JPH05169125A - Rolling controller - Google Patents

Rolling controller

Info

Publication number
JPH05169125A
JPH05169125A JP3335124A JP33512491A JPH05169125A JP H05169125 A JPH05169125 A JP H05169125A JP 3335124 A JP3335124 A JP 3335124A JP 33512491 A JP33512491 A JP 33512491A JP H05169125 A JPH05169125 A JP H05169125A
Authority
JP
Japan
Prior art keywords
plate thickness
rolling mill
rolling
load
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3335124A
Other languages
Japanese (ja)
Other versions
JP2593266B2 (en
Inventor
Yasuto Izeki
康人 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3335124A priority Critical patent/JP2593266B2/en
Publication of JPH05169125A publication Critical patent/JPH05169125A/en
Application granted granted Critical
Publication of JP2593266B2 publication Critical patent/JP2593266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To obtain reference plate thickness, while executing rolling control so that a load ratio between each rolling mill approaches a target ratio, at the time of controlling a roll gap of the rolling mill, based on a deviation signal of plate thickness and a plate thickness reference value of a steel plate taken out of the rolling mill. CONSTITUTION:From a plate thickness distribution ratio calculated by a plate thickness distribution ratio arithmetic unit 11 from a plate thickness deviation measured by a plate thickness deviation measuring instrument 4, and a load detected by a load detector 10, a plate thickness correction quantity to each rolling mill 2a, 2b is calculated by multipliers 6A and 6B and inputted to control signal generating devices 7a, 7b of each stand, and a rolling reduction control signal to each rolling mill 2a, 2b is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧延機によって圧延
され送り出される鋼板の板厚寸法精度を向上させた圧延
制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling control device which improves the sheet thickness dimensional accuracy of a steel sheet rolled and fed by a rolling mill.

【0002】[0002]

【従来の技術】図2は従来の圧延制御装置を示す構成図
である。図において1は矢印方向に搬送される鋼板、2
a〜2cは鋼板1を圧延する圧延機、3は圧延機2a〜
2cの下流側に設置された板厚検出器、4は板厚検出器
3によって検出された板厚検出値と基準板厚との偏差を
測定し板厚偏差信号5を出力する板厚偏差測定装置、6
a〜6cは板厚偏差信号5にゲインを乗算する乗算器、
7a,7bはゲインを乗算された板厚偏差信号をもとに
圧延機2a〜2cのロールギヤップ制御用の制御信号8
a〜8cを発生する制御信号発生装置、9a〜9cは各
制御信号8a〜8cに従って圧延機2a〜2cを圧下制
御する圧下駆動装置である。
2. Description of the Related Art FIG. 2 is a block diagram showing a conventional rolling control device. In the figure, 1 is a steel plate conveyed in the direction of the arrow, 2
a to 2c are rolling mills for rolling the steel plate 1, 3 are rolling mills 2a to
A plate thickness detector installed on the downstream side of 2c, 4 is a plate thickness deviation measurement which measures a deviation between the plate thickness detection value detected by the plate thickness detector 3 and a reference plate thickness and outputs a plate thickness deviation signal 5. Device, 6
a to 6c are multipliers that multiply the plate thickness deviation signal 5 by a gain,
7a and 7b are control signals 8 for roll gap control of the rolling mills 2a to 2c based on the strip thickness deviation signal multiplied by the gain.
Control signal generators 9a to 9c generate a to 8c, and 9a to 9c are reduction drive devices for controlling the rolling mills 2a to 2c according to the control signals 8a to 8c.

【0003】次に、図2に示した従来の圧延制御装置の
動作について説明する。鋼板1は圧延機2a〜2cによ
り矢印方向に移動する間に圧延される。圧延された鋼板
1は、圧延機の下流で板厚検出器3によりその板厚が検
出され板厚測定装置4に出力される。
Next, the operation of the conventional rolling control device shown in FIG. 2 will be described. The steel sheet 1 is rolled by the rolling mills 2a to 2c while moving in the arrow direction. The rolled steel plate 1 is detected by the plate thickness detector 3 downstream of the rolling mill and output to the plate thickness measuring device 4.

