JPH05169089A - Nitrification and denitrification process simulator - Google Patents

Nitrification and denitrification process simulator

Info

Publication number
JPH05169089A
JPH05169089A JP3334614A JP33461491A JPH05169089A JP H05169089 A JPH05169089 A JP H05169089A JP 3334614 A JP3334614 A JP 3334614A JP 33461491 A JP33461491 A JP 33461491A JP H05169089 A JPH05169089 A JP H05169089A
Authority
JP
Japan
Prior art keywords
process model
nitrification
control
calculation
model part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3334614A
Other languages
Japanese (ja)
Other versions
JP3123167B2 (en
Inventor
Takao Sekine
孝夫 関根
Nobuyuki Wada
信行 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP03334614A priority Critical patent/JP3123167B2/en
Publication of JPH05169089A publication Critical patent/JPH05169089A/en
Application granted granted Critical
Publication of JP3123167B2 publication Critical patent/JP3123167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To provide a simulator for supporting operation by estimating the optimum value (optimum manipulated variable) of respective control factors in consideration of such status that an operator must decide the manipulated variables of the respective control factors in a trial-and-error method because the number of the control factor is made plenty and the control factors interfere with each other. CONSTITUTION:In the case of constructing a process model part 12 having a processing process model part 14 and a controlling process model part 15, a simultaneous nonlinear differential equations showing the network of principal reaction of a processing process are replaced with a linear equation to construct the processing process model part 14. Repeated calculation is executed by the process model part 12 to perform numerical convergent calculation by a stationary analysis part 19. Thereby a stationary solution is obtained. Furthermore optimization of the operating conditions is enabled by changing the operating conditions by an arithmetric part 21 for optimizing the operating conditions and repeatedly calculating the stationary solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、下水処理における活
性汚泥プロセスの制御装置に係わり、特に硝化脱窒プロ
セスの制御因子の最適値を求めるシミュレータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an activated sludge process in sewage treatment, and more particularly to a simulator for obtaining an optimum value of a control factor for a nitrification denitrification process.

【0002】[0002]

【従来の技術】下排水中に含まれる窒素化合物〔アンモ
ニア態窒素(NH4−N)、亜硝酸態窒素(NO2
N)、有機態窒素(ORN−N)〕が未処理のまま下水
処理施設から河川、海、湖沼等へ放流されると、種々の
環境問題が発生することが知られている。そこで下排水
から窒素を除去する方法として、生物学的あるいは物理
化学的な方法が種々提案されている。これらのうち、微
生物の代謝活性を応用した生物学的硝化脱窒プロセスは
大量かつ安価に処理を行うことができ、しかも維持管理
が比較的容易であることから、下水処理の主流となって
いる。生物学的硝化脱窒プロセスの概要を図10に示
す。図に示すように、流入水に曝気槽1で硝化脱窒処理
を施した後、最終沈殿池2でSS成分の最終的な沈殿・
除去を行う。最終沈殿池2に沈殿した汚泥は余剰汚泥と
して排出され、排出された汚泥の一部は活性汚泥として
曝気槽1に返送される。ここで曝気槽1が脱窒槽(無酸
素状態)3と硝化槽(好気状態)4に別れている点や、
流出口1bから流入口1aに硝化液を循環させる点で、
従来の標準活性汚泥法と異なる。
2. Description of the Related Art Nitrogen compounds contained in wastewater [ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2
N), organic nitrogen (ORN-N)] is discharged untreated from a sewage treatment facility into a river, the sea, a lake or the like, and it is known that various environmental problems occur. Therefore, various biological or physicochemical methods have been proposed as methods for removing nitrogen from the wastewater. Of these, the biological nitrification and denitrification process that applies the metabolic activity of microorganisms has become the mainstream of sewage treatment because it can be treated in large quantities at low cost and is relatively easy to maintain and manage. .. An overview of the biological nitrification denitrification process is shown in FIG. As shown in the figure, after the inflowing water is subjected to nitrification and denitrification treatment in the aeration tank 1, the final settling tank 2 finally sets the SS component
Remove. The sludge settled in the final settling tank 2 is discharged as excess sludge, and a part of the discharged sludge is returned to the aeration tank 1 as activated sludge. Here, the aeration tank 1 is divided into a denitrification tank (anoxic state) 3 and a nitrification tank (aerobic state) 4,
In that the nitrification liquid is circulated from the outlet 1b to the inlet 1a,
Different from the conventional standard activated sludge method.

【0003】この循環式硝化脱窒プロセスの制御システ
ムを図11に示す。曝気槽1の硝化槽4にはブロワ5に
より曝気が行われるが、この送風量を調節する制御弁6
は硝化槽溶存酸素濃度制御部(DOC)7により制御さ
れる。また余剰汚泥ポンプ8による最終沈殿池2からの
汚泥排出量は、汚泥の平均滞留時間制御部(SRT)9
により制御される。10は汚泥を曝気槽1に返送する返
送汚泥ポンプ、11は曝気槽1内で処理水を循環させる
循環ポンプである。
FIG. 11 shows a control system of this circulation type nitrification denitrification process. The blower 5 aerates the nitrification tank 4 of the aeration tank 1, and a control valve 6 for adjusting the air flow rate.
Is controlled by the nitrification tank dissolved oxygen concentration control unit (DOC) 7. The amount of sludge discharged from the final settling tank 2 by the surplus sludge pump 8 is determined by the average sludge retention time control unit (SRT) 9
Controlled by. Reference numeral 10 is a returning sludge pump for returning sludge to the aeration tank 1, and 11 is a circulation pump for circulating treated water in the aeration tank 1.

