JPH0516739B2 - - Google Patents

Info

Publication number
JPH0516739B2
JPH0516739B2 JP22447686A JP22447686A JPH0516739B2 JP H0516739 B2 JPH0516739 B2 JP H0516739B2 JP 22447686 A JP22447686 A JP 22447686A JP 22447686 A JP22447686 A JP 22447686A JP H0516739 B2 JPH0516739 B2 JP H0516739B2
Authority
JP
Japan
Prior art keywords
light
reflective material
receiver
optical axis
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22447686A
Other languages
Japanese (ja)
Other versions
JPS6379038A (en
Inventor
Osamu Yamada
Hideo Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22447686A priority Critical patent/JPS6379038A/en
Publication of JPS6379038A publication Critical patent/JPS6379038A/en
Publication of JPH0516739B2 publication Critical patent/JPH0516739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種反射材料の反射率を測定するた
めの反射率測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a reflectance measuring device for measuring the reflectance of various reflective materials.

従来の技術 従来の反射材料の反射率の測定は、第2図a,
bに示す構成で行なつていた。第2図aにおい
て、6は光源、7はアパーチヤ、8は受光器、9
はスクリーンである。また、第2図bにおいて、
10,11はアパーチヤ、12は反射率を測定す
る反射材料である。以下、反射率の測定について
説明する。
Conventional technology The conventional measurement of reflectance of reflective materials is as shown in Fig. 2a,
The configuration shown in b was used. In Figure 2a, 6 is a light source, 7 is an aperture, 8 is a light receiver, 9
is a screen. Also, in Figure 2b,
10 and 11 are apertures, and 12 is a reflective material for measuring reflectance. The measurement of reflectance will be explained below.

第2図aのように、スクリーン9を光源6の前
に配置し、光源6から前方に出る光を規制する。
スクリーン9を通過した光は、光源6から距離b
だけ離した位置に配置したアパーチヤ7を通過
し、受光器8に入射し光電変換される。この光電
変換された受光器8からの出力R1はアパーチヤ
7の輝度に対応している。
As shown in FIG. 2a, a screen 9 is placed in front of the light source 6 to restrict the light emitted from the light source 6 to the front.
The light passing through the screen 9 is at a distance b from the light source 6.
The light passes through an aperture 7 placed at a position separated by a distance of 1.5 cm, enters a light receiver 8, and is photoelectrically converted. This photoelectrically converted output R 1 from the light receiver 8 corresponds to the brightness of the aperture 7 .

次に、第2図bのように、アパーチヤ7の位置
に反射材料12を設定し、光源からの光を反射さ
せる。受光器8は、反射材料12の反射率を求め
たい角度θxとなる位置に設置し、反射材料12の
点Qと受光器8の受光面中心を結ぶ線上で、受光
器8の直前にアパーチヤ11を設置し、さらにア
パーチヤ11から距離cだけ離して設置する。こ
の2つのアパーチヤが成す角度に対応した反射材
料12からの反射光が受光器8に入射し、光電変
換される。この光電変換された受光器8からの出
力R2は、反射材料12の角度θx方向における輝
度に対応している。この光電出力R1,R2および
アパーチヤ10,11から反射材料12の角度θx
方向における反射率f〓xを求めるものである。
Next, as shown in FIG. 2b, a reflective material 12 is set at the position of the aperture 7 to reflect the light from the light source. The light receiver 8 is installed at a position where the angle θ x for which the reflectance of the reflective material 12 is desired is obtained, and an aperture is placed just in front of the light receiver 8 on a line connecting the point Q of the reflective material 12 and the center of the light receiving surface of the light receiver 8. 11 is installed, and is further installed at a distance c from the aperture 11. Reflected light from the reflective material 12 corresponding to the angle formed by these two apertures enters the light receiver 8 and is photoelectrically converted. This photoelectrically converted output R 2 from the light receiver 8 corresponds to the brightness of the reflective material 12 at an angle θ x direction. This photoelectric output R 1 , R 2 and the angle θ x of the reflective material 12 from the apertures 10, 11
This is to find the reflectance f〓 x in the direction.

また、この角度θxを変化させた時の受光器8の
出力を求めてゆけば、反射材料12の反射ゴニオ
特性が測定できる。
Furthermore, by determining the output of the light receiver 8 when this angle θ x is changed, the reflective goniometric characteristics of the reflective material 12 can be measured.