【0004】板厚測定装置4では板厚検出値と予め設定
された基準板厚値と比較し、板厚偏差信号5を各圧延機
対応に設置された乗算器6a〜6cを通して各板厚制御
装置7a〜7cに出力される。
In the strip thickness measuring device 4, the strip thickness detection value is compared with a preset standard strip thickness value, and the strip thickness deviation signal 5 is controlled through the multipliers 6a to 6c installed for each rolling mill. It is output to the devices 7a to 7c.

【0005】この時、板厚制御装置7a〜7cは、板厚
偏差信号5が正の場合、即ち板厚検出器3の直下で鋼板
1の板厚が基準板厚より厚い場合は圧延機2a〜2cの
ロールギヤップを狭くするように制御信号8a〜8cを
圧下駆動装置3に供給する。
At this time, the strip thickness control devices 7a to 7c operate the rolling mill 2a when the strip thickness deviation signal 5 is positive, that is, when the strip thickness of the steel sheet 1 immediately below the strip thickness detector 3 is larger than the reference strip thickness. Control signals 8a to 8c are supplied to the reduction driving device 3 so as to narrow the roll gap of .about.2c.

【0006】また、逆に前記板厚偏差信号5が負の場
合、即ち鋼板1の板厚が薄過ぎる場合は圧延機2a〜2
cのロールギヤップを広げるような制御信号8a〜8c
を圧下駆動装置9a〜9cに出力する。
On the contrary, when the plate thickness deviation signal 5 is negative, that is, when the plate thickness of the steel plate 1 is too thin, the rolling mills 2a-2
Control signals 8a to 8c that spread the roll gap of c
Is output to the reduction driving devices 9a to 9c.

【0007】尚、板厚制御装置7a〜7cに送られる板
厚偏差信号5は各圧延機2a〜2c対応の乗算器6a〜
6cによって所定のゲインが乗算され、そして各スタン
ド毎に板厚偏差5に対する感度を調整する。
The strip thickness deviation signal 5 sent to the strip thickness control devices 7a to 7c is multiplied by the multipliers 6a to 6c corresponding to the rolling mills 2a to 2c.
The predetermined gain is multiplied by 6c, and the sensitivity to the plate thickness deviation 5 is adjusted for each stand.

【0008】[0008]

【発明が解決しようとする課題】従来の圧延制御装置は
以上のように各圧下駆動装置9a〜9cに供給される制
御信号8a〜8cが、制御信号8a〜8cに従う圧延機
2a〜2cのロールギヤップ変化により生じる圧延機2
a〜2cの負荷変動とは無関係に決定されているため、
圧下制御の結果、負荷が特定の圧延機にかたより鋼板1
の品質が低下するという問題点があった。
As described above, in the conventional rolling control device, the control signals 8a to 8c supplied to the respective reduction driving devices 9a to 9c follow the control signals 8a to 8c. Rolling mill 2 caused by gear change
Since it is determined irrespective of the load fluctuations of a to 2c,
As a result of the reduction control, the steel plate 1 is loaded under a certain rolling mill.
There was a problem that the quality of the product deteriorates.

【0009】又、各圧延機2a〜2cに対応して乗算器
6a〜6cを設け、各スタンド毎に乗算器6a〜6cの
ゲインを設定し、各圧延機2a〜2c間の負荷比率を調
整して負荷のかたより補償していたが、負荷比率を目標
比率になるように各乗算器6a〜6cのゲインを決定す
ることは困難であった。
Further, multipliers 6a to 6c are provided corresponding to the rolling mills 2a to 2c, the gain of the multipliers 6a to 6c is set for each stand, and the load ratio between the rolling mills 2a to 2c is adjusted. However, it was difficult to determine the gain of each of the multipliers 6a to 6c so that the load ratio becomes the target ratio.

【0010】この発明は上記のような問題点を解決する
ためになされたものであり、圧延機を出た鋼板の板厚と
板厚基準値間の偏差信号にもとづきロールギヤップを制
御する際、各圧延機の負荷比率を目標負荷比率に近づく
ように圧延制御する圧延制御装置を提供することを目的
とする。
The present invention has been made to solve the above problems, and when controlling the roll gap based on the deviation signal between the plate thickness of the steel plate leaving the rolling mill and the plate thickness reference value, An object of the present invention is to provide a rolling control device that controls rolling so that the load ratio of each rolling mill approaches a target load ratio.

