923A (en) Simulation method for forming plate
JP2998596B2 (en) Fluid flow process analysis device, analysis method, injection molding process analysis device, analysis method, injection molded product, and method for manufacturing injection molded product
JP2002052560A (en) System for supporting determination of injection-molded article production parameter
Giannopapa Development of a computer simulation model for blowing glass containers
Jiang et al. Finite element modelling of high air pressure forming processes for polymer sheets
Stokes Numerical design tools for thermal replication of optical-quality surfaces
JP2000289076A (en) Method for simulating resin molding
Wang et al. Contact search strategies for FEM simulation of the blow molding process
JP3023969B2 (en) Method for analyzing temperature of cooling / heating cycle structure and design apparatus for mold apparatus system
Filice et al. A preliminary comparison between finite element and meshless simulations of extrusion
JP3897628B2 (en) Method of predicting deformation of molded product in resin molding process, prediction system, and method of manufacturing molded product
Li et al. Section analysis of industrial sheet-metal stamping processes