発明が解決しようとする問題点 上記のように従来の装置は、受光器および反射
材料の設定を固定せず別の光学系を組む必要があ
る場合、位置再現が問題となる。また、反射材料
の反射ゴニオ特性を測定する場合、受光器と同時
に2枚のアパーチヤを回転させる必要があるた
め、回転機構が大形化するとともに、受光器と2
つのアパーチヤによつて作り出す反射材料上の面
積(測定面積)が変化するため、光沢のある反射
材料などを測定する場合に誤差を生じるという問
題があつた。
Problems to be Solved by the Invention As described above, in the conventional apparatus, when the settings of the light receiver and reflective material are not fixed and a separate optical system needs to be assembled, position reproduction becomes a problem. In addition, when measuring the reflective gonio characteristics of reflective materials, it is necessary to rotate two apertures at the same time as the receiver, which increases the size of the rotation mechanism and increases the size of the rotating mechanism.
Since the area (measurement area) on the reflective material created by the two apertures changes, there is a problem in that errors occur when measuring shiny reflective materials.

問題点を解決するための手段 本発明は上記問題点を解決するもので、光源
と、光源からの光を平行光とするレンズ系と、そ
の光軸中心に位置し、その光軸上を移動するとと
もに、平行光を左右に振り向ける反射鏡と、反射
鏡からの反射光軸上の一方に設置する照度計受光
器とを備え、他方の反射光軸上に反射材料を設置
するとともに、照度計受光器の受光面と反射材料
の測定面を平行とし、平行光の光軸中心からの距
離を等間隔となるように構成することにより、光
沢のある反射材料の反射ゴニオ特性が誤差なく測
定できるものである。
Means for Solving the Problems The present invention solves the above problems, and includes a light source, a lens system that converts the light from the light source into parallel light, and a lens system that is located at the center of the optical axis and moves on the optical axis. At the same time, it is equipped with a reflector that directs parallel light to the left and right, and an illumination meter receiver installed on one side of the reflected optical axis from the reflective mirror.A reflective material is installed on the other reflected optical axis, and the illuminance By making the light-receiving surface of the photometer receiver parallel to the measurement surface of the reflective material and configuring the distances from the optical axis center of the parallel light to be at equal intervals, the reflective gonio characteristics of the glossy reflective material can be measured without error. It is possible.

また、本装置の回転機構部は、反射鏡の回転だ
けでよく、しかも、別々に2つの光学系を組む必
要がなく、位置再現による問題はない。
Further, the rotation mechanism of the present device only needs to rotate the reflecting mirror, and there is no need to assemble two separate optical systems, so there is no problem with position reproduction.

作 用 本発明は、光源からの光を平行光とし、照度計
受光器と反射材料の位置関係、および反射鏡の取
付位置および反射鏡からの反射光の振り向けを上
記のようにしたことにより、照度計受光器を反射
材料を中心とした円周上を移動したものとみなし
た反射率測定ができる。また反射材料に入射する
光を平行光にできるとともに、反射材料への光の
入射角が変化しても測定面積は変化しない。
Effect of the present invention The light from the light source is made into parallel light, and the positional relationship between the illumination meter receiver and the reflective material, the mounting position of the reflecting mirror, and the direction of the reflected light from the reflecting mirror are set as described above. Reflectance measurement can be performed by assuming that the illumination meter receiver is moved around the circumference of the reflective material. Furthermore, the light incident on the reflective material can be made into parallel light, and the measurement area does not change even if the angle of incidence of the light on the reflective material changes.

実施例 第1図は、本発明の実施例における反射率測定
装置の構成を示すものである。第1図において、
1は光源、2はレンズ系、3は反射鏡、4は反射
材料、5は照度計受光器である。なお、照度計受
光器5は斜め入射角特性をcosθに合致させてい
る。また、照度計受光器5の受光面と反射材料4
の反射面とは平行に設定するとともに、光源1と
反射鏡3の中心を結んだ線上からの距離lは等間
隔としている。
Embodiment FIG. 1 shows the configuration of a reflectance measuring device in an embodiment of the present invention. In Figure 1,
1 is a light source, 2 is a lens system, 3 is a reflecting mirror, 4 is a reflective material, and 5 is an illumination meter receiver. Note that the illumination meter receiver 5 has oblique incident angle characteristics that match cos θ. In addition, the light receiving surface of the illumination meter receiver 5 and the reflective material 4
It is set parallel to the reflecting surface of , and the distance l from the line connecting the centers of the light source 1 and the reflecting mirror 3 is set at equal intervals.

第1図において、光源1からの光はレンズ系2
によつて平行光となり、反射鏡3に入射する。反
射鏡3は、まず点P1の位置に設定し、反射鏡3
からの反射光を照度計受光器5に入射させ、その
時の光電出力E1(照度に対応した出力)を測定す
る。次に、反射鏡3を点P1から距離aだけ移動
させ点P2に設定する。反射鏡3を平行光の光軸
から角度θ2だけ回転させ、反射鏡3からの反射光
を照度計受光器5に入射させ、その時の光電出力
E2を測定する。この時の照度計受光器5に入射
する反射光の入射角θ1は、 θ1=90−tanl/a で求まる。
In Figure 1, light from a light source 1 is transmitted to a lens system 2.
The light becomes parallel light and enters the reflecting mirror 3. First, reflector 3 is set at the position of point P 1 , and reflector 3
The reflected light from the illumination meter is made incident on the illumination meter receiver 5, and the photoelectric output E 1 (output corresponding to the illuminance) at that time is measured. Next, the reflecting mirror 3 is moved by a distance a from point P1 and set at point P2 . The reflector 3 is rotated by an angle θ 2 from the optical axis of the parallel light, and the reflected light from the reflector 3 is incident on the illumination meter receiver 5, and the photoelectric output at that time is
Measure E2 . At this time, the incident angle θ 1 of the reflected light incident on the illuminance meter receiver 5 is determined as θ 1 =90−tanl/a.

なお、光電出力E2は、反射鏡3が照度計受光
器5と反射材料4を結ぶ線の中心で直交する軸上
を移動するために、測光距離が変化する。この測
光距離の変化は、反射鏡3の反射光を反射材料4
に入射させる時に生じるため、距離の補正係数
αθを求める必要がある。入射角θ1における補正係
数α〓1は、 α〓1=E1cosθ1/E2 で求まる。
Note that the photometric distance of the photoelectric output E2 changes because the reflecting mirror 3 moves on an axis perpendicular to the center of the line connecting the illumination meter receiver 5 and the reflective material 4. This change in photometric distance changes the reflected light from the reflecting mirror 3 to the reflecting material 4.
This occurs when the beam is made incident on the object, so it is necessary to find the distance correction coefficient αθ. The correction coefficient α〓 1 at the incident angle θ 1 is determined by α〓 1 =E 1 cosθ 1 /E 2 .

次に、反射鏡3を点P2の位置から移動させず、
照度計受光器5に反射光を入射させた時の回転角
θ2と逆方向にθ2だけ回転させ、反射鏡3からの反
射光を、反射材料4に入射させる(反射材料4に
入射する光の入射角は、照度計受光器5への光の
入射角θ1と同一となる)。反射材料4からの反射
光を照度計受光器5に入射させ、その時の光電出
力E3を測定する。この時の光電出力E3は、反射
材料4に入射した光に角度θ1における反射率f〓1
乗じた値に対応する。したがつて、f〓1は、 f〓1=α〓1・E3・cosθ1・A/E1 で求まる。ここで、Aは反射材料4の測定面積で
ある。
Next, without moving the reflector 3 from the position of point P 2 ,
The illumination meter receiver 5 is rotated by θ 2 in the opposite direction to the rotation angle θ 2 when the reflected light is incident on the light meter receiver 5, and the reflected light from the reflector 3 is made incident on the reflective material 4. The incident angle of the light is the same as the incident angle θ 1 of the light to the illumination meter receiver 5). The reflected light from the reflective material 4 is made incident on the illumination meter receiver 5, and the photoelectric output E3 at that time is measured. The photoelectric output E 3 at this time corresponds to the value obtained by multiplying the light incident on the reflective material 4 by the reflectance f〓 1 at the angle θ 1 . Therefore, f〓 1 can be found as f〓 1 =α〓 1・E 3・cosθ 1・A/E 1 . Here, A is the measurement area of the reflective material 4.

以上の測定および計算を反射鏡3を移動させて
距離aを変化させ、反射材料4への入射光の入射
角θを変化させた時の反射率f〓を求めていけば、
反射材料4の反射ゴニオ特性を求めることができ
る。
If we carry out the above measurements and calculations by moving the reflecting mirror 3 to change the distance a, and by changing the angle of incidence θ of the incident light on the reflecting material 4, we will find the reflectance f〓.
The reflective goniometric characteristics of the reflective material 4 can be determined.

発明の効果 本発明の反射率測定装置は、光源からの光を平
行光としたことにより、反射材料への入射光を平
行光にできるとともに、照度計受光器と反射材料
の位置関係が一定であることから、反射材料への
入射光の入射角が変化しても測定面積およびその
測定位置が一定にでき、光沢のある反射材料につ
いても正確に反射ゴニオ特性が測定できる。
Effects of the Invention The reflectance measuring device of the present invention can make the light incident on the reflective material parallel light by making the light from the light source parallel light, and the positional relationship between the illumination meter receiver and the reflective material is constant. Because of this, even if the angle of incidence of the incident light on the reflective material changes, the measurement area and its measurement position can be kept constant, and the reflective gonio characteristics can be accurately measured even for shiny reflective materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における反射率測定装
置の構成図、第2図は従来の反射率測定装置の構
成図である。 1……光源、2……レンズ系、3……反射鏡、
4……反射材料、5……照度計受光器。
FIG. 1 is a block diagram of a reflectance measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional reflectance measuring apparatus. 1...Light source, 2...Lens system, 3...Reflector,
4...Reflective material, 5...Luminance meter receiver.

Claims (1)

【特許請求の範囲】[Claims] 1 光源と、この光源からの光を平行光とするレ
ンズ系と、前記平行光の光軸中心に位置し、その
光軸上を移動するとともに平行光を左右に振り向
ける反射鏡と、前記反射鏡からの反射光軸上の一
方に設置する照度計受光器とを備え、他方の反射
光軸上に反射率を求めたい反射材料を設置すると
ともに、前記照度計受光器の受光面と前記反射材
料の測定面の位値関係を平行とし、前記光源と前
記反射鏡中心を結ぶ光軸からの距離を等間隔とな
るような構成とした反射率測定装置。
1. A light source, a lens system that converts the light from this light source into parallel light, a reflecting mirror that is located at the center of the optical axis of the parallel light, moves on the optical axis and directs the parallel light left and right, and An illumination meter receiver is installed on one side of the reflected optical axis from the mirror, and a reflective material whose reflectance is to be determined is installed on the other reflected optical axis. A reflectance measuring device configured such that the positional relationship of the measurement plane of the material is parallel and the distances from the optical axis connecting the light source and the center of the reflecting mirror are equal intervals.
JP22447686A 1986-09-22 1986-09-22 Reflection factor measuring apparatus Granted JPS6379038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22447686A JPS6379038A (en) 1986-09-22 1986-09-22 Reflection factor measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22447686A JPS6379038A (en) 1986-09-22 1986-09-22 Reflection factor measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6379038A JPS6379038A (en) 1988-04-09
JPH0516739B2 true JPH0516739B2 (en) 1993-03-05

Family

ID=16814391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22447686A Granted JPS6379038A (en) 1986-09-22 1986-09-22 Reflection factor measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6379038A (en)

Also Published As

Publication number Publication date
JPS6379038A (en) 1988-04-09

Similar Documents

Publication Publication Date Title
US4123172A (en) Comparison type colorimeter
JPS6355020B2 (en)
GB2046432A (en) Apparatus for determining the thickness moisture content or other parameter of a film or coating
US4743775A (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film of coating
JPH0516739B2 (en)
EP0547054A1 (en) Optical measuring system
SU1500920A1 (en) Apparatus for measuring coefficient of mirror reflection
US4798965A (en) Optical autocollimation measuring apparatus
JPH0783828A (en) Variable-angle absolute reflectance measuring instrument
SU1693486A2 (en) Device for measuring transmittance and scattering of optical elements
JPH07294328A (en) Photometry device
JPS60235027A (en) Narrow wavelength band light emitting and receiving apparatus
USRE27270E (en) Null type comparison eeflectometer wherein nulling is accomplished by moving the light detector
KR890004719B1 (en) A spectrometry photometer
JPH0314648Y2 (en)
JPS596457Y2 (en) light wave distance meter
JPS62190479A (en) Light wave range finder
JP2790571B2 (en) Color densitometer
JPH0515043Y2 (en)
JPH0381092B2 (en)
SU1511599A1 (en) Diaphragm for photographic measuring of radiation from celestial bodies and sky background
JPS62178208A (en) Optical chopper device
RU1827590C (en) Method for measuring absolute value of albedo of mirrors
US5229822A (en) Photometric unit for photographic projector-printer assembly
SU1058875A1 (en) Laser profilograph