【0004】循環ポンプ11の制御では、重要な可制御
因子として硝化槽溶存酸素(DO)濃度、汚泥の平均滞
留時間(SRT)、循環水量(循環比;流入水量に対す
る循環比率)、A/O比(脱窒槽および硝化槽の容積
比)などが挙げられる。現在これら4項目は、すべて一
定に制御されている。たとえばDO=2(mg/l)、
SRT=10(日)、R2(循環比)=2、A/O=
1:1で制御される。一般に、この各管理目標値は運転
員の経験によって決められている。
In controlling the circulation pump 11, the nitrification tank dissolved oxygen (DO) concentration, sludge average residence time (SRT), circulating water amount (circulating ratio; circulating ratio to inflowing water amount), A / O are important controllable factors. Ratio (volume ratio of denitrification tank and nitrification tank) and the like. At present, these four items are all controlled to be constant. For example, DO = 2 (mg / l),
SRT = 10 (days), R2 (circulation ratio) = 2, A / O =
It is controlled 1: 1. Generally, each management target value is determined by the experience of the operator.

【0005】[0005]

【発明が解決しようとする課題】前述した4項目の制御
因子DO,SRT,R2,A/O比はそれぞれ硝化反応
速度や脱窒反応速度に影響を与える。たとえばDO濃度
の場合、DO濃度が高まるに従って硝化反応速度が高く
なるが、循環水中のDO濃度および脱窒槽中のDO濃度
も上昇するため、脱窒速度は逆に低下する。したがって
DO濃度を上げた場合、最終的にT−N除去率が高くな
るか低下するかは、DO濃度の上げ幅や硝化脱窒へのD
O濃度律速の強さなどにより変化するため、一概に判断
できない。またDO濃度を上げることによって、他の制
御(操作)因子(SRT,R2,A/O比)が適正値か
らずれてくる場合がある。
The above-mentioned four control factors DO, SRT, R2 and A / O ratio respectively affect the nitrification reaction rate and the denitrification reaction rate. For example, in the case of the DO concentration, the nitrification reaction rate increases as the DO concentration increases, but the DO concentration in the circulating water and the DO concentration in the denitrification tank also increase, so the denitrification rate decreases. Therefore, when the DO concentration is increased, whether the TN removal rate finally increases or decreases depends on the increase range of the DO concentration and the D to nitrification denitrification.
It cannot be determined unconditionally because it changes depending on the strength of the O concentration limiting rate. Further, increasing the DO concentration may cause other control (operation) factors (SRT, R2, A / O ratio) to deviate from appropriate values.

【0006】このようにこの種のプロセスは、従来のB
OD(生物化学的酸素要求量)除去を主たる目的とした
標準活性汚泥法に比べて制御因子数が多く、しかもそれ
らの因子は相互に干渉するために各操作量は運転員が試
行錯誤的に決定して行くのが現状である。
[0006] As described above, this type of process is the same as the conventional B
Compared to the standard activated sludge method whose main purpose is to remove OD (biochemical oxygen demand), the number of control factors is large, and since these factors interfere with each other, each manipulated variable is determined by trial and error by the operator. The current situation is to decide.

【0007】この発明は、このような事情に鑑み、下水
処理における活性汚泥プロセス、特に嫌気・好気処理を
組み合わせて硝化脱窒を行う処理プロセスの制御におい
て、各種制御因子の最適値(最適操作量)を推定して運
転を支援するシミュレータを提供することを目的とす
る。
In view of the above circumstances, the present invention provides an optimum value of various control factors (optimum operation) in controlling an activated sludge process in sewage treatment, particularly a treatment process in which anaerobic / aerobic treatment is combined to perform nitrification denitrification. The purpose is to provide a simulator that estimates driving amount and supports driving.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、嫌気・好気処理を組み合わせて硝化
脱窒を行う処理プロセスを対象とし、この処理プロセス
の制御因子の最適値を求める硝化脱窒プロセスシミュレ
ータとして、次の演算要素を有するものを提供する。
In order to achieve the above object, the present invention is directed to a treatment process in which anaerobic / aerobic treatment is combined to perform nitrification / denitrification, and an optimum value of a control factor of this treatment process is set. As a nitrification / denitrification process simulator for determining, the following is provided.

【0009】(1)処理プロセスモデル部および制御プ
ロセスモデル部を有し、両モデル部で相互に演算を行う
プロセスモデル部。処理プロセスモデル部は、処理プロ
セスの主要反応ネットワークを表す連立非線形微分方程
式を線形式に置き換えて処理プロセスを模擬したもので
ある。制御プロセスモデル部は、処理プロセスモデル部
および制御アルゴリズムを模擬したものである。
(1) A process model part having a processing process model part and a control process model part, and the two model parts mutually perform calculations. The treatment process model section is a simulation of the treatment process by replacing the simultaneous nonlinear differential equations representing the main reaction network of the treatment process with a linear form. The control process model section imitates the processing process model section and the control algorithm.

【0010】(2)処理プロセス状態変数および制御因
子の設定値から処理プロセス模擬出力の定常解を求める
ものであって、前記プロセスモデル部に繰り返し計算を
行わせ、この計算結果を用いて数値収束計算を行い、こ
の収束値を前記定常解とする定常解析部。
(2) A steady solution of the simulated output of the treatment process is obtained from the set values of the treatment process state variable and the control factor, and the process model section is made to repeatedly perform calculations, and numerical results are converged using the calculation results. A steady analysis unit that performs calculation and uses the converged value as the steady solution.

【0011】(3)制御因子の設定値を変更しつつ、定
常解析部を繰り返し動作させることにより、制御因子の
最適化演算を行う制御因子最適化演算部。
(3) A control factor optimizing arithmetic unit for optimizing the control factor by repeatedly operating the steady state analyzing unit while changing the set value of the control factor.

【0012】[0012]

【作用】前述のように、この種の処理プロセスでは制御
因子が相互に干渉する。そこでこの発明では、処理プロ
セスを模擬するにあたって、数値収束計算を用いて演算
を行う手法をとる。すなわち、処理プロセスの主要反応
ネットワークを適当な手法で数式モデル化すると、連立
非線形微分方程式により表される。この数式モデルでは
定常解が得られないので、上記の連立非線形微分方程式
を線形式に置き換えて繰り返し計算を行い、その数値を
収束させて解析結果を得る。
As described above, control factors interfere with each other in this type of processing process. Therefore, in the present invention, in simulating the processing process, a method of performing calculation using numerical convergence calculation is adopted. That is, when the main reaction network of the treatment process is mathematically modeled by an appropriate method, it is represented by simultaneous nonlinear differential equations. Since a steady solution cannot be obtained with this mathematical model, the simultaneous nonlinear differential equations described above are replaced with a linear form, repeated calculations are performed, and the numerical values are converged to obtain analysis results.

【0013】このようにしてプロセスモデルを構築し、
このモデルを用いて制御因子の最適化演算を行う。つま
り、プロセスモデルに与える制御因子の設定値を変更し
つつプロセスモデルに繰り返し計算を行わせることによ
り、制御因子の最適操作量を求める。最適化演算には、
周知の手法を採用することができる。
In this way, the process model is constructed,
This model is used to perform control factor optimization calculations. That is, the optimum manipulated variable of the control factor is obtained by causing the process model to repeatedly calculate while changing the setting value of the control factor given to the process model. For optimization calculation,
Well-known methods can be adopted.

【0014】[0014]

【実施例】以下、この発明の実施例に係る活性汚泥プロ
セスの運転支援システムを説明する。このシステムはそ
の機能上、図2に示すように、大きく分けてプロセスモ
デル部12と解析部13とから構成されている。プロセ
スモデル部12は、処理プロセスモデル部14と制御プ
ロセスモデル部15とから構成される。処理プロセスモ
デル部6は、実処理プロセス8を数式モデルによりモデ
ル化したものであり、状態変数格納部16および動力学
的パラメータ格納部17から与えられる状態変数および
動力学的パラメータを用いて解析を行う。制御プロセス
モデル部7は、制御アルゴリズムをモデル化したもので
あり、制御因子目標値格納部18から与えられる制御因
子目標値を用いて解析を行う。解析部2は、定常解析部
19と最適化演算部20とから構成される。最適化演算
部20は、運転条件の最適化を行う運転条件最適化部2
1と、動力学的パラメータの最適化を行う動力学的パラ
メータ最適化部22とから構成される。以下、この運転
支援システムの各構成要素について詳細に説明する。
EXAMPLE An operation support system for an activated sludge process according to an example of the present invention will be described below. In terms of its function, this system is roughly divided into a process model section 12 and an analysis section 13, as shown in FIG. The process model unit 12 includes a processing process model unit 14 and a control process model unit 15. The processing process model unit 6 is a model of the actual processing process 8 by a mathematical model, and analyzes using the state variables and dynamic parameters given from the state variable storage unit 16 and the dynamic parameter storage unit 17. To do. The control process model unit 7 is a model of a control algorithm, and analyzes using the control factor target value provided from the control factor target value storage unit 18. The analysis unit 2 includes a steady state analysis unit 19 and an optimization calculation unit 20. The optimization calculation unit 20 is a driving condition optimization unit 2 that optimizes driving conditions.
1 and a dynamic parameter optimization unit 22 that optimizes dynamic parameters. Hereinafter, each component of this driving support system will be described in detail.

【0015】1.プロセスモデル部 処理プロセスモデル部14における数式モデルを決定す
るにあたって、循環式硝化脱窒法の状態変数と主要反応
のネットワークを仮定した。図2に示すように、流入水
中および反応槽内に存在する有機物を溶解性有機物と浮
遊性有機物に大別する。溶解性有機物を溶解性BOD
(S)と溶解性有機窒素(ORN)に分ける。浮遊性有
機物は、BOD資化細菌(X)と硝化菌(XN)で構成
されるとし、加水分解により溶解性BODと溶解性有機
窒素に変化するものとする。
1. Process Model Section In determining the mathematical model in the treatment process model section 14, a state variable and a network of main reactions of the circulating nitrification denitrification method were assumed. As shown in FIG. 2, the organic substances existing in the inflowing water and in the reaction tank are roughly classified into soluble organic substances and floating organic substances. Soluble organics soluble BOD
(S) and soluble organic nitrogen (ORN). The floating organic matter is assumed to be composed of BOD-assimilating bacteria (X) and nitrifying bacteria (XN), and is converted into soluble BOD and soluble organic nitrogen by hydrolysis.

【0016】また、活性汚泥細菌の多くは通性嫌気性菌
であることが報告されていることに鑑み、脱窒菌をBO
D資化細菌と同一視し、DO濃度律速の程度によりBO
D除去および脱窒反応が進むものとする。また、溶解性
BOD成分がBOD資化細菌によって分解されるとき、
溶解性有機窒素成分(ORN)も同時に分解されてアン
モニア態窒素(NH4−N)になると想定する。この脱
アミノ反応は酸素消費を伴わないものとする。アンモニ
ア態窒素(流入および脱アミノ反応による生成)は、好
気的条件で硝化菌により硝酸態窒素(NO3−N)に酸
化されると共に、BOD資化細菌(脱窒菌)や硝化菌の
増殖の際、窒素源として利用されるものとする。なお、
このモデルでは、反応槽としてN個の完全混合槽を直列
した水理モデルを仮定している。
Further, in view of the fact that most of activated sludge bacteria are facultative anaerobic bacteria, denitrifying bacteria are treated with BO.
Identical to D-assimilating bacteria, depending on the degree of DO concentration rate-controlling, BO
D removal and denitrification reaction shall proceed. In addition, when the soluble BOD component is decomposed by BOD-assimilating bacteria,
It is assumed that the soluble organic nitrogen component (ORN) is also decomposed at the same time to ammonia nitrogen (NH 4 —N). This deamination reaction is not accompanied by oxygen consumption. Ammonia nitrogen (produced by inflow and deamination reaction) is oxidized to nitric nitrogen (NO 3 -N) by nitrifying bacteria under aerobic conditions, and at the same time, BOD-assimilating bacteria (denitrifying bacteria) and nitrifying bacteria grow. In this case, it shall be used as a nitrogen source. In addition,
In this model, a hydraulic model in which N perfect mixing tanks are connected in series is assumed as a reaction tank.

【0017】以上のモデルにおいて、主要な反応である
BOD除去、硝化および脱窒反応について考慮した律速
項目とその式を表1に示す。
In the above model, Table 1 shows the rate-limiting items and their formulas in consideration of the main reactions of BOD removal, nitrification and denitrification reactions.

【0018】[0018]

【表1】 [Table 1]

【0019】この表に示すように、溶解性BOD除去お
よび硝化反応はDOにMonod式の形で律速を受け、
脱窒反応はDOにC−Monodの形で律速を受けるも
のと仮定した。C−Monod式は、(1−x/(k+
x))で表される。ここでxは律速因子、kは飽和定数
である。また、pHはアルカリ度との関係式より算出し
た。また硝化反応および脱窒反応においては、アルカリ
度の消費生成に伴ってpHが変化するのでDownin
gらにより表されている関係式を用いてpHの影響を考
慮した。この関係式は、(1−a(b−pH))で表さ
れる。ここでa,bは定数である。また、BOD除去速
度係数、最大比硝化速度係数、最大比脱窒速度係数の温
度依存性は、Arrhenius式に従うものとした。
この式は、a20・θ(T-20)で表される。ここでa20,θ
は定数である。
As shown in this table, the soluble BOD removal and nitrification reaction are rate-determined by DO in the form of the Monod equation,
It was assumed that the denitrification reaction is rate-controlled in the form of C-Monod for DO. The C-Monod equation is (1-x / (k +
x)). Here, x is a rate-determining factor and k is a saturation constant. The pH was calculated from the relational expression with alkalinity. In addition, in the nitrification reaction and denitrification reaction, the pH changes as the alkalinity is consumed and produced.
The effect of pH was taken into account using the relational expression described by g et al. This relational expression is represented by (1-a (b-pH)). Here, a and b are constants. Further, the temperature dependence of the BOD removal rate coefficient, the maximum specific nitrification rate coefficient, and the maximum specific denitrification rate coefficient was set according to the Arrhenius equation.
This equation is represented by a 20 · θ (T-20) . Where a 20 , θ
Is a constant.

【0020】制御プロセスモデル部15では、制御可能
な因子についてそれぞれモデルを構築した。ここで制御
項目は、硝化槽の硝化率制御、DO制御、硝化液の循環
比およびA/O比制御、脱窒槽および硝化槽の各回路の
pH制御およびSRT制御が挙げられる。
The control process model unit 15 builds a model for each controllable factor. Here, the control items include nitrification rate control of the nitrification tank, DO control, circulation ratio and A / O ratio control of the nitrification solution, pH control of each circuit of the denitrification tank and nitrification tank, and SRT control.

【0021】2.解析部 2.1.定常解析部 定常解析は、制御因子を含む状態変数の定常特性を把握
する意味から、また最適化のツールや動的シミュレーシ
ョンの初期値の決定手段として重要である。プロセスモ
デルは、図2や表1から判るように連立非線形微分方程
式であり、定常解を代数的に求めることはできない。そ
こで下記の方法でモデルを変形し、定常解を数値収束計
算で求めることにした。
2. Analysis unit 2.1. Steady state analysis part Steady state analysis is important as a tool to determine the steady state characteristics of state variables including control factors, and as an optimization tool and a means for determining the initial value of dynamic simulation. As can be seen from FIG. 2 and Table 1, the process model is a simultaneous non-linear differential equation, and a steady solution cannot be obtained algebraically. Therefore, we decided to transform the model by the following method and obtain a steady solution by numerical convergence calculation.

【0022】a)定常解析により非線形連立方程式の微
分項を0とおく。
A) The differential term of the nonlinear simultaneous equations is set to 0 by the steady analysis.

【0023】b)方程式を各々の変数に関して解く。B) Solve the equation for each variable.

【0024】c)方程式をb)で解く際、非線形要素で
ある双曲線関数(Monod式)の分母にある変数は、
そのままの形で残し、繰り返し計算を行うことにより真
値収束させる。
C) When solving the equation in b), the variables in the denominator of the hyperbolic function (Monod equation), which is a non-linear element, are
The true value is converged by leaving it as it is and repeating the calculation.

【0025】具体的には、次の手順により演算を行う。Specifically, the calculation is performed according to the following procedure.

【0026】a)反応槽(脱窒槽および硝化槽)の水
温、流入負荷および各状態変数の初期値を入力する。ま
た、DO制御やSRT制御などの制御目標値の初期値を
入力する。
A) Enter the water temperature of the reaction tank (denitrification tank and nitrification tank), the inflow load, and the initial value of each state variable. Further, the initial value of the control target value for DO control, SRT control, etc. is input.

【0027】b)各制御目標値と繰り返し計算で得られ
る計算値を比較し、その偏差がなくなるようにPIDや
ファジィ演算等で各操作量を求める。
B) Each control target value is compared with a calculated value obtained by repeated calculation, and each manipulated variable is obtained by PID or fuzzy calculation so as to eliminate the deviation.

【0028】c)前回の変数値と今回の値とを比較し、
その変化が許容範囲内になる時点で収束とする。
C) Compare the previous variable value with the current value,
Convergence occurs when the change falls within the allowable range.

【0029】2.2.最適化部 最適化部の機能は大きく分けて2つある。1つは運転操
作条件の最適化であり、他の1つは動力学的パラメータ
の最適化である。
2.2. Optimizer The function of the optimizer is roughly divided into two. One is optimization of operating conditions, and the other is optimization of kinetic parameters.

【0030】(1)運転操作条件の最適化 評価基準および制約条件を設定し、これを満たす最適操
作量を決定する。たとえば評価基準は「T−N除去率を
最大にする」とし、これを満たすような最適解の探索手
法としてはたとえばSIMPLEX法を用いることがで
きる。最適化を希望するパラメータは任意に選択するこ
とができる。
(1) Optimization of driving operation conditions Evaluation criteria and constraint conditions are set, and the optimum operation amount satisfying them is determined. For example, the evaluation criterion is "maximize the TN removal rate", and the SIMPLEX method can be used as a method of searching for an optimal solution that satisfies this. The parameters desired to be optimized can be arbitrarily selected.

【0031】(2)動力学的パラメータの最適化 (1)と同様に評価基準および制約条件を設定し、これ
を満たす最適な動力学的パラメータを決定する。一般
に、長期的な負荷変動や水温変動等により動力学的パラ
メータの最適値は変動する。したがって、運転支援シス
テムとして長期間安定してシステムを稼働させるために
は定期的に動力学的パラメータを見直すことが必要とな
る。
(2) Optimization of kinetic parameters Similar to (1), evaluation criteria and constraints are set, and optimum kinetic parameters satisfying these criteria are determined. Generally, the optimum values of the dynamic parameters fluctuate due to long-term load fluctuations, water temperature fluctuations, and the like. Therefore, in order to stably operate the system as a driving support system for a long period of time, it is necessary to periodically review the kinetic parameters.

【0032】たとえば脱窒槽の硝酸態窒素濃度、硝化槽
のアンモニア態窒素濃度、BOD濃度、MLSS濃度、
硝化菌濃度等の実測値と、対応する定常解析出力である
計算値との偏差の二乗和を最小にすることを評価基準と
し、脱窒反応速度定数(KD)、硝化反応速度定数
(KN)、BOD除去速度定数(KL)等の動力学的パラ
メータの最適解を得ることができる。
For example, the nitrate nitrogen concentration in the denitrification tank, the ammonia nitrogen concentration in the nitrification tank, the BOD concentration, the MLSS concentration,
And measured values such as nitrifying bacteria concentration, and corresponding steady-state analysis is the output computed value and evaluation criteria that the sum of squares to minimize the deviation, denitrification rate constant (K D), nitrification reaction rate constant (K It is possible to obtain optimal solutions of kinetic parameters such as N ) and BOD removal rate constant (K L ).

【0033】3.運用手順 このシステムの運用手順の概略を図3に示す。まずプロ
セスモデル部12に、定常解析や最適化に必要な各状態
変数の初期値や、動力学的パラメータ、制御目標値等の
初期値などを設定する(S1)。次にこの初期設定値に
基づいてプロセスモデル部12が繰り返し計算を開始
し、定常解析部19で収束条件を満たすまで計算を続け
る(S2,3)。
3. Operation procedure Figure 3 shows the outline of the operation procedure of this system. First, the process model unit 12 is set with initial values of each state variable necessary for steady state analysis and optimization, initial values such as dynamic parameters and control target values (S1). Next, the process model unit 12 starts repeated calculation based on this initial setting value, and the steady analysis unit 19 continues the calculation until the convergence condition is satisfied (S2, 3).

【0034】収束条件を満足したら(S3;Yes)、
定常解析部19はその時点の計算結果を定常解とし、こ
の中から最適解かどうか判断するための評価基準値の2
項目を決定する。最適化部20では、定常解析部19か
ら出力される評価基準値を使用し、現在の定常解が最適
値であるか(あるいは最適値に収束しているか)を判断
する(S4)。まだ最適解が得られていない場合には、
各操作変数を所定のアルゴリズム(たとえばSIMPL
EX法)に従って変更し、定常解析・最適化の演算を再
度繰り返す(S5)。動力学的パラメータの最適化の場
合も同様の手順で演算を行う。
When the convergence condition is satisfied (S3; Yes),
The steady-state analysis unit 19 sets the calculation result at that time as a steady-state solution, and 2 of the evaluation reference values for determining whether or not the solution is the optimum solution.
Determine the item. The optimization unit 20 uses the evaluation reference value output from the steady state analysis unit 19 to determine whether the current steady state solution is the optimum value (or has converged to the optimum value) (S4). If the optimal solution has not yet been obtained,
Each manipulated variable is assigned a predetermined algorithm (eg SIMPL
(EX method), and the calculation of steady state analysis / optimization is repeated again (S5). In the case of optimizing the dynamic parameters, the calculation is performed in the same procedure.

【0035】4.具体例 (1)定常解析 図4〜8は定常解析結果の1例を示す。この例は、水温
20℃、硝化槽流出口の硝化率90%、A/O比1:
3、反応槽滞留時間6時間の場合である。この結果か
ら、DO−SRT特性と対応するT−N除去率、硝化菌
濃度(XN)、MLSS濃度(X)および送風量(G
s)との関係が明らかとなる。T−Nの場合、SRTを
長くDO濃度を低く操作したほうが除去率が向上する
が、15日以上とするとそれに伴って必要送風量が増大
することがわかる。
4. Specific Example (1) Steady State Analysis FIGS. 4 to 8 show one example of the steady state analysis result. In this example, the water temperature is 20 ° C., the nitrification rate at the outlet of the nitrification tank is 90%, and the A / O ratio is 1:
3, when the reaction tank residence time is 6 hours. From these results, the T-N removal rate, the nitrifying bacteria concentration (XN), the MLSS concentration (X) and the air flow rate (G
The relationship with s) becomes clear. In the case of T-N, the removal rate is improved by operating the SRT for a long time and decreasing the DO concentration, but it can be seen that when it is 15 days or more, the required air flow rate increases accordingly.

【0036】(2)最適化 定常解析の結果より、最適化の評価基準としてT−N除
去率以外に必要送風量(電力量の目安になる)等も必要
と考えられるが、ここでは最適化の1例として硝化槽流
出口におけるMLSS濃度をそれぞれ1,000mg/
l、2,000mg/l、3,000mg/lで運転し
た場合のDO濃度設定値と循環率の最適な組み合わせに
ついて検討した。その結果を図9に示す。ただし、反応
槽の水温は20℃、A/O比は1:3、反応槽の滞留時
間は6時間とした。MLSS濃度が1,000mg/l
から3,000mg/lと高くなるに従い、DO設定値
を下げ、循環比(R)を挙げて運転するほうが、T−N
除去率を向上させるうえで有利である。これは、MLS
S濃度が低い場合、DO設定値を上げて硝化率を向上さ
せるほうが、循環比を上げて脱窒槽へのNO3−N量を
増加するよりもT−N除去に有効であることを示してい
る。循環比が低く抑えられる理由は、DO設定値の上昇
が循環による脱窒(嫌気)槽への流入DO量の増大を招
き、これが脱窒反応を抑制することによる。これに対し
て、SRTを長くしてMLSS濃度(硝化菌濃度)を抑
制することが可能である。
(2) Optimization From the results of steady-state analysis, it is considered that the required air flow rate (which serves as a guideline for electric energy) in addition to the T-N removal rate is also necessary as an evaluation criterion for optimization. As an example, the MLSS concentration at the outlet of the nitrification tank is 1,000 mg /
The optimum combination of the DO concentration set value and the circulation rate when operated at 1, 2,000 mg / l and 3,000 mg / l was examined. The result is shown in FIG. However, the water temperature in the reaction tank was 20 ° C., the A / O ratio was 1: 3, and the residence time in the reaction tank was 6 hours. MLSS concentration is 1,000 mg / l
It is better to decrease the DO setting value and increase the circulation ratio (R) as the operation increases from TN to 3,000 mg / l.
It is advantageous in improving the removal rate. This is MLS
When the S concentration is low, it is shown that increasing the DO setting value to improve the nitrification rate is more effective in removing T-N than increasing the circulation ratio to increase the NO 3 -N amount to the denitrification tank. There is. The reason why the circulation ratio is kept low is that an increase in the DO set value causes an increase in the amount of DO flowing into the denitrification (anaerobic) tank due to circulation, which suppresses the denitrification reaction. On the other hand, it is possible to suppress the MLSS concentration (nitrifying bacteria concentration) by lengthening the SRT.

【0037】[0037]

【発明の効果】以上説明したように、この発明によれ
ば、処理プロセスの主要反応のネットワークを表す連立
非線形微分方程式を線形式に置き換えてプロセスのモデ
ルを構築し、このモデルに繰り返し計算を行わせて数値
収束計算を行うことによりプロセス模擬出力の定常解を
求め、さらにプロセスモデルに与える制御因子の設定値
を変更しつつ定常解の算出を繰り返すことにより、任意
の運転条件等に基づいて制御因子の最適操作量を求め
る。これにより、複数の相互に干渉する運転制御パラメ
ータであっても、試行錯誤的に決定するのではなく、任
意の標準基準や制約条件を満たすように定量的に決定す
ることが可能となる。
As described above, according to the present invention, the simultaneous nonlinear differential equations representing the networks of the main reactions of the treatment process are replaced with the linear form to construct the model of the process, and the iterative calculation is performed on this model. A steady solution of the process simulation output is obtained by performing the numerical convergence calculation together, and the steady solution is repeatedly calculated while changing the setting value of the control factor given to the process model, thereby controlling based on an arbitrary operating condition, etc. Find the optimum manipulated variable of the factor. As a result, even a plurality of operation control parameters that interfere with each other can be quantitatively determined not to be determined by trial and error, but to satisfy arbitrary standard criteria and constraint conditions.

【0038】したがってこの装置を例えば一定周期毎に
最適解を出力させるように運用して硝化・脱硝プロセス
の運転支援に供することが可能となり、これにより次の
ような諸効果を奏する。
Therefore, this device can be operated, for example, so as to output an optimum solution at regular intervals, and can be used to support the operation of the nitrification / denitrification process, which brings about the following various effects.

【0039】(1)硝化・脱硝プロセスのより適切な運
転が可能となるので処理水質が向上し、放流先環境への
影響を最大限に抑えることができる。
(1) Since more appropriate operation of the nitrification / denitration process is possible, the quality of treated water is improved and the influence on the environment of the discharge destination can be suppressed to the maximum.

【0040】(2)効率的な運転が可能となるので、運
転コストの面でも有利となる。
(2) Efficient operation is possible, which is advantageous in terms of operating cost.

【0041】(3)熟練を要さず容易かつ正確に運転が
できるので、人的資源の効率的運用が可能となり省力化
に寄与する。
(3) Since the operation can be performed easily and accurately without requiring skill, it is possible to efficiently use human resources, which contributes to labor saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る活性汚泥プロセスの
運転支援システムの機能ブロック図。
FIG. 1 is a functional block diagram of an operation support system for an activated sludge process according to an embodiment of the present invention.

【図2】状態変数と主要反応のネットワークを示す線
図。
FIG. 2 is a diagram showing a network of state variables and main reactions.

【図3】図1のシステムの動作を示すフローチャート。FIG. 3 is a flowchart showing the operation of the system of FIG.

【図4】定常解析結果を示すグラフ。FIG. 4 is a graph showing the results of steady state analysis.

【図5】定常解析結果を示すグラフ。FIG. 5 is a graph showing a steady-state analysis result.

【図6】定常解析結果を示すグラフ。FIG. 6 is a graph showing the results of steady state analysis.

【図7】定常解析結果を示すグラフ。FIG. 7 is a graph showing a steady-state analysis result.

【図8】定常解析結果を示すグラフ。FIG. 8 is a graph showing the results of steady state analysis.

【図9】最適化演算結果を示すグラフ。FIG. 9 is a graph showing an optimization calculation result.

【図10】循環式硝化・脱硝プロセスの概要を示す説明
図。
FIG. 10 is an explanatory diagram showing an outline of a circulation type nitrification / denitration process.

【図11】循環式硝化・脱硝プロセスの制御部の概要を
示す説明図。
FIG. 11 is an explanatory diagram showing an outline of a control unit of a circulation type nitrification / denitration process.

【符号の説明】[Explanation of symbols]

12…プロセスモデル部 13…解析部 14…処理プロセスモデル部 15…制御プロセスモデル部 19…定常解析部 20…最適化演算部 21…運転条件最適化部 22…動力学的パラメータ最適化部 12 ... Process model part 13 ... Analysis part 14 ... Processing process model part 15 ... Control process model part 19 ... Steady-state analysis part 20 ... Optimization calculation part 21 ... Operating condition optimization part 22 ... Kinetic parameter optimization part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 嫌気・好気処理を組み合わせて硝化脱窒
を行う処理プロセスを対象とし、この処理プロセスの制
御因子の最適値を求める装置において、 処理プロセスの主要反応ネットワークを表す連立非線形
微分方程式を線形式に置き換えて処理プロセスを模擬し
た処理プロセスモデル部および制御アルゴリズムを模擬
した制御プロセスモデル部を有し、両モデル部で相互に
演算を行うプロセスモデル部と、 処理プロセス状態変数および制御因子の設定値から処理
プロセス模擬出力の定常解を求めるものであって、前記
プロセスモデル部に繰り返し計算を行わせ、この計算結
果を用いて数値収束計算を行い、この収束値を前記定常
解とする定常解析部と、 前記制御因子の設定値を変更しつつ、定常解析部を繰り
返し動作させることにより、制御因子の最適化演算を行
う制御因子最適化演算部とを備えたことを特徴とする硝
化脱窒プロセスシミュレータ。
1. A device for a treatment process in which anaerobic / aerobic treatment is combined to perform nitrification / denitrification, and an optimum value of a control factor of the treatment process is obtained. A system of nonlinear differential equations representing a main reaction network of the treatment process. Has a process model part that simulates the process and a control process model part that simulates the control algorithm. The process model part performs mutual calculation in both model parts, and the process process state variables and control factors. Is to obtain a steady solution of the simulated output of the processing process from the set value of, and the process model section is repeatedly calculated, and numerical convergence calculation is performed using the calculation result, and this converged value is used as the steady solution. By controlling the steady state analysis unit and the steady state analysis unit repeatedly while changing the set values of the control factors, A nitrification denitrification process simulator, comprising: a control factor optimization calculation unit that performs a control factor optimization calculation.
【請求項2】 請求項1記載の硝化脱窒プロセスシミュ
レータにおいて、前記処理プロセスモデル部の構築に使
用される動力学的パラメータを変更しつつ、プロセスモ
デル部を繰り返し動作させることにより、動力学的パラ
メータの最適化演算を行う動力学的パラメータ最適化演
算部を備えたことを特徴とする請求項1記載の硝化脱窒
プロセスシミュレータ。
2. The nitrification denitrification process simulator according to claim 1, wherein the process model unit is repeatedly operated while changing the kinetic parameters used for constructing the treatment process model unit. The nitrification denitrification process simulator according to claim 1, further comprising a dynamic parameter optimization calculation unit that performs a parameter optimization calculation.
JP03334614A 1991-12-18 1991-12-18 Nitrification and denitrification process simulator Expired - Fee Related JP3123167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03334614A JP3123167B2 (en) 1991-12-18 1991-12-18 Nitrification and denitrification process simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03334614A JP3123167B2 (en) 1991-12-18 1991-12-18 Nitrification and denitrification process simulator

Publications (2)

Publication Number Publication Date
JPH05169089A true JPH05169089A (en) 1993-07-09
JP3123167B2 JP3123167B2 (en) 2001-01-09

Family

ID=18279348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03334614A Expired - Fee Related JP3123167B2 (en) 1991-12-18 1991-12-18 Nitrification and denitrification process simulator

Country Status (1)

Country Link
JP (1) JP3123167B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137881A (en) * 1999-11-10 2001-05-22 Hitachi Ltd Sewage water simulation device
JP2001198590A (en) * 2000-01-17 2001-07-24 Hitachi Ltd Simulation method and device of activated-sludge water treating device
JP2012014624A (en) * 2010-07-05 2012-01-19 Yokogawa Electric Corp Plant operation support device and plant operation support method
JP2015127027A (en) * 2013-12-27 2015-07-09 川崎重工業株式会社 Operation mode calculating device and water treatment system comprising it
CN107986441A (en) * 2017-12-20 2018-05-04 安徽大学 The Forecasting Methodology of nano-ZnO exposure level in anaerobic waste water biological treatment system
JP2022068357A (en) * 2017-06-30 2022-05-09 横河電機株式会社 Operation support device in water treatment facility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137881A (en) * 1999-11-10 2001-05-22 Hitachi Ltd Sewage water simulation device
JP2001198590A (en) * 2000-01-17 2001-07-24 Hitachi Ltd Simulation method and device of activated-sludge water treating device
JP2012014624A (en) * 2010-07-05 2012-01-19 Yokogawa Electric Corp Plant operation support device and plant operation support method
JP2015127027A (en) * 2013-12-27 2015-07-09 川崎重工業株式会社 Operation mode calculating device and water treatment system comprising it
JP2022068357A (en) * 2017-06-30 2022-05-09 横河電機株式会社 Operation support device in water treatment facility
CN107986441A (en) * 2017-12-20 2018-05-04 安徽大学 The Forecasting Methodology of nano-ZnO exposure level in anaerobic waste water biological treatment system

Also Published As

Publication number Publication date
JP3123167B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
Holenda et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control
Ingildsen et al. Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback
Holenda et al. Aeration optimization of a wastewater treatment plant using genetic algorithm
Wu et al. Model predictive control of biological nitrogen removal via partial nitrification at low carbon/nitrogen (C/N) ratio
KR100683477B1 (en) Method for controlling activated sludge process based on prediction using module-typed model
Sotomayor et al. Software sensor for on-line estimation of the microbial activity in activated sludge systems
Nelson et al. Performance analysis of the activated sludge model (number 1)
Baeza et al. In-line fast OUR (oxygen uptake rate) measurements for monitoring and control of WWTP
Fouad et al. A simplified model for the steady-state biofilm-activated sludge reactor
JPH05169089A (en) Nitrification and denitrification process simulator
Sotomayor et al. A simulation benchmark to evaluate the performance of advanced control techniques in biological wastewater treatment plants
JPH1043787A (en) Device for simulating amount of nitrous oxide of activated sludge method
Hvala et al. Design of a sequencing batch reactor sequence with an input load partition in a simulation‐based experimental environment
Katsogiannis et al. Adaptive optimization of a nitrifying sequencing batch reactor
Samsudin et al. Improvement of activated sludge process using enhanced nonlinear PI controller
Shen et al. Mathematical simulation of feedforward control for nutrient removal in anaerobic–anoxic–oxic processes
Szeląg et al. A data mining approach to the prediction of food-to-mass ratio and mixed liquor suspended solids.
KR100683476B1 (en) Advanced wastewater treatment system and process of using thereof
Sheik et al. Fuzzy Logic Control of Active Sludge–Based Wastewater Treatment Plants
Vivekanandan et al. Enhanced control of activated sludge process using predetermined set-points
Piotrowski Comparison of two nonlinear predictive control algorithms for dissolved oxygen tracking problem at wwtp
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
Murphy et al. Optimising operation of a biological wastewater treatment application
CN116484584B (en) Intelligent control method of two-stage sewage treatment system
Lee et al. Generic distributed parameter model control of a biological nutrient removal (BNR) activated sludge process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees