JPH05168264A - Generation device using thermocouple semiconductor element - Google Patents

Generation device using thermocouple semiconductor element

Info

Publication number
JPH05168264A
JPH05168264A JP35329091A JP35329091A JPH05168264A JP H05168264 A JPH05168264 A JP H05168264A JP 35329091 A JP35329091 A JP 35329091A JP 35329091 A JP35329091 A JP 35329091A JP H05168264 A JPH05168264 A JP H05168264A
Authority
JP
Japan
Prior art keywords
thermocouple
thermoelectric
semiconductor element
cooled
thermoelectric semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35329091A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nishimura
泰幸 西村
Hiroshi Tamakoshi
浩 玉腰
Eiichiro Takanose
叡一郎 高野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiroki Corp
Original Assignee
Shiroki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiroki Corp filed Critical Shiroki Corp
Priority to JP35329091A priority Critical patent/JPH05168264A/en
Publication of JPH05168264A publication Critical patent/JPH05168264A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermocouple-type generation device which can increase and decrease the number of thermocouple semiconductor elements relatively easily, does not cause an output to fluctuate greatly, enables connection and take-out of a lead wire and repairing of disconnection to be made easily, and can be used under a strict environment. CONSTITUTION:A title item is provided with a thermocouple unit 30 which is formed by hardening (n) thermocouple semiconductor elements 31 (Fetid) with a heat-insulating material in a ring disc shape in one piece so that an inside becomes an edge to be heated, a heating member which is formed by enclosing a heat-accumulation agent 15 whose melt point ranges from 700 deg. to 850 deg.C into a copper pipe 11, and a conductive cooling member which consists of n-1 metal capillaries 51 which connect edges to be cooled of the adjacent thermocouple semiconductor elements 31 of the same each thermocouple unit 30 in series and at the same time connect edges to be cooled of the recent thermocouple semiconductor element 31 of the adjacent thermocouple unit 30 in parallel. Furthermore, it is a generation device using the thermocouple semiconductor elements 31 so that thermoelectromotive force can be taken out of the edge to be cooled of the thermocouple semiconductor element 31 where no metal capillary 51 is mounted by engaging a plurality of thermocouple units 30 into the heating member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe−Si系の熱電半
導体素子を多数集積して、所望の電力を効率良く得るよ
うにした発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator in which a large number of Fe-Si based thermoelectric semiconductor elements are integrated to efficiently obtain desired power.

【0002】[0002]

【従来の技術】(1) FeSi2 製の熱電半導体素子が提
供されている。これは、Mnを添加してp型にしたFe
Si2 と、Coを添加してn型にしたFeSi2 を、加
圧成型して接合し、焼結した後、熱処理を施して得る素
子である。1130[K] 程度までの高温の大気中での使用に
耐え、熱電能が大きく、また、機械的強度も大きいとい
う特性を有する。さらに、Mn及びCoの添加量を制御
することにより、熱電特性を制御できるという利点も有
する。
2. Description of the Related Art (1) A thermoelectric semiconductor device made of FeSi 2 is provided. This is Fe made into p-type by adding Mn.
This is an element obtained by pressure-molding and bonding Si 2 and FeSi 2 that has been made n-type by adding Co, and sintered and then heat-treated. It has the characteristics of withstanding use in the atmosphere at temperatures as high as 1130 [K], high thermoelectric power, and high mechanical strength. Furthermore, there is an advantage that the thermoelectric characteristics can be controlled by controlling the addition amounts of Mn and Co.

【0003】(2) 熱電変換素子を利用した発電装置とし
て、特開昭61-254082 号公報に記載の装置が提案されて
いる。これは、高温の排気ガスの流路となる内筒(熱伝
導性の良い材質の加熱源)と、外気に曝される外筒(熱
伝導性が良く、且つ、電気絶縁性の良い冷却源)との間
に、多数の熱電変換素子を配設して直列及び/又は並列
に接続し、その熱起電力を取り出すようにした装置であ
り、例えば、自動車に搭載して使用される。
(2) As a power generator using a thermoelectric conversion element, a device described in Japanese Patent Laid-Open No. 61-254082 has been proposed. This is an inner cylinder (heating source made of a material with good thermal conductivity) that serves as a flow path for high-temperature exhaust gas, and an outer cylinder exposed to the outside air (a cooling source with good thermal conductivity and good electrical insulation). ) And a large number of thermoelectric conversion elements are connected and connected in series and / or in parallel to extract the thermoelectromotive force, which is mounted on an automobile, for example.

【0004】[0004]

【発明が解決しようとする課題】特開昭61-254082 号公
報に記載の装置は、下記の欠点を有する。 (1) 装置から出力される電力は、熱電変換素子数によっ
て定まる。しかるに、熱電変換素子は内筒と外筒の間に
一体に組み込まれており、後に増減させることが困難で
ある。即ち、出力電力を任意に変更することは、困難で
ある。 (2) 加熱源となる内筒の温度は、排気ガス等の温度に依
存し、変動が大きい。このため、装置から出力される電
力も、変動が大きい。
The device described in Japanese Patent Laid-Open No. 61-254082 has the following drawbacks. (1) The electric power output from the device is determined by the number of thermoelectric conversion elements. However, the thermoelectric conversion element is integrally incorporated between the inner cylinder and the outer cylinder, and it is difficult to increase or decrease it later. That is, it is difficult to arbitrarily change the output power. (2) The temperature of the inner cylinder, which is the heating source, depends on the temperature of the exhaust gas, etc. and varies greatly. Therefore, the electric power output from the device also varies greatly.

【0005】(3) 各熱電変換素子の電極は、内筒〜熱電
変換素子間、及び、熱電変換素子〜外筒間に各々配設さ
れており、隣接する各電極間には、各々絶縁体が設置さ
れている。即ち、電極設置のためのスペ−スを要する。
また、電極が上記のように配設されているため、断線が
発生した場合には、その修理が困難である。本発明は、
これらの欠点を解消した発電装置の提供を目的とする。
(3) The electrodes of each thermoelectric conversion element are arranged between the inner cylinder and the thermoelectric conversion element, and between the thermoelectric conversion element and the outer cylinder, respectively. Is installed. That is, a space for installing electrodes is required.
Further, since the electrodes are arranged as described above, if a disconnection occurs, it is difficult to repair it. The present invention is
It is an object of the present invention to provide a power generation device that solves these drawbacks.

【0006】[0006]

【課題を解決するための手段】本発明は、(a) n個のF
eSi2 製のU字形の熱電半導体素子を、各熱電半導体
素子の被加熱端が内側の円周上に位置するとともに被冷
却端が外側の円周上に位置するように同心円上に配列
し、各被加熱端及び各被冷却端が露出するようにして断
熱性の材料により輪円盤形状に一体に固めて成る熱電ユ
ニットと、(b) 熱伝導性の良好な材質のパイプの内部に
融点が700℃〜850℃の範囲にある蓄熱剤を充填し
た後両端を封止して成り、複数の上記熱電ユニットの輪
内に嵌まるように挿通される加熱部材と、(c) n−1本
の熱伝導性の良好な金属細管を、上記加熱部材を挿通さ
れた各熱電ユニットの隣接する熱電半導体素子の被冷却
端を直列に接続するとともに隣接する熱電ユニットの最
近の熱電半導体素子の被冷却端を並列に接続するように
各々取付けて成り、各金属細管の内部に冷却剤を循環さ
せる導電性冷却部材とを備え、金属細管の取付けられて
いない隣接する熱電半導体素子の被冷却端から電力を取
り出すようにした熱電半導体素子を用いた発電装置であ
る。
The present invention provides (a) n F
The U-shaped thermoelectric semiconductor elements made of eSi 2 are arranged in concentric circles so that the heated end of each thermoelectric semiconductor element is located on the inner circumference and the cooled end is located on the outer circumference. A thermoelectric unit integrally formed in a disc shape by a heat insulating material so that each heated end and each cooled end is exposed, and (b) a melting point inside a pipe with good thermal conductivity. A heating member, which is formed by filling both ends of the thermoelectric unit after being filled with a heat storage agent in the range of 700 ° C to 850 ° C, and (c) n-1 The metal thin tubes having good thermal conductivity are connected in series to the cooled ends of the adjacent thermoelectric semiconductor elements of each thermoelectric unit through which the heating member is inserted, and the recent thermoelectric semiconductor elements of the adjacent thermoelectric units are cooled. Each end is attached so that it is connected in parallel. A power generator using a thermoelectric semiconductor element, which includes a conductive cooling member for circulating a coolant inside a metal thin tube, and which extracts electric power from a cooled end of an adjacent thermoelectric semiconductor element to which no metal thin tube is attached. is there.

【0007】上記に於いて、熱電半導体素子の数nは正
の整数であり、その値は、所望の出力電圧値に応じて定
める。即ち、所望の出力電圧値を得るのに必要とされる
直列接続の素子数が、上記nとなる。
In the above description, the number n of thermoelectric semiconductor elements is a positive integer, and its value is determined according to the desired output voltage value. That is, the number of elements connected in series required to obtain a desired output voltage value is n.

【0008】上記(a) 熱電ユニットに於いて、FeSi
2 製の熱電半導体素子は、前述の従来の素子であって、
本発明に適合するU字(若しくはV字)形状に形成され
た素子である。また、輪円盤形状とは、中央部に貫通孔
を有する円盤形状であり、該貫通孔の径は、上記各熱電
半導体素子の被加熱端の配列によって仮想的に形成され
る円周の径に略合致する。また、熱電ユニットを一体に
固めるための断熱性の材料は、固める前には成型し易い
ように流動性に富み、固めた後は、厳しい環境下で該ユ
ニット内の熱起電力素子を強固に保持できる材料であ
る。例えば、Al2 3 等のセラミック、或いは、セメ
ント等を用いることができる。
In the above (a) thermoelectric unit, FeSi
The thermoelectric semiconductor element made of 2 is the conventional element described above,
It is an element formed in a U shape (or V shape) conforming to the present invention. Further, the ring disk shape is a disk shape having a through hole in the central portion, and the diameter of the through hole is the diameter of the circumference virtually formed by the arrangement of the heated ends of the thermoelectric semiconductor elements. It almost agrees. Also, the heat insulating material for solidifying the thermoelectric unit is rich in fluidity so that it can be easily molded before solidifying, and after solidifying, the thermoelectromotive force element in the unit is solidified in a severe environment. It is a material that can be held. For example, ceramics such as Al 2 O 3 or cement can be used.

【0009】上記(b) 加熱部材に於いて、パイプの材料
としては、銅等の熱伝導性の良い金属材料を用いること
ができる。また、該パイプ内に封入する蓄熱剤として
は、例えば、ガラス,LiH等を用いることができ、そ
の他、熱容量の大きな塩類を用いることができる。ま
た、請求項2に記載のように、パイプの少なくとも一方
の端部(封止部)を太陽光等の熱線に対して透明な材料
によって形成し、該透明な封止部から太陽光を蓄熱剤へ
導くことにより、該蓄熱剤を加熱するようにしてもよ
い。また、蓄熱剤の加熱は、上記のパイプの端部を外に
出しておき、外部の熱媒によって該端部を加熱するよう
にして行ってもよい。
In the heating member (b), the material of the pipe may be a metal material having good thermal conductivity such as copper. Further, as the heat storage agent sealed in the pipe, for example, glass, LiH, or the like can be used, and in addition, salts having a large heat capacity can be used. Further, as described in claim 2, at least one end portion (sealing portion) of the pipe is formed of a material transparent to a heat ray such as sunlight, and the sunlight is accumulated from the transparent sealing portion. The heat storage agent may be heated by introducing it into the agent. The heat storage agent may be heated by exposing the end of the pipe to the outside and heating the end by an external heat medium.

【0010】上記(c) 導電性冷却部材に於いて、各金属
細管は、同一の熱電ユニット内の隣接する熱電半導体素
子を直列に接続するとともに、隣接する熱電ユニットの
熱電半導体素子であって最も近い位置にある熱電半導体
素子を並列に接続する。これは、例えば、図1に示すよ
うに、円筒形を成す本装置の外周面から露出される熱電
半導体素子の被冷却端に、上記円筒の軸方向に沿うよう
に各々金属(銅)細管51を取付けることにより、実現さ
れる。
In the above-mentioned (c) conductive cooling member, each metal thin tube connects adjacent thermoelectric semiconductor elements in the same thermoelectric unit in series, and is the most thermoelectric semiconductor element of the adjacent thermoelectric unit. Thermoelectric semiconductor elements located close to each other are connected in parallel. For example, as shown in FIG. 1, a metal (copper) thin tube 51 is provided along the axial direction of the cylinder at the cooled end of the thermoelectric semiconductor element exposed from the outer peripheral surface of the present apparatus having a cylindrical shape. It is realized by installing.

【0011】[0011]

【作用】前記(b) の加熱部材のパイプ中の蓄熱剤を80
0℃程度に加熱し、同時に、前記(c) の導電性冷却部材
の各金属細管中に水等の冷却剤を循環させる。これによ
り、各熱電ユニットの各熱電半導体素子には、例えば、
各々40[mW]程度の起電力が発生する。したがって、各
熱電ユニットからは、理想的には、 40×n[mW] の電力を得ることができ、本発電装置の出力として、理
想的には、 40×n×熱電ユニット数(=m)[mW] の電力を得ることができる。
[Function] The heat storage agent in the pipe of the heating member of the above (b) is
It is heated to about 0 ° C., and at the same time, a coolant such as water is circulated in each metal thin tube of the conductive cooling member of the above (c). Thereby, in each thermoelectric semiconductor element of each thermoelectric unit, for example,
An electromotive force of about 40 [mW] is generated in each case. Therefore, from each thermoelectric unit, ideally, 40 × n [mW] of electric power can be obtained, and as an output of this power generator, ideally, 40 × n × the number of thermoelectric units (= m). Power of [mW] can be obtained.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。図1は実
施例装置の外観を示す概略斜視図、図2は図1の装置で
使用される熱電半導体素子31の外観を示す概略斜視図、
図3の(a) は図1の装置の横断面を模式的に示す図、図
3の(b) は図1の装置で使用される熱電ユニット30の縦
断面を模式的に示す図、図4は熱電ユニット30の要部拡
大図である。
EXAMPLES Examples of the present invention will be described below. 1 is a schematic perspective view showing the appearance of the apparatus of the embodiment, FIG. 2 is a schematic perspective view showing the appearance of a thermoelectric semiconductor element 31 used in the apparatus of FIG.
3 (a) is a schematic cross-sectional view of the device of FIG. 1, and FIG. 3 (b) is a schematic vertical cross-sectional view of a thermoelectric unit 30 used in the device of FIG. 4 is an enlarged view of a main part of the thermoelectric unit 30.

【0013】本実施例装置は、図1に示すように略円筒
形状を成す。内筒である加熱部材(銅パイプ11,蓄熱剤
15等で構成される部材)には、外筒である複数(m個)
の熱電ユニット30が相互に密接するようにして嵌め込ま
れており、各熱電ユニット30の外周面から露出される各
n個の熱電半導体素子31の各被冷却端31d(図2参照)に
は、隣接する熱電半導体素子31の各被冷却端31d を接続
するように(図4参照)、且つ、円筒の軸方向に沿うよ
うに(図1参照)、複数(n−1本)の銅細管51が取付
けられている。
The apparatus of this embodiment has a substantially cylindrical shape as shown in FIG. Heating member that is an inner cylinder (copper pipe 11, heat storage agent)
15 members, etc.) are multiple (m) external cylinders.
The thermoelectric units 30 are fitted so as to be in close contact with each other, and each of the cooled ends 31d (see FIG. 2) of each of the n thermoelectric semiconductor elements 31 exposed from the outer peripheral surface of each thermoelectric unit 30 has A plurality (n-1) of copper thin tubes 51 are connected so as to connect the cooled ends 31d of the adjacent thermoelectric semiconductor elements 31 (see FIG. 4) and along the axial direction of the cylinder (see FIG. 1). Is installed.

【0014】上記の如く、n個の熱電半導体素子31に対
してn−1本の銅細管51が取付けられる結果、各熱電ユ
ニット30には、銅細管51の取付けられていない被冷却端
31dが、各々2つづつ隣接して存在する。これらの被冷
却端31d には、それぞれ、図4に示すように取出用電極
21が取付けられ、該取出用電極21からは、リ−ド線20が
導出されている。ここに、上記2つの取出用電極21は、
前記銅細管51と同じく円筒の軸方向に延びており(図1
参照)、これにより、m個の各熱電ユニット30の取出用
電極21は、相互に並列に接続されることとなる。
As described above, as a result of the n-1 copper thin tubes 51 being attached to the n thermoelectric semiconductor elements 31, each thermoelectric unit 30 has the end to be cooled to which the copper thin tubes 51 are not attached.
Two 31d exist adjacent to each other. Each of these cooled ends 31d has an extraction electrode as shown in FIG.
21 is attached, and a lead wire 20 is led out from the extraction electrode 21. Here, the two extraction electrodes 21 are
Like the copper capillary 51, it extends in the axial direction of the cylinder (see FIG. 1).
As a result, the extraction electrodes 21 of the m thermoelectric units 30 are connected in parallel with each other.

【0015】(1) 熱電ユニット30 熱電ユニット30は、図2に示すように、p型半導体のF
eSi2 31a とn型半導体のFeSi2 31b を接合して
成るU字(若しくはV字)形の熱電半導体素子31を、図
3に示すように、n(nは正の整数)個、同心円状に配
列した後、Al2 3 等の断熱性の材料35により、輪円
盤(中心に貫通孔を有する円盤)状に固めてなるユニッ
トである。なお、上記同心円の内側の円周上に各熱電半
導体素子31の被加熱端(=pnの接合部)31c が配列さ
れ、外側の円周上に被冷却端31dが配列されており、こ
れらは、Al2 3 等の断熱材35の周面から露出されて
いる。
(1) Thermoelectric Unit 30 As shown in FIG. 2, the thermoelectric unit 30 includes a p-type semiconductor F
As shown in FIG. 3, there are n (n is a positive integer) concentric circles of U-shaped (or V-shaped) thermoelectric semiconductor element 31 formed by joining eSi 2 31a and n-type semiconductor FeSi 2 31b. After the arrangement, the unit is solidified into a disc shape (a disc having a through hole in the center) with a heat insulating material 35 such as Al 2 O 3 . The heated ends (junctions of pn) 31c of the thermoelectric semiconductor elements 31 are arranged on the inner circumference of the concentric circle, and the cooled ends 31d are arranged on the outer circumference. , Al 2 O 3, etc. are exposed from the peripheral surface of the heat insulating material 35.

【0016】(2) 加熱部材 加熱部材は、熱伝導性の良好な銅パイプ11の内部に、融
点が800℃程度のLiHを蓄熱剤15として充填した
後、両端を封止して成る部材であり、この加熱部材によ
って、前記熱電半導体素子31の被加熱端31c が加熱され
る。即ち、加熱部材に、前記熱電ユニット30がm(mは
正の整数)個、相互に密接して嵌め込まれて加熱部材側
から加熱されることにより、前記熱電半導体素子31の被
加熱端31cが加熱されるのである。なお、銅パイプ11の
外周面と、各熱電半導体素子31の被加熱端31c との間に
は、熱電ユニット30を銅パイプ11に嵌め込む際に必要な
程度に、隙間が存在している。
(2) Heating member The heating member is a member formed by filling the inside of the copper pipe 11 having good thermal conductivity with LiH having a melting point of about 800 ° C. as the heat storage agent 15, and then sealing both ends. Therefore, the heated end 31c of the thermoelectric semiconductor element 31 is heated by this heating member. That is, the thermoelectric units 30 (m is a positive integer) are fitted into the heating member in close contact with each other and heated from the heating member side, so that the heated end 31c of the thermoelectric semiconductor element 31 is heated. It is heated. A gap exists between the outer peripheral surface of the copper pipe 11 and the heated end 31c of each thermoelectric semiconductor element 31 to the extent necessary for fitting the thermoelectric unit 30 into the copper pipe 11.

【0017】(3) 導電性冷却部材 導電性冷却部材は、n−1本の銅細管51と、該銅細管51
中を循環される水等の冷却剤55とから成る。各銅細管51
は、前述のように、断熱部材35の外周面から露出された
各熱電半導体素子31の隣接する各被冷却端31d を直列に
接続するようにして(図4参照)、且つ、隣接する熱電
ユニット30の最も近い位置に在る熱電半導体素子31の被
冷却端31d を並列に接続するようにして(図1参照)、
円筒の軸方向に沿うように、各々セラミック用半田40に
よって取付けられている。こうして、同一の熱電ユニッ
ト30に於いて隣接する熱電半導体素子31の被冷却端31d
が直列に接続されるとともに、隣接する熱電ユニット30
の最も近い位置に在る熱電半導体素子31の被冷却端31d
が並列に接続される。なお、各銅細管51の露出面は、塗
装等により、絶縁材料53の被覆を施されている。
(3) Conductive Cooling Member The conductive cooling member is n-1 copper thin tubes 51 and the copper thin tubes 51.
It consists of a coolant 55 such as water circulated therein. Each copper capillary 51
As described above, the adjacent cooled ends 31d of the thermoelectric semiconductor elements 31 exposed from the outer peripheral surface of the heat insulating member 35 are connected in series (see FIG. 4), and the adjacent thermoelectric units are connected. The cooled end 31d of the thermoelectric semiconductor element 31 located closest to 30 is connected in parallel (see FIG. 1),
The ceramic solder 40 is attached along the axial direction of the cylinder. Thus, the cooled end 31d of the adjacent thermoelectric semiconductor element 31 in the same thermoelectric unit 30.
Are connected in series and adjacent thermoelectric units 30
End 31d to be cooled of the thermoelectric semiconductor element 31 located closest to
Are connected in parallel. The exposed surface of each copper thin tube 51 is coated with an insulating material 53 by painting or the like.

【0018】以上のように構成される本発電装置による
と、例えば、40〜50個の熱電半導体素子31を熱電ユ
ニット30に配設することにより、略16[V] 程度の出力
電圧を得ることができる。また、前記の如く並列に接続
される熱電ユニット30の数を増加させることにより、所
望の電力を得ることができる。なお、加熱部材内の蓄熱
剤15の加熱方法としては、例えば、銅パイプ11の一端を
延設しておき、該延設部を熱媒によって加熱したり、或
いは、下記実施例のように、太陽光によって加熱する等
の方法がある。
According to the present power generator configured as described above, for example, by disposing 40 to 50 thermoelectric semiconductor elements 31 in the thermoelectric unit 30, an output voltage of about 16 [V] can be obtained. You can Further, as described above, the desired power can be obtained by increasing the number of thermoelectric units 30 connected in parallel. As a method of heating the heat storage agent 15 in the heating member, for example, one end of the copper pipe 11 is extended and the extended portion is heated by a heat medium, or, as in the following example, There is a method such as heating with sunlight.

【0019】図5は他の実施例装置の縦断面を模式的に
示し、図6は該他の実施例装置の使用例を示す。図示の
装置では、加熱部材の銅パイプ11の上端の封止部の材料
として透明ガラス13が用いられており、レンズ90で集光
した太陽光L を、上記透明ガラス13を通して上記銅パイ
プ11内部の蓄熱剤15に導くことにより、蓄熱剤15を加熱
して、前記の熱起電力を得るようにされている。このた
め、本装置では、透明ガラス13が常に太陽の方向を向く
ように、図6の如く、本装置を所望の方向に回転させる
ための部材が設けられている。
FIG. 5 schematically shows a vertical cross section of another embodiment apparatus, and FIG. 6 shows an example of use of the other embodiment apparatus. In the illustrated apparatus, the transparent glass 13 is used as the material for the sealing portion at the upper end of the copper pipe 11 of the heating member, and the sunlight L condensed by the lens 90 is passed through the transparent glass 13 to the inside of the copper pipe 11. The heat storage agent 15 is heated to obtain the above-mentioned thermoelectromotive force. Therefore, in this device, a member for rotating the device in a desired direction is provided as shown in FIG. 6 so that the transparent glass 13 always faces the sun.

【0020】[0020]

【発明の効果】以上、本発明によると、熱電ユニットの
数を増減させるという比較的簡単な操作により、出力電
力を所望の値に調整することができる。また、熱電半導
体素子としてFe−Si系の素子を用いているため、直
接火にかける等の厳しい環境下での使用が可能である。
また、各熱電半導体素子を相互に接続する金属細管、及
び、電力を取り出すための電極が表面に在るため、断線
時の修理が容易である。また、加熱源として蓄熱剤を用
いているため、温度変動があまり無く、したがって、出
力電力の変動も小さい。
As described above, according to the present invention, the output power can be adjusted to a desired value by a relatively simple operation of increasing or decreasing the number of thermoelectric units. Further, since an Fe-Si based element is used as the thermoelectric semiconductor element, it can be used in a severe environment such as direct burning.
Moreover, since the metal thin tubes for connecting the thermoelectric semiconductor elements to each other and the electrodes for extracting the electric power are present on the surface, the repair at the time of disconnection is easy. Further, since the heat storage agent is used as the heating source, there is not much temperature variation, and therefore the variation in output power is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例装置の外観を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an appearance of an apparatus according to an embodiment.

【図2】図1の装置で使用される熱電半導体素子の外観
を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing an appearance of a thermoelectric semiconductor element used in the apparatus of FIG.

【図3】図1の装置の横断面及び縦断面の一部を模式的
に示す説明図である。
FIG. 3 is an explanatory view schematically showing a part of a horizontal cross section and a vertical cross section of the apparatus of FIG.

【図4】図1の装置で使用される熱電ユニットの要部拡
大図である。
4 is an enlarged view of a main part of a thermoelectric unit used in the apparatus of FIG.

【図5】他の実施例装置の縦断面を模式的に示す説明図
である。
FIG. 5 is an explanatory view schematically showing a vertical cross section of another embodiment of the device.

【図6】図5の装置の使用例を示す説明図である。FIG. 6 is an explanatory diagram showing a usage example of the apparatus of FIG.

【符号の説明】[Explanation of symbols]

11 銅パイプ, 15 蓄熱剤,20 リ−ド線, 21
取出用電極,30 熱電ユニット, 31 FeSi2
電半導体素子,40 半田, 51 銅細管, 53 冷
却水, 55 絶縁体,
11 Copper pipe, 15 Heat storage agent, 20 Lead wire, 21
Extraction electrode, 30 thermoelectric unit, 31 FeSi 2 thermoelectric semiconductor element, 40 solder, 51 copper tube, 53 cooling water, 55 insulator,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 n個のFeSi2 製のU字形の熱電半導
体素子を、各熱電半導体素子の被加熱端が内側の円周上
に位置するとともに被冷却端が外側の円周上に位置する
ように同心円上に配列し、各被加熱端及び各被冷却端が
露出するようにして、断熱性の材料により輪円盤形状に
一体に固めて成る熱電ユニットと、 熱伝導性の良好な材質のパイプの内部に、融点が700
℃〜850℃の範囲にある蓄熱剤を充填した後、両端を
封止して成り、複数の上記熱電ユニットの輪内に嵌まる
ように挿通される加熱部材と、 n−1本の熱伝導性の良好な金属細管を、上記加熱部材
を挿通された各熱電ユニットの隣接する熱電半導体素子
の被冷却端を直列に接続するとともに隣接する熱電ユニ
ットの最近の熱電半導体素子の被冷却端を並列に接続す
るように各々取付けて成り、各金属細管の内部に冷却剤
を循環させる導電性冷却部材と、 を備え、金属細管の取付けられていない隣接する熱電半
導体素子の被冷却端から電力を取り出すようにした熱電
半導体素子を用いた発電装置。
1. A n-shaped FeSi 2 U-shaped thermoelectric semiconductor element, wherein the heated end of each thermoelectric semiconductor element is located on the inner circumference and the cooled end is located on the outer circumference. As shown in the figure, the thermoelectric units are integrally arranged in a disc shape with a heat insulating material so that each heated end and each cooled end is exposed, and a material with good thermal conductivity. Inside the pipe, the melting point is 700
After filling a heat storage agent in the range of ℃ to 850 ℃, sealing both ends, a heating member inserted to fit into the rings of the plurality of thermoelectric units, and n-1 heat conduction members. A thin metal tube having good properties is connected in series to the cooled ends of the adjacent thermoelectric semiconductor elements of each thermoelectric unit through which the heating member is inserted, and the cooled ends of the recent thermoelectric semiconductor elements of the adjacent thermoelectric units are connected in parallel. And a conductive cooling member that circulates a coolant inside each metal thin tube, and the electric power is taken out from the cooled end of the adjacent thermoelectric semiconductor element to which the metal thin tube is not attached. A power generator using the thermoelectric semiconductor element.
【請求項2】 請求項1に於いて、 前記加熱部材のパイプを封止する部材は熱線に対して透
明であり、該透明な封止部材を介して太陽光を上記パイ
プ内に導いて、該パイプ内に封入されている蓄熱剤を加
熱するようにした、 熱電半導体素子を用いた発電装置。
2. The member for sealing the pipe of the heating member according to claim 1, wherein the member for sealing the pipe is transparent to heat rays, and sunlight is guided into the pipe through the transparent sealing member. A power generator using a thermoelectric semiconductor element, configured to heat a heat storage agent enclosed in the pipe.
JP35329091A 1991-12-17 1991-12-17 Generation device using thermocouple semiconductor element Pending JPH05168264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35329091A JPH05168264A (en) 1991-12-17 1991-12-17 Generation device using thermocouple semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35329091A JPH05168264A (en) 1991-12-17 1991-12-17 Generation device using thermocouple semiconductor element

Publications (1)

Publication Number Publication Date
JPH05168264A true JPH05168264A (en) 1993-07-02

Family

ID=18429837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35329091A Pending JPH05168264A (en) 1991-12-17 1991-12-17 Generation device using thermocouple semiconductor element

Country Status (1)

Country Link
JP (1) JPH05168264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894215B2 (en) 2002-01-25 2005-05-17 Komatsu Ltd. Thermoelectric module
JP2010505384A (en) * 2006-09-28 2010-02-18 ローズマウント インコーポレイテッド Improved industrial thermoelectric generator
JP2020058118A (en) * 2018-10-01 2020-04-09 ウシオ電機株式会社 Thermoelectric power generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894215B2 (en) 2002-01-25 2005-05-17 Komatsu Ltd. Thermoelectric module
JP2010505384A (en) * 2006-09-28 2010-02-18 ローズマウント インコーポレイテッド Improved industrial thermoelectric generator
US9373770B2 (en) 2006-09-28 2016-06-21 Rosemount Inc. Industrial thermoelectric generator
JP2020058118A (en) * 2018-10-01 2020-04-09 ウシオ電機株式会社 Thermoelectric power generation device

Similar Documents

Publication Publication Date Title
US3129116A (en) Thermoelectric device
US20090025772A1 (en) Glass-ceramic thermoelectric module
JP2014514904A (en) Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
US3794527A (en) Thermoelectric converter
US20040177877A1 (en) Geometrically optimized thermoelectric module
JP2014511571A (en) Thermoelectric module for vehicle thermoelectric generator
US2626970A (en) Thermoelectric couple and method of making same
US3110080A (en) Rectifier fabrication
JPH05168264A (en) Generation device using thermocouple semiconductor element
US4477686A (en) Thermoelectric element
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
US3211586A (en) Thermoelectric converter
JP4800727B2 (en) Thermoelectric converter with semiconductor pin junction
JPH07335943A (en) Thermoelectric generating device
JP2996305B2 (en) High thermal resistance thermoelectric generator
US20220069189A1 (en) Thermoelectric power generator
JP2013214715A (en) Thermoelectric conversion module and thermoelectric conversion device
JPS61201484A (en) Manufacture of thermoelectric conversion element
KR102429506B1 (en) Thermoelectric conversion module and method for manufacturing thereof
JPH0485973A (en) Thermoelectric generator
JP2018093152A (en) Thermoelectric power generation device
US3057939A (en) Self-alining arcuate thermoelements
JPH09199764A (en) Thermoelectric generator module
JP2009038323A (en) Manufacturing method of thermoelectric conversion element
JPH04280482A (en) Cooling device utilizing solar light