【0011】[0011]

【課題を解決するための手段】この発明に係る圧延機制
御装置は、圧延機を出た鋼板の板厚を測定し基準板厚値
に対する偏差を求め偏差信号を発生する板厚偏差測定装
置と、前記偏差信号にもとづいて前記圧延機のロールギ
ャップを制御するための制御信号を発生する制御信号発
生装置と、各圧延機の負荷を検出する負荷検出器と、各
負荷検出値より各圧延機の板厚配分比率を演算するとと
もに、各圧延機間の負荷比率が所定の値に近づくように
前記制御信号を演算する制御信号演算装置とを設けたも
のである。
A rolling mill control apparatus according to the present invention is a sheet thickness deviation measuring apparatus for measuring a sheet thickness of a steel sheet exiting a rolling mill to obtain a deviation from a reference sheet thickness value and generating a deviation signal. , A control signal generator that generates a control signal for controlling the roll gap of the rolling mill based on the deviation signal, a load detector that detects the load of each rolling mill, and each rolling mill from each load detection value And a control signal calculating device for calculating the control signal so that the load ratio between the rolling mills approaches a predetermined value.

【0012】[0012]

【作用】この発明においては、制御信号演算装置によ
り、各圧延機毎に設けた負荷検出器より入力した負荷か
ら板厚配分比率を演算し、この比率に従って決定された
板厚修正量に基づいて各圧下駆動装置への制御信号を生
成し出力することで各圧延機間の負荷比率を目標とする
比率に近づける。
In the present invention, the control signal arithmetic unit calculates the strip thickness distribution ratio from the load input from the load detector provided for each rolling mill, and based on the strip thickness correction amount determined according to this ratio. By generating and outputting a control signal to each rolling reduction device, the load ratio between each rolling mill is brought close to the target ratio.

【0013】[0013]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図1に基づいて
説明する。尚、図中図2と同一符号は、同一又は相当部
分を示す。図において6A〜6Cは乗算器6a〜6cに
対応している。10a〜10cは負荷検出器、11は各
負荷検出器10a〜10cの検出値に基づいて板厚配分
比率ma,mbを算出する板厚配分比率演算装置であ
る。
Example 1. The first embodiment of the present invention will be described below with reference to FIG. In the figure, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts. In the figure, 6A to 6C correspond to the multipliers 6a to 6c. Reference numerals 10a to 10c are load detectors, and 11 is a plate thickness distribution ratio calculation device for calculating the plate thickness distribution ratios ma and mb based on the detection values of the load detectors 10a to 10c.

【0014】次に、図1に示したこの発明の実施例1の
動作について説明する。制御動作は基本的には従来技術
で述べた通りなのでここでは説明しない。
Next, the operation of the first embodiment of the present invention shown in FIG. 1 will be described. The control operation is basically the same as that described in the prior art and will not be described here.

【0015】板厚制御装置7a〜7cにより板厚を修正
した結果生じた圧延力(圧延機への負荷)の変動量△F
a,△Fb,△Fcは以下の関係より求められる。
A fluctuation amount ΔF of the rolling force (load on the rolling mill) resulting from the sheet thickness correction by the sheet thickness control devices 7a to 7c.
a, ΔFb, ΔFc are obtained from the following relationships.

【0016】即ち、圧延機2a〜2cの入口側の板厚変
化が圧延力に影響する影響係数をQa,Qb,Qc、圧
延機2a〜2c出口側の板厚変化が圧延力に影響する影
響係数をqa,qb,qc、各スタンドの入口側の板厚
変化を△Ha,△Hb,△Hc、出口側の板厚変化を△
ha,△hb,△hcとすれば、
That is, Qa, Qb, and Qc are the influence coefficients that influence the change in strip thickness on the inlet side of the rolling mills 2a to 2c, and the influence that the change in strip thickness on the outlet side of the rolling mills 2a to 2c influences the rolling force. Coefficients are qa, qb, qc, change in plate thickness on the inlet side of each stand is ΔHa, ΔHb, ΔHc, and change in plate thickness on the outlet side is Δ.
If ha, Δhb, Δhc,

【0017】 △Fa=qa△ha+qa△ha ・・・(1) △Fb=qb△hb+qb△hb ・・・(2) △Fc=qc△hc+qc△hc ・・・(3)ΔFa = qaΔha + qaΔha (1) ΔFb = qbΔhb + qbΔhb (2) ΔFc = qc Δhc + qcΔhc (3)

【0018】となる。[0018]

【0019】第1スタンド上流で板厚変動がないものと
すれば
Assuming that there is no plate thickness variation upstream of the first stand

【0020】 △Ha = 0 ・・・(4)ΔHa = 0 (4)

【0021】であり、各スタンドの出口側の板厚と次ス
タンドの入口側の板厚は等しいので
Since the plate thickness on the outlet side of each stand and the plate thickness on the inlet side of the next stand are equal,

【0022】 △Hb = △ha ・・・(5) △Hc = △hb ・・・(6)ΔHb = Δha (5) ΔHc = Δhb (6)

【0023】となる。(4)〜(6)式を(1)〜
(3)式に代入することにより
[0023] Expressions (4) to (6) are expressed as (1) to
By substituting in equation (3)

【0024】 △Fa= +qa△ha ・・・(7) △Fb=Qb△ha+qb△hb ・・・(8) △Fc=Qc△hb+qc△hc ・・・(9)ΔFa = + qaΔha (7) ΔFb = QbΔha + qbΔhb (8) ΔFc = QcΔhb + qcΔhc (9)

【0025】が得られる。Is obtained.

【0026】ここで目標とする圧延力の比率を1:C
b:Ccとすれば△Fa,△Fb,△Fcは
Here, the target rolling force ratio is 1: C.
b: If Cc, ΔFa, ΔFb, ΔFc are

【0027】 △Fa = K−Fa ・・・(10) △Fb = CbK−Fb ・・・(11) △Fc = CcK−Fc ・・・(12)ΔFa = K-Fa (10) ΔFb = CbK-Fb (11) ΔFc = CcK-Fc (12)

【0028】となる。更に、目標となる圧延力配分比率
は、所望となる各スタンドの板厚修正量を最終スタンド
の板厚修正量△hcを基準とした比率であらわせば、
[0028] Furthermore, if the target rolling force distribution ratio is expressed as a ratio based on the desired plate thickness correction amount of each stand based on the plate thickness correction amount Δhc of the final stand,

【0029】 △ha = ma△hc ・・・(13) △hb = mb△hc ・・・(14) △hc = mb△hc ・・・(15)Δha = maΔhc (13) Δhb = mbΔhc (14) Δhc = mbΔhc (15)

【0030】となる。(10)〜(15)式を(7)〜
(9)式に代入すれば
It becomes Expressions (10) to (15) are converted into expressions (7) to
Substituting into equation (9)

【0031】 K−Fa= +qama△hc ・・・(16) CbK−Fb=Qbma△hc+qcmb△hc ・・・(17) CcK−Fc=Qcmb△hc+qc△hc ・・・(18)K-Fa = + qamaΔhc (16) CbK-Fb = QbmaΔhc + qcmbΔhc (17) CcK-Fc = QcmbΔhc + qcΔhc (18)

【0032】となる。ここで、Fa,Fb,Fcは、負
荷検出装置10a〜10cにより検出した値である。ま
た△hcは、板厚偏差信号5に乗算器6dにより適当な
ゲインを乗算した値である。またCb,Ccはあらかじ
め与えられた目標圧延力配分比率である。したがって
(16)〜(18)式中の未知量はk1 ,ma,mbの
みであり、連立方程式を解くことによりこのk,ma,
mbを決定することができる。
It becomes Here, Fa, Fb, and Fc are values detected by the load detection devices 10a to 10c. Further, Δhc is a value obtained by multiplying the plate thickness deviation signal 5 by an appropriate gain by the multiplier 6d. Cb and Cc are target rolling force distribution ratios given in advance. Therefore, the unknown quantities in the equations (16) to (18) are only k 1 , ma, mb, and by solving the simultaneous equations, k, ma, mb
mb can be determined.

【0033】具体的には(16),(17),(18)
式を変形して、 Fa=k−(qa△hc)ma ・・・(19) Fb=Cbk−(Qb△hc)ma−(qb△hc)mb ・・・(20) Fc=Fc△hc=Cck−Qc△hcmb ・・・(21) とし、(19),(20),(21)式をマトリクスで
表現すると以下のようにまとめられる。
Specifically, (16), (17), (18)
By modifying the formula, Fa = k- (qaΔhc) ma (19) Fb = Cbk- (QbΔhc) ma- (qbΔhc) mb (20) Fc = FcΔhc = Cck-QcΔhcmb (21) and the equations (19), (20), and (21) are expressed by a matrix, they are summarized as follows.

【0034】[0034]

【数1】 [Equation 1]

【0035】[0035]

【数2】 [Equation 2]

【0036】[0036]

【数3】 [Equation 3]

【0037】(22)〜(24)式を具体的に説明する
と、板厚配分比率演算装置11は、各圧延機2a〜2c
対応に設けられた負荷検出器10a〜10cによって検
出された圧延力、即ち圧延機の負荷Fa,Fb,Fcに
基づいて板厚配分比率ma,mbを演算することにな
る。
Describing equations (22) to (24) in detail, the plate thickness distribution ratio calculating device 11 is configured so that each of the rolling mills 2a to 2c.
The strip thickness distribution ratios ma and mb are calculated based on the rolling forces detected by the corresponding load detectors 10a to 10c, that is, the loads Fa, Fb, and Fc of the rolling mill.

【0038】次に、板厚配分比率ma及びmbは乗算器
6A及び6Bにそれぞれ入力され、そこで乗算器6Cよ
り出力されたゲイン乗算後の板厚偏差信号△hcと乗算
し各スタンドの板厚修正量ha,hbを算出する。
Next, the plate thickness distribution ratios ma and mb are input to the multipliers 6A and 6B, respectively, and are multiplied by the gain-multiplied plate thickness deviation signal Δhc output from the multiplier 6C, and the plate thickness of each stand is multiplied. The correction amounts ha and hb are calculated.

【0039】これら算出された板厚修正量ha,hbを
夫々制御信号発生装置7a,7bに出力することで、各
圧下駆動装置9a,9bは圧延機の負荷の比率を目標と
なる比率に近づくように圧延機を制御しつつ基準板厚を
得る。
By outputting the calculated plate thickness correction amounts ha and hb to the control signal generators 7a and 7b, respectively, the reduction drive devices 9a and 9b approach the load ratio of the rolling mill to a target ratio. As described above, the reference plate thickness is obtained while controlling the rolling mill.

【0040】尚、上記実施例では、圧延機2a〜2cの
負荷が圧延力である場合を例にとって説明したが、圧延
機駆動用モータの電流を負荷とした場合でも同様に適用
することができる。
In the above embodiment, the case where the load of the rolling mills 2a to 2c is the rolling force has been described as an example, but the present invention can be similarly applied even when the current of the rolling mill drive motor is used as the load. ..

【0041】また、上記実施例では、3台の圧延機2a
〜2cを用いた場合でも同様に適用できる。
In the above embodiment, three rolling mills 2a are used.
The same applies to the case of using ~ 2c.

【0042】[0042]

【発明の効果】以上のように、この発明によれば圧延機
を出た鋼板の板厚を測定し基準板厚値に対する偏差を求
め偏差信号を発生する板厚偏差測定装置と、前記偏差信
号にもとづいて前記圧延機のロールギャップを制御する
ための制御信号を発生する制御信号発生装置と、各圧延
機の負荷を検出する負荷検出器と、各負荷検出値より各
圧延機の板厚配分比率を演算するとともに、各圧延機間
の負荷比率が所定の値に近づくように前記制御信号を演
算する制御信号演算装置とを備えたので、各圧延機間の
負荷比率を目標の比率に近づけるよう圧延制御しながら
目標とする板厚の鋼板を得ることが可能となり、負荷比
率の変化に伴なう鋼板の品質低下を防ぎながら所望の板
厚を有する鋼板を得ることができる。
As described above, according to the present invention, a plate thickness deviation measuring device for measuring a plate thickness of a steel plate exiting a rolling mill to obtain a deviation from a reference plate thickness value and generating a deviation signal, and the deviation signal A control signal generator that generates a control signal for controlling the roll gap of the rolling mill based on the above, a load detector that detects the load of each rolling mill, and a strip thickness distribution of each rolling mill from each load detection value. The load ratio between the rolling mills is provided with a control signal calculation device that calculates the control signal so that the load ratio between the rolling mills approaches a predetermined value, so that the load ratio between the rolling mills approaches the target ratio. Thus, it is possible to obtain a steel sheet having a target sheet thickness while controlling rolling, and it is possible to obtain a steel sheet having a desired sheet thickness while preventing deterioration of the quality of the steel sheet due to a change in load ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】従来の圧延制御装置を示す構成図である。FIG. 2 is a configuration diagram showing a conventional rolling control device.

【符号の説明】[Explanation of symbols]

1 鋼板 2A〜2c 圧延機 3 板厚検出器 4 板厚偏差測定装置 5 板厚偏差信号 6A〜6C 乗算器 7a〜7c 制御信号発生装置 9a〜9c 圧下駆動装置 10a〜10c 負荷検出器 11 板厚配分比率演算装置 DESCRIPTION OF SYMBOLS 1 Steel plate 2A-2c Rolling mill 3 Plate thickness detector 4 Plate thickness deviation measuring device 5 Plate thickness deviation signal 6A-6C Multiplier 7a-7c Control signal generating device 9a-9c Reduction drive device 10a-10c Load detector 11 Plate thickness Allocation ratio calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧延機を出た鋼板の板厚を測定し基準板
厚値に対する偏差を求め偏差信号を発生する板厚偏差測
定装置と、前記偏差信号にもとづいて前記圧延機のロー
ルギャップを制御するための制御信号を発生する制御信
号発生装置と、各圧延機の負荷を検出する負荷検出器
と、各負荷検出値より各圧延機の板厚配分比率を演算す
るとともに、各圧延機間の負荷比率が所定の値に近づく
ように前記制御信号を演算する制御信号演算装置とを備
えた圧延制御装置。
1. A plate thickness deviation measuring device for measuring a plate thickness of a steel plate exiting a rolling mill to obtain a deviation from a reference plate thickness value and generating a deviation signal, and a roll gap of the rolling machine based on the deviation signal. A control signal generator that generates a control signal for controlling, a load detector that detects the load of each rolling mill, and a plate thickness distribution ratio of each rolling mill from each load detection value are calculated, and between each rolling mill. Control device for calculating the control signal so that the load ratio of the control signal approaches a predetermined value.
JP3335124A 1991-12-18 1991-12-18 Rolling control device Expired - Fee Related JP2593266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335124A JP2593266B2 (en) 1991-12-18 1991-12-18 Rolling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335124A JP2593266B2 (en) 1991-12-18 1991-12-18 Rolling control device

Publications (2)

Publication Number Publication Date
JPH05169125A true JPH05169125A (en) 1993-07-09
JP2593266B2 JP2593266B2 (en) 1997-03-26

Family

ID=18285044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335124A Expired - Fee Related JP2593266B2 (en) 1991-12-18 1991-12-18 Rolling control device

Country Status (1)

Country Link
JP (1) JP2593266B2 (en)

Also Published As

Publication number Publication date
JP2593266B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US4030326A (en) Gage control apparatus and method for tandem rolling mills
KR100472293B1 (en) Plate thickness control apparatus for continuous rolling machine
JPH05169125A (en) Rolling controller
JP3520167B2 (en) Horizontal furnace furnace tension control method
CN112792138B (en) Plant control device and plant control method
KR950010599B1 (en) Control device & method for rolling
JPS5973110A (en) Automatic sheet thickness controlling device
JPH0232041B2 (en)
JPH08155522A (en) Method for controlling hot continuous finishing mill
JP3027897B2 (en) Speed control method and apparatus for tandem rolling mill
JP3344092B2 (en) Rolling machine tension control method
JPH07328709A (en) Method for controlling thickness in tandem mill
JPS62197210A (en) Method and device for controlling continuous rolling mill
KR850000507B1 (en) Apparatus for controlling both gage and tension force of roll mill
JPH11347615A (en) Plate thickness controller
JPS6225445B2 (en)
JP2839775B2 (en) Control device for continuous rolling mill
JPH0659496B2 (en) Equipment for estimating mill spring constant and material plasticity coefficient in continuous rolling mill
JPH1157829A (en) Control means for hot continuous rolling mill
JPS5976613A (en) Automatic sheet thickness controlling device
JPS586568B2 (en) Plate thickness control method for skewer type continuous rolling mill
JPS637848B2 (en)
JPS59113914A (en) Method for controlling rolling
JPH06297014A (en) Rolled load detecting device in vertical mill and controller of vertical mill
JPS6333111A (en) Shape control method on rolling mill

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees