JPH05166552A - Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold - Google Patents

Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold

Info

Publication number
JPH05166552A
JPH05166552A JP3331977A JP33197791A JPH05166552A JP H05166552 A JPH05166552 A JP H05166552A JP 3331977 A JP3331977 A JP 3331977A JP 33197791 A JP33197791 A JP 33197791A JP H05166552 A JPH05166552 A JP H05166552A
Authority
JP
Japan
Prior art keywords
solid electrolyte
silver
polyester resin
molded body
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3331977A
Other languages
Japanese (ja)
Inventor
Kazunori Takada
和典 高田
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3331977A priority Critical patent/JPH05166552A/en
Publication of JPH05166552A publication Critical patent/JPH05166552A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a solid electrolyte mold made using silver halide-oxygen acid silver type solid electrolyte and having stable characteristics at high temperatures, an electrolyte mold for use with the solid electrolyte mold, and a total solid electrochemical element having both of the molds. CONSTITUTION:A solid electrochemical element includes a solid electrolyte sheet 9 containing silver halide-oxygen acid silver type solid electrolyte and polyester resin, positive and negative electrode sheets 7, 8 both having active material and polyester resin, the active material acting as such on silver ion conductive solid electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池または化学センサ
に用いられる固体電解質のシート状などの成形体の内、
その可動イオンが銀イオンである固体電解質成形体およ
び同成形体と共に使用するシート状などの電極成形体な
らびに上記両成形体を使用した全固体電気化学素子に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a sheet-like molded body of a solid electrolyte used for a battery or a chemical sensor,
The present invention relates to a solid electrolyte molded body whose mobile ions are silver ions, a sheet-shaped electrode molded body used together with the molded body, and an all-solid-state electrochemical device using both molded bodies.

【0002】[0002]

【従来の技術】従来より、電池を初めとする電気化学反
応を用いた電気化学素子は、そのほとんどが電解質に液
体を使用しているため、電解質が漏液したり、低温では
凍結し高温では蒸発するなどの問題があるため、使用温
度範囲が限定されていた。こうした問題を解決し信頼性
を高め、また電気化学素子を小型、薄膜化するために、
液体電解質にかえて固体電解質を用い、電気化学素子の
全体を固体化する試みがなされている。
2. Description of the Related Art Conventionally, most electrochemical devices using electrochemical reactions such as batteries use a liquid as an electrolyte, so that the electrolyte may leak or freeze at low temperature and freeze at high temperature. Due to problems such as evaporation, the operating temperature range was limited. In order to solve these problems, improve reliability, and reduce the size and thickness of electrochemical devices,
Attempts have been made to solidify the entire electrochemical device by using a solid electrolyte instead of a liquid electrolyte.

【0003】このような全固体電気化学素子には、全固
体電池、あるいは酸素センサなどの化学センサ、アナロ
グメモリなどがあり、その構成には固体電解質および電
極材料の粉末を加圧成形法によりペレット状とする方
法、あるいは蒸着法により、薄膜状とする方法がある。
蒸着法は加圧成形法に比べてその工程が煩雑であり、コ
スト的にも高いものとなるため、現在主には加圧成形に
よる方法が採られている。
Such an all-solid-state electrochemical element includes an all-solid-state battery, a chemical sensor such as an oxygen sensor, an analog memory, and the like. The structure thereof is a pellet of a powder of a solid electrolyte and an electrode material by a pressure molding method. There is a method of forming a thin film by a method of forming a film or a vapor deposition method.
Since the vapor deposition method has more complicated steps and higher cost than the pressure molding method, the pressure molding method is currently mainly used.

【0004】しかしながら、無機の固体電解質は粉末状
のものであり、加圧成形法により構成されたペレットは
固くて脆いものであるため、電気化学素子の構成中にペ
レットに亀裂が生じたり、割れたりする恐れがあった。
However, since the inorganic solid electrolyte is in powder form and the pellets formed by the pressure molding method are hard and brittle, the pellets may crack or break during the construction of the electrochemical device. I was afraid.

【0005】この問題を解決するために、固体電解質粉
末を合成ゴム等の結着材と混合することにより、固体電
解質及び電極を可撓性のあるシート状に成形し、加工性
を向上させる試みが行なわれている。
In order to solve this problem, the solid electrolyte powder is mixed with a binder such as a synthetic rubber to form the solid electrolyte and the electrode into a flexible sheet shape to improve the workability. Is being carried out.

【0006】しかしながら、固体電解質の内でも化学的
に安定で実用素子への応用が期待されるaAgX−bA
2 O−cMm1n1またはpAgX−qAgMm2
n2(上記のXはI,Br,Clより選ばれた一種類また
は二種類以上の元素:MはW,Mo,Si,V,Cr,
P,Bより選ばれた一種類または二種類以上の元素)で
表されるハロゲン化銀−酸素酸銀よりなる銀イオン導電
性固体電解質は強い酸化力を有しており、シート状など
に成形する際に結着材として用いる樹脂を高温で酸化す
る傾向にある。
However, among solid electrolytes, aAgX-bA is chemically stable and is expected to be applied to practical devices.
g 2 O-cM m1 O n1 or pAgX-qAgM m2 O
n2 (where X is one or more elements selected from I, Br and Cl: M is W, Mo, Si, V, Cr,
The silver ion conductive solid electrolyte consisting of silver halide-silver oxynate represented by one or more elements selected from P and B) has a strong oxidizing power and is formed into a sheet shape or the like. When used, the resin used as the binder tends to oxidize at high temperature.

【0007】例えば、ハロゲン化銀一酵素酸銀系の固体
電解質の一例として4AgI−Ag 2 WO4 で表される
固体電解質の場合には、(化1)に示す反応が起こる。
For example, a silver halide monoenzymatic acid silver-based solid
4AgI-Ag as an example of electrolyte 2WOFourRepresented by
In the case of a solid electrolyte, the reaction shown in (Chemical Formula 1) occurs.

【0008】[0008]

【化1】 [Chemical 1]

【0009】その結果、樹脂が酸化されて結着作用を果
たさなくなるばかりか、固体電解質が分解を起こすため
そのイオン導電性が低下するという問題を有していた。
As a result, there is a problem that not only the resin is not oxidized and the binding action is not fulfilled, but also the solid electrolyte is decomposed so that the ionic conductivity thereof is lowered.

【0010】また、この分解反応では(化1)で表され
るように金属銀が生じる。この金属銀は電子導電性を有
するため、このような固定電解質シートを用い電気化学
素子を構成した場合、素子のリーク電流が増加するとい
う問題があった。
Further, in this decomposition reaction, metallic silver is produced as represented by (Chemical formula 1). Since this metallic silver has electronic conductivity, there is a problem in that when an electrochemical device is constructed using such a fixed electrolyte sheet, the leak current of the device increases.

【0011】また、全固体電気化学素子を構成する際に
用いられる電極には、電気化学反応を起こす反応面積を
大きなものとするため、電極活物質と固体電解質を混合
する手法が採られるが、(化1)によって生じた金属銀
は、銀イオン導電性固体電解質を用いた電気化学素子中
では活物質として働いてしまい、正・負極の容量バラン
スが崩れる結果にもなる。特に、銀イオン導電性固体電
解質を用いた電気化学素子の場合、その電極反応にとも
ない金属銀がデンドライト状に生長し易く、(化1)で
生じた金属銀がその生長の核となり易いため、電気化学
素子を作動させるにつれてデンドライトが生長し、正極
・負極の短絡あるいは電極との電解質間の剥離等が起こ
り易いという問題があった。
Further, in order to increase the reaction area in which an electrochemical reaction occurs, the electrode used when forming the all-solid-state electrochemical device employs a method of mixing an electrode active material and a solid electrolyte. The metallic silver generated by (Chemical Formula 1) acts as an active material in the electrochemical element using the silver ion conductive solid electrolyte, and the capacity balance between the positive and negative electrodes is also destroyed. In particular, in the case of an electrochemical element using a silver ion conductive solid electrolyte, metallic silver easily grows in a dendrite form due to its electrode reaction, and metallic silver generated in (Chemical Formula 1) easily becomes the nucleus of its growth. There has been a problem that dendrite grows as the electrochemical element is operated, and a short circuit between the positive electrode and the negative electrode or separation between the electrode and the electrolyte is likely to occur.

【0012】[0012]

【発明が解決しようとする課題】ハロゲン化銀−酸素酸
銀よりなる銀イオン導電性固体電解質および同電解質と
共に使用する電極ならびに同電解質と同電極を使用した
電気化学素子は、化学的に安定で実用化の期待が大きい
が、問題は強い酸化力があり結着材樹脂の結着作用を低
下させたり、固体電解質を分解してイオン導電性を低下
させる。また分解反応によって生成する金属銀は電気化
学素子のリーク電流を増加させ、活物質として働き、
正,負極の容量バランスを崩す、デンドライトが生じて
正極・負極の短絡または電極と電解質間を剥離させたり
するという点であった。
SUMMARY OF THE INVENTION A silver ion conductive solid electrolyte comprising silver halide-silver oxynate, an electrode used together with the same and an electrochemical device using the same electrolyte and the same electrode are chemically stable. Although it is expected to be put to practical use, the problem is that it has a strong oxidizing power and reduces the binding action of the binder resin, or decomposes the solid electrolyte to reduce ionic conductivity. In addition, metallic silver produced by the decomposition reaction increases the leak current of the electrochemical element and acts as an active material,
The point is that the capacity balance between the positive and negative electrodes is disturbed, dendrites are generated, and the positive and negative electrodes are short-circuited or the electrode and the electrolyte are separated.

【0013】すなわち、銀イオン導電性固体電解質成形
体の問題点は、その強い酸化力と分解により電気伝導度
および電子絶縁性が低下し、同電解質成形体と共に使用
する電極成形体ならびにそれらの両成形体を使用する全
固体電気化学素子は析出する金属銀によって保存後不安
定になるという点であった。
That is, the problem with the silver ion conductive solid electrolyte molded body is that its strong oxidative power and decomposition lower the electrical conductivity and electronic insulation properties, and the electrode molded body used with the electrolyte molded body and both of them. It has been a point that the all-solid-state electrochemical device using the molded body becomes unstable after storage due to the deposited metal silver.

【0014】本発明はこの問題点を解決することを課題
とするものである。
An object of the present invention is to solve this problem.

【0015】[0015]

【課題を解決するための手段】本発明は前記する課題を
達成するために、ハロゲン化銀−酸素酸銀を主体とする
銀イオン導電性固体電解質を用い、同電解質の成形体お
よび同電解質成形体と共に使用する電極成形体に、成形
結着材としてポリエステル樹脂を用いたものである。そ
して上記両成形体を使用して全固体電気化学素子を構成
したものである。
In order to achieve the above-mentioned object, the present invention uses a silver ion conductive solid electrolyte containing silver halide-silver oxynate as a main component, and a molded body of the same electrolyte and the same electrolytic molding. A polyester resin is used as a molding binder in an electrode molded body used together with the body. Then, an all-solid-state electrochemical device is constructed by using both the above-mentioned molded bodies.

【0016】さらに上記ポリエステル樹脂としては線状
飽和ポリエステル樹脂を選択し、またそのガラス転移温
度は50℃以下のポリエステル樹脂を選択して構成した
ものである。
Further, a linear saturated polyester resin is selected as the polyester resin, and a polyester resin having a glass transition temperature of 50 ° C. or less is selected.

【0017】[0017]

【作用】樹脂の合成法にはイオン重合、溶液重合などの
方法があり、例えばイオン重合の場合アルキル金属塩な
どを重合触媒として用いる。アルキル金属塩はブチルリ
チウムなどをはじめ、還元力を持つものが多く、このよ
うな重合触媒が樹脂中に残留することで、高温で酸素酸
銀を還元する性質を持つ。それに対してポリエステル樹
脂は、他の合成ゴムなどの樹脂に比べて重合触媒の残留
の可能性が少なく、酸素酸銀に対して安定な特性を示
し、ハロゲン化銀−酸素酸銀よりなる銀イオン導電性固
体電解質の結着材として用いた場合、安定な性質を示
す。また、ポリエステル樹脂は小さな混合比で高い結着
性を示すため、イオン伝導性を大きく損なうことなくシ
ート状などに加工することができるため好ましいもので
ある。
There are methods of synthesizing the resin, such as ionic polymerization and solution polymerization. In the case of ionic polymerization, for example, an alkyl metal salt is used as a polymerization catalyst. Many of the alkyl metal salts, such as butyl lithium, have a reducing power, and when such a polymerization catalyst remains in the resin, it has a property of reducing silver oxyacid at a high temperature. On the other hand, polyester resin is less likely to leave a polymerization catalyst as compared with other synthetic rubber resins and exhibits stable properties against silver oxyacid, and is a silver ion composed of silver halide-silver oxyacid. When used as a binder for a conductive solid electrolyte, it exhibits stable properties. Further, the polyester resin has a high binding property with a small mixing ratio, and can be processed into a sheet shape or the like without greatly impairing the ion conductivity, which is preferable.

【0018】また、不飽和ポリエステル樹脂の場合、高
温で2重結合の部分が3次元架橋をし硬化してしまい得
られたシートなどの成形体に可撓性がなくなる恐れがあ
る。そのためポリエステル樹脂としては、飽和ポリエス
テル樹脂が好ましい。
In the case of the unsaturated polyester resin, the double-bonded portion is three-dimensionally cross-linked at high temperature and hardened, so that the molded product such as a sheet may lose flexibility. Therefore, the polyester resin is preferably a saturated polyester resin.

【0019】そして、分岐のあるポリエステル樹脂はそ
の重合の過程で3次元架橋をし弾性力を失い易い。その
ため飽和ポリエステル樹脂の内でも線状飽和ポリエステ
ル樹脂が特に好ましい。
The branched polyester resin is apt to lose its elastic force by three-dimensionally crosslinking in the course of its polymerization. Therefore, the linear saturated polyester resin is particularly preferable among the saturated polyester resins.

【0020】さらに、ハロゲン化銀−酸素酸銀よりなる
銀イオン導電性固体電解質は室温付近でも高いイオン導
電性を示す固体電解質で、その使用温度範囲も室温付近
であることが多い。そのため室温でも充分な可撓性を示
すために、前記ポリエステル樹脂としては、ガラス転移
温度が50℃以下であるものが特に好ましいものであ
る。
Further, the silver ion conductive solid electrolyte comprising silver halide-silver oxyacid is a solid electrolyte exhibiting high ionic conductivity even at around room temperature, and its operating temperature range is often around room temperature. Therefore, as the polyester resin, those having a glass transition temperature of 50 ° C. or lower are particularly preferable in order to exhibit sufficient flexibility even at room temperature.

【0021】[0021]

【実施例】以下、本発明について実施例を用いて詳細に
説明する。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0022】(実施例1)ハロゲン化銀−酸素酸銀より
なる銀イオン導電性固体電解質として、4AgI−Ag
2 WO4 で表されるヨウ化銀とタングステン酸銀よりな
る固体電解質を用い、ポリエステル樹脂としては、テレ
フタル酸をはじめとする2塩基酸、エチレングリコール
をはじめとするグリコールをランダム共重合させた線状
飽和ポリエステル樹脂であるバイロン300(東洋紡績
株式会社製、分子量20000〜25000、ガラス転
移温度Tg=7℃)を用い、銀イオン導電性固体電解質
シートを以下の方法で作成した。
Example 1 As a silver ion conductive solid electrolyte composed of silver halide-silver oxynate, 4AgI-Ag was used.
2 WO 4 A solid electrolyte composed of silver iodide and silver tungstate is used, and polyester resin is a line obtained by randomly copolymerizing dibasic acid such as terephthalic acid and glycol such as ethylene glycol. 300, a silver ion conductive solid electrolyte sheet was prepared by the following method using Byron 300 (manufactured by Toyobo Co., Ltd., molecular weight 20000-25000, glass transition temperature Tg = 7 ° C.) which is a saturated polyester resin.

【0023】先ず、線状飽和ポリエステル樹脂であるバ
イロン300をトルエン中にいれ、超音波洗浄器中で溶
解した。
First, Byron 300, which is a linear saturated polyester resin, was put into toluene and dissolved in an ultrasonic cleaner.

【0024】次に4AgI−Ag2 WO4 で表される銀
イオン導電性固体電解質を合成した。AgI,Ag
2 O,WO3 をモル比で4:1:1の比となるように秤
量し、アルミナ乳鉢で混合した。この混合物を加圧成形
しペレット状とした後、パイレックス管中に減圧封入
し、400℃で17時間溶融、反応させた。その反応物
を乳鉢で200メッシュ以下に粉砕し、4AgI・Ag
2 WO4 で表わされる銀イオン導電性の固体電解質を得
た。
Next, a silver ion conductive solid electrolyte represented by 4AgI-Ag 2 WO 4 was synthesized. AgI, Ag
2 O and WO 3 were weighed in a molar ratio of 4: 1: 1 and mixed in an alumina mortar. This mixture was pressure-molded into pellets, which were then sealed under reduced pressure in a Pyrex tube and melted and reacted at 400 ° C. for 17 hours. The reaction product was crushed to 200 mesh or less in a mortar and 4AgI · Ag was added.
A silver ion conductive solid electrolyte represented by 2 WO 4 was obtained.

【0025】このようにして得た固体電解質を、先に得
たポリエステル樹脂のトルエン溶液中に固体電解質に対
してポリエステル樹脂が2.5重量%となるような割合
で加え、乳鉢中で混練し、固体電解質スラリーとした。
The solid electrolyte thus obtained is added to the toluene solution of the polyester resin obtained above in a proportion such that the polyester resin is 2.5% by weight relative to the solid electrolyte, and the mixture is kneaded in a mortar. , A solid electrolyte slurry.

【0026】この固体電解質スラリー中に、ポリエステ
ルメッシュ(200メッシュ、厚さ80μm)を浸漬
し、スラリーより引き上げるとともにスリット幅を15
0μmとしたスキージ中を図1のように通過させた。だ
だし、図1において、1はポリエステルメッシュ、2は
固体電解質スラリー、3はスキージ、4はスラリーを溜
めるためのガラス容器、5はメッシュを引き上げるため
のローラーで、6はガイドである。その後、大気中でト
ルエンを蒸発させ固体電解質シートを得た。
A polyester mesh (200 mesh, thickness 80 μm) was dipped in this solid electrolyte slurry, and the slurry was pulled up from the slurry and the slit width was 15
A squeegee having a thickness of 0 μm was passed through as shown in FIG. However, in FIG. 1, 1 is a polyester mesh, 2 is a solid electrolyte slurry, 3 is a squeegee, 4 is a glass container for storing the slurry, 5 is a roller for pulling up the mesh, and 6 is a guide. Then, toluene was evaporated in the atmosphere to obtain a solid electrolyte sheet.

【0027】この固体電解質シートを10mmφに切断
し、両面に銀箔を圧接し電極として、その電気伝導度
(σ)を交流インピーダンス法で測定した。その結果、
本実施例による固体電解質シートの電気伝導度は室温で
σ=5.2×10-3S/cmであった。
This solid electrolyte sheet was cut into 10 mmφ, and silver foil was pressed on both sides to form electrodes, and the electrical conductivity (σ) was measured by the AC impedance method. as a result,
The electric conductivity of the solid electrolyte sheet according to this example was σ = 5.2 × 10 −3 S / cm at room temperature.

【0028】次に、本実施例による固体電解質シートの
電子絶繰性を以下のようにワグナー分極法により調べ
た。固体電解質シートを10mmφに切断し、片面に銀
箔、もう片面に白金箔を圧接し電極とした。ポテンシオ
スタットにより白金電極がプラスとなるように電圧を印
可し、定常状態で流れる電流を測定した。その結果、
0.5V印可時に流れる電流〔I(V=0.5V)〕は30nA
であった。
Next, the electron sustainability of the solid electrolyte sheet according to this example was examined by the Wagner polarization method as follows. The solid electrolyte sheet was cut into 10 mmφ, and a silver foil was pressed on one side and a platinum foil was pressed on the other side to form an electrode. A voltage was applied by a potentiostat so that the platinum electrode became positive, and the current flowing in a steady state was measured. as a result,
The current [I (V = 0.5V) ] flowing at 0.5V is 30nA
Met.

【0029】次に、本実施例による固体電解質シートの
熱的安定性を調べるために、100℃で48時間保存し
た。その後、10mmφに切断し、上記と同様の方法でそ
の電気伝導度をおよび電子絶縁性を測定した。その結
果、保存後の固体電解質シートの電気伝導度はσ=4.
9×10-3S/cmと保存前に比べてほとんど低下してお
らず、またワグナー法で測定を行った電子絶縁性もI
(V=0.5V)=30nAと低下していなかった。
Next, in order to investigate the thermal stability of the solid electrolyte sheet according to this example, it was stored at 100 ° C. for 48 hours. Then, it was cut into 10 mmφ, and its electrical conductivity and electronic insulation were measured by the same method as described above. As a result, the electric conductivity of the solid electrolyte sheet after storage was σ = 4.
It was 9 × 10 -3 S / cm, which was almost the same as that before storage, and the electronic insulation measured by the Wagner method was I.
(V = 0.5V) = 30 nA, which was not lowered.

【0030】以上のように本発明によると、高温保存に
おいても安定である固体電解質シートが得られることが
判った。
As described above, according to the present invention, it was found that a solid electrolyte sheet which is stable even at high temperature storage can be obtained.

【0031】(比較例1)実施例1で用いた線状ポリエ
ステル樹脂(バイロン300)にかえて、スチレンーブ
タジエンブロック共重合体を用いた以外は実施例1と同
様にして固体電解質シートを得た。
Comparative Example 1 A solid electrolyte sheet was obtained in the same manner as in Example 1 except that a styrene-butadiene block copolymer was used instead of the linear polyester resin (Vylon 300) used in Example 1. It was

【0032】この固体電解質シートの電気伝導度、電子
絶縁性を実施例1と同様の方法で測定したところ、電気
伝導度はσ=5.5×10-3S/cm、ワグナー法で測定
した結果もI(V=0.5V)=40nAであり、実施例1によ
り得られた固体電解質シートとほぼ同等の特性を示し
た。
The electrical conductivity and electronic insulating property of this solid electrolyte sheet were measured by the same method as in Example 1. The electrical conductivity was σ = 5.5 × 10 −3 S / cm, and the Wagner method was used. The result was also I (V = 0.5V) = 40 nA, which was almost the same as that of the solid electrolyte sheet obtained in Example 1.

【0033】この固体電解質シートの高温保存における
安定性を調べるために、実施例1と同様に100℃で4
8時間の保存試験を行った。その後に測定した電気伝導
度、電子絶縁性は、σ=2.3×10-3S/cm、I
(V=0.5V)=160nAであり、電気伝導度が低下すると
ともに、電子絶縁性も低下していた。
In order to investigate the stability of this solid electrolyte sheet at high temperature storage, the same procedure as in Example 1 was performed at 100 ° C. for 4 hours.
An 8-hour storage test was conducted. The electrical conductivity and electronic insulation measured thereafter were σ = 2.3 × 10 −3 S / cm, I
Since (V = 0.5V) = 160 nA, the electric conductivity was lowered and the electronic insulation was also lowered.

【0034】(比較例2)実施例1で用いた線状ポリエ
ステル樹脂(バイロン300)にかえて、ポリスチレン
樹脂を用いた以外は実施例1と同様にして固体電解質シ
ートを得た。
(Comparative Example 2) A solid electrolyte sheet was obtained in the same manner as in Example 1 except that polystyrene resin was used instead of the linear polyester resin (Vylon 300) used in Example 1.

【0035】この固体電解質シートの高温保存における
安定性を実施例1と同様の方法で調べたところ、比較例
1と同様に高温保存により電気伝導度が低下するととも
に、電子絶縁性も低下していた。
The stability of this solid electrolyte sheet in high temperature storage was examined by the same method as in Example 1. As in Comparative Example 1, the high temperature storage showed a decrease in electrical conductivity and a decrease in electronic insulation. It was

【0036】(実施例2)ハロゲン化銀−酸素酸銀より
なる銀イオン導電性固体電解質として、5AgI−3A
2 O−2V2 5 で表されるヨウ化銀とバナジウム酸
銀よりなる固体電解質を用い、線状飽和ポリエステル樹
脂としてはVitel PE−200(グッドイヤー社
製)を用い、銀イオン導電性固体電解質シートを以下の
ようにして作成した。
Example 2 5 AgI-3A as a silver ion conductive solid electrolyte composed of silver halide-silver oxynate.
A solid electrolyte composed of silver iodide represented by g 2 O-2V 2 O 5 and silver vanadate is used, Vitel PE-200 (manufactured by Goodyear) is used as the linear saturated polyester resin, and a silver ion conductive solid is used. The electrolyte sheet was prepared as follows.

【0037】先ず、線状飽和ポリエステル樹脂であるV
itel PE−200をトルエン/メチルエチルケト
ン=8:2に混合した溶媒中にいれ、超音波洗浄器中で
溶解した。
First, V which is a linear saturated polyester resin
Itel PE-200 was put into a solvent mixed with toluene / methyl ethyl ketone = 8: 2, and dissolved in an ultrasonic cleaner.

【0038】次に、5Agl−3Ag2 O−2V2 5
で表わされる銀イオン導電性固体電解質を以下の方法で
合成した。
Next, 5Agl-3Ag 2 O-2V 2 O 5
A silver ion conductive solid electrolyte represented by the following formula was synthesized by the following method.

【0039】Agl、Ag2 O、V2 5 をモル比で
5:3:2の比となるように秤量し、アルミナ乳鉢で混
合した。この混合物をガラス状カーボン坩堝中で、加熱
溶媒、反応させた後、融液を直接液体窒素中に注ぎ込み
急冷した。以上のようにして得られた反応物を乳鉢で2
00メッシュ以下に粉砕し、5Agl−3Ag2 O−2
2 5 で表わされる銀イオン導電性の固体電解質を得
た。
Ag1, Ag 2 O and V 2 O 5 were weighed so that the molar ratio was 5: 3: 2 and mixed in an alumina mortar. This mixture was reacted with a heating solvent in a glassy carbon crucible, and then the melt was directly poured into liquid nitrogen and quenched. The reaction product obtained as described above was placed in a mortar to
00 ground to a mesh or less, 5Agl-3Ag 2 O-2
A silver ion conductive solid electrolyte represented by V 2 O 5 was obtained.

【0040】このようにして得た固体電解質を、先に得
たポリエステル樹脂のトルエン溶液中に固体電解質に対
してポリエステル樹脂が5重量%となるような割合で加
え、乳鉢中で混練し固体電解質スラリーとした。
The solid electrolyte thus obtained was added to the toluene solution of the polyester resin obtained above in a proportion such that the polyester resin was 5% by weight based on the solid electrolyte, and the mixture was kneaded in a mortar to solid electrolyte. It was made into a slurry.

【0041】この固体電解質スラリーを用い、実施例1
と同様にして固体電解質シートを得た。
Using this solid electrolyte slurry, Example 1
A solid electrolyte sheet was obtained in the same manner as.

【0042】この固体電解質シートの電気伝導度、電子
絶縁性を実施例1と同様の方法で測定したところ、電気
伝導度はσ=3.2×10-3S/cm、ワグナー法で測定
した結果もI(V=0.5V)=20nAであった。
The electrical conductivity and electronic insulation of this solid electrolyte sheet were measured by the same method as in Example 1. The electrical conductivity was σ = 3.2 × 10 −3 S / cm, and the Wagner method was used. The result was also I (V = 0.5V) = 20 nA.

【0043】この固体電解質シートの高温保存における
安定性を調べるために、実施例1と同様に100℃で4
8時間の保存試験を行った。その後に測定した電気伝導
度、電子絶縁性は、σ=3.1×10-3S/cm、I
(V=0.5V)=20nAであり、電気伝導度ならびに電子絶
縁性はともに低下していなかった。
In order to investigate the stability of this solid electrolyte sheet in high temperature storage, the same procedure as in Example 1 was performed at 100 ° C. for 4 hours.
An 8-hour storage test was conducted. The electrical conductivity and electronic insulation measured thereafter were σ = 3.1 × 10 −3 S / cm, I
(V = 0.5V) = 20 nA, and neither the electrical conductivity nor the electronic insulating property was lowered.

【0044】以上のように本発明の実施例2によると、
高温保存においても安定である固体電解質シートが得ら
れることが判った。
As described above, according to the second embodiment of the present invention,
It was found that a solid electrolyte sheet that is stable even at high temperature storage can be obtained.

【0045】(実施例3)3AgI−Ag4 SiO4
表わされる銀イオン導電性固定電解質を用いた以外は実
施例1と同様にして銀イオン導電性固定電解質シートを
作成した。
Example 3 A silver ion conductive fixed electrolyte sheet was prepared in the same manner as in Example 1 except that the silver ion conductive fixed electrolyte represented by 3AgI-Ag 4 SiO 4 was used.

【0046】AgI,Ag2 O,SiO2 をモル比で
3:2:1の比となるように秤量し、アルミナ乳鉢で混
合した。この混合物をガラス状カーボン坩堝中で、加熱
溶融、反応させた後、融液を直接液体窒素中に注ぎ込み
急冷し、反応物を乳鉢で200メッシュ以下に粉砕して
3AgI−Ag4 SiO4 で表わされる銀イオン導電性
固体電解質を得た。
AgI, Ag 2 O and SiO 2 were weighed in a molar ratio of 3: 2: 1 and mixed in an alumina mortar. This mixture was heated and melted and reacted in a glassy carbon crucible, and the melt was directly poured into liquid nitrogen and rapidly cooled, and the reaction product was crushed to 200 mesh or less in a mortar and expressed by 3AgI-Ag 4 SiO 4 . A silver ion conductive solid electrolyte was obtained.

【0047】高温保存前後のその電気伝導度ならびに電
子絶縁性を実施例1と同様に評価した。その結果、電気
伝導度ならびに電子絶縁性はともに保存前後で大きな変
化はなく、本発明の実施例3によると、高温保存におい
ても安定である固体電解質シートが得られたことが判っ
た。
The electrical conductivity and electronic insulating property before and after high temperature storage were evaluated in the same manner as in Example 1. As a result, it was found that the electrical conductivity and the electronic insulation did not change significantly before and after storage, and according to Example 3 of the present invention, a solid electrolyte sheet was obtained that was stable even at high temperature storage.

【0048】(実施例4)AgI−Ag2 O−2B2
3 で表わされる銀イオン導電性の固体電解質を用い、ポ
リエステルメッシュにかえてナイロンメッシュを用いた
以外は、実施例2と同様にして銀イオン導電性固体電解
質シートを作成した。
Example 4 AgI-Ag 2 O-2B 2 O
A silver ion conductive solid electrolyte sheet was prepared in the same manner as in Example 2 except that the silver ion conductive solid electrolyte represented by 3 was used and the nylon mesh was used instead of the polyester mesh.

【0049】最初に、AgI,Ag2 O,B2 3 をモ
ル比で1:1:2での比となるように秤量し、アルミナ
乳鉢で混合した。この混合物を石英管中で600℃1時
間溶融、反応させた後、ステンレス板上にキャストし急
冷した。以上のようにして得られた反応物を乳鉢で20
0メッシュ以下に粉砕しAgI−Ag2 O−2B2 3
で表わされる銀イオン導電性の固体電解質を得た。
First, AgI, Ag2O, B2O3The
The alumina to give a ratio of 1: 1: 2.
Mixed in a mortar. This mixture in a quartz tube at 600 ° C for 1 hour
After melting and reacting for a while, cast it on a stainless steel plate and
Chilled The reaction product obtained as described above is placed in a mortar for 20 minutes.
Crushed to 0 mesh or less and AgI-Ag2O-2B2O 3
A silver ion conductive solid electrolyte represented by the following formula was obtained.

【0050】高温保存前後のその電気伝導度ならびに電
子絶縁性を実施例2と同様に評価した。その結果、電気
伝導度ならびに電子絶縁性はともに保存前後で大きな変
化はなく、本発明の実施例4によると、高温保存におい
ても安定である固体電解質シートが得られることが判っ
た。
The electric conductivity and the electronic insulating property before and after high temperature storage were evaluated in the same manner as in Example 2. As a result, it was found that the electrical conductivity and the electronic insulation did not change significantly before and after storage, and that according to Example 4 of the present invention, a solid electrolyte sheet that was stable even at high temperature storage was obtained.

【0051】(実施例5)ポリエステル樹脂の混合割合
を8重量%とした以外は実施例1と同様にして固体電解
質スラリーを作成した。
(Example 5) A solid electrolyte slurry was prepared in the same manner as in Example 1 except that the mixing ratio of the polyester resin was 8% by weight.

【0052】このスラリーをテフロン板上にドクターブ
レード法により100μmの厚さに塗布し、溶媒を蒸発
させた後テフロン板上より剥離し銀イオン導電性固体電
解シートを得た。
This slurry was applied on a Teflon plate by a doctor blade method to a thickness of 100 μm, and after evaporating the solvent, it was peeled off from the Teflon plate to obtain a silver ion conductive solid electrolytic sheet.

【0053】この固体電解質シートを用いて、高温保存
前後の電気伝導度ならびに電子絶縁性を実施例1と同様
に評価した。その結果、電気伝導度ならびに電子絶縁性
はともに保存前後で大きな変化はなく、本発明の実施例
5によると、高温保存においても安定である固体電解質
シートが得られることが判った。
Using this solid electrolyte sheet, the electrical conductivity and electronic insulating property before and after high temperature storage were evaluated in the same manner as in Example 1. As a result, it was found that the electrical conductivity and the electronic insulation did not change significantly before and after storage, and that according to Example 5 of the present invention, a solid electrolyte sheet that was stable even at high temperature storage was obtained.

【0054】(実施例6)ポリエステル樹脂として実施
例1で用いたバイロン300にかえてバイロン290
(東洋紡績製、ガラス転移温度72℃)を用いた以外は
実施例1と同様にして銀イオン導電性固体電解質シート
を作成した。
(Embodiment 6) Byron 290 is used instead of Byron 300 used in Embodiment 1 as a polyester resin.
A silver ion conductive solid electrolyte sheet was prepared in the same manner as in Example 1 except that (manufactured by Toyobo Co., Ltd., glass transition temperature 72 ° C.) was used.

【0055】この固体電解質シートを用いて、高温保存
前後の電気伝導度をならびに電子絶縁性を実施例1と同
様に評価した。その結果、電気伝導度ならびに電子絶縁
性はともに保存前後で大きな変化はなく、本発明の実施
例6によると、高温保存においても安定である固体電解
質シートが得られることが判った。
Using this solid electrolyte sheet, the electrical conductivity before and after high temperature storage and the electronic insulation were evaluated in the same manner as in Example 1. As a result, both electric conductivity and electronic insulation did not change significantly before and after storage, and it was found that Example 6 of the present invention provided a solid electrolyte sheet that was stable even at high temperature storage.

【0056】さらにこの固体電解質シートの可撓性を半
径20mmの曲げ試験により実施例1で得た固体電解質シ
ートとともに室温で行った。その結果、実施例1で得た
固体電解質シートにはひび割れや破断は発生しなかった
が、本実施例による固体電解質シートではひび割れが生
じた。
Further, the flexibility of this solid electrolyte sheet was tested at room temperature together with the solid electrolyte sheet obtained in Example 1 by a bending test with a radius of 20 mm. As a result, the solid electrolyte sheet obtained in Example 1 did not crack or break, but the solid electrolyte sheet according to this Example did.

【0057】(実施例7)電極活物質としてAg0.7
2 5 で表される銀とバナジウム酸化物よりなる複合酸
化物を用い、ハロゲン化銀−酸素酸銀よりなる銀イオン
導電性固体電解質として、実施例1と同様に4AgI−
Ag2 WO4 で表されるヨウ化銀とタングステン酸銀よ
りなる固体電解質を用い、ポリエステル樹脂としては、
実施例1と同様にバイロン300を用い、電極シートを
以下の方法で作成した。
Example 7 Ag 0.7 V as an electrode active material
Using a composite oxide composed of silver and vanadium oxide represented by 2 O 5 , as a silver ion conductive solid electrolyte composed of silver halide-silver oxyacid, as in Example 1, 4 AgI-
A solid electrolyte composed of silver iodide represented by Ag 2 WO 4 and silver tungstate is used, and the polyester resin is
Byron 300 was used in the same manner as in Example 1 to prepare an electrode sheet by the following method.

【0058】先ず、線状飽和ポリエステル樹脂であるバ
イロン300をトルエン中にいれ、超音波洗浄器中で溶
解した。
First, Byron 300, which is a linear saturated polyester resin, was put into toluene and dissolved in an ultrasonic cleaner.

【0059】先ず、電極活物質である銀とバナジウムの
複合酸化物を以下の方法により合成した。V2 5 で表
わされるバナジウム酸化物と金属銀をモル比で1:0.
7となるよう秤量し、乳鉢で混合した。その混合物を同
じくペレット状に加圧成形し、石英管中に減圧封入し、
600℃で48時間反応させ、200メッシュ以下に粉
砕し、Ag0.7 2 5 で表わされる銀とバナジウム酸
化物よりなる複合酸化物を得た。
First, a composite oxide of silver and vanadium, which is an electrode active material, was synthesized by the following method. The molar ratio of vanadium oxide represented by V 2 O 5 and metallic silver is 1: 0.
Weighed to 7 and mixed in a mortar. Similarly, the mixture was pressure-molded into pellets, and the mixture was vacuum-sealed in a quartz tube.
The mixture was reacted at 600 ° C. for 48 hours and pulverized to 200 mesh or less to obtain a composite oxide composed of silver and vanadium oxide represented by Ag 0.7 V 2 O 5 .

【0060】このようにして得た複合酸化物と、実施例
1で得た銀イオン導電性固体電解質を重量比で1:1の
割合で混合し、電極材料を得た。
The composite oxide thus obtained and the silver ion conductive solid electrolyte obtained in Example 1 were mixed at a weight ratio of 1: 1 to obtain an electrode material.

【0061】この電極材料を、先に得たポリエステル樹
脂のトルエン溶液中に固体電解質に対してポリエステル
樹脂が3重量%となるような割合で加え、乳鉢中で混練
し固体電解質スラリーとした。
This electrode material was added to the above-obtained toluene solution of the polyester resin at a ratio such that the polyester resin was 3% by weight with respect to the solid electrolyte, and kneaded in a mortar to obtain a solid electrolyte slurry.

【0062】この固体電解質スラリーを、実施例1と同
様にしてポリエステルメッシュ(200メッシュ、厚さ
80μm)に塗布し、電極シートを得た。この電極シー
トの安定性は、その起電力を測定することにより評価し
た。その詳細を以下に示す。
This solid electrolyte slurry was applied to a polyester mesh (200 mesh, thickness 80 μm) in the same manner as in Example 1 to obtain an electrode sheet. The stability of this electrode sheet was evaluated by measuring its electromotive force. The details are shown below.

【0063】この電極シートを10mmφに切断し、実施
例1で得た固体電解質シートを介して銀箔と圧接し、さ
らに電極シートと銀箔にリード端子をカーボンペースト
によりはりつけ、電気化学素子を組み立てた。この電気
化学素子を用いてエレクトロメータにより電極シートの
起電力を銀箔と電極シートの間の電位差として測定し
た。その結果、本実施例による電極シート起電力は11
4mVであった。
This electrode sheet was cut to a diameter of 10 mm, pressed against a silver foil via the solid electrolyte sheet obtained in Example 1, and lead terminals were attached to the electrode sheet and the silver foil with a carbon paste to assemble an electrochemical element. Using this electrochemical device, the electromotive force of the electrode sheet was measured as the potential difference between the silver foil and the electrode sheet by an electrometer. As a result, the electromotive force of the electrode sheet according to this example was 11
It was 4 mV.

【0064】次に、本実施例による電極シートの熱的安
定性を調べるために、100℃で48時間保存した。そ
の後、10mmφに切断し、上記と同様の方法でその起電
力を測定した。その結果、起電力は112mVを示し、
本発明の実施例7による電極シートは高温の保存におい
てもその起電力が変化していないことが判った。
Next, in order to examine the thermal stability of the electrode sheet according to this example, it was stored at 100 ° C. for 48 hours. After that, it was cut into 10 mmφ and the electromotive force was measured by the same method as described above. As a result, the electromotive force shows 112 mV,
It was found that the electromotive force of the electrode sheet according to Example 7 of the present invention did not change even at high temperature storage.

【0065】以上のように本発明の実施例7によると、
高温保存においても安定である電極シートが得られるこ
とが判った。
As described above, according to the seventh embodiment of the present invention,
It was found that an electrode sheet that is stable even at high temperature storage can be obtained.

【0066】(比較例3)実施例7で用いた線状ポリエ
ステル樹脂(バイロン300)にかえて、スチレンーブ
タジエンブロック共重合体を用いた以外は実施例7と同
様にして電極シートを得た。
Comparative Example 3 An electrode sheet was obtained in the same manner as in Example 7 except that a styrene-butadiene block copolymer was used instead of the linear polyester resin (Vylon 300) used in Example 7. ..

【0067】この電極シートの起電力を実施例7と同様
の方法で測定したところ、110mVであった。
When the electromotive force of this electrode sheet was measured by the same method as in Example 7, it was 110 mV.

【0068】この固体電解質シートの高温保存における
安定性を調べるために、実施例7と同様に100℃で4
8時間の保存試験を行った。その後に測定した電極シー
トの起電力は86mVと低い値を示し、本比較例におけ
る電極シートは高温での保存に対して安定でないことが
判った。
In order to investigate the stability of this solid electrolyte sheet in high temperature storage, the same procedure as in Example 7 was conducted at 100 ° C. for 4 hours.
An 8-hour storage test was conducted. The electromotive force of the electrode sheet measured thereafter showed a low value of 86 mV, and it was found that the electrode sheet in this comparative example was not stable upon storage at high temperatures.

【0069】(実施例8)電極活物質としてAg0.8
2 5 で表される銀とバナジウム酸化物よりなる複合酸
化物を用い、ハロゲン化銀−酸素酸銀よりなる銀イオン
導電性固体電解質として、実施例2と同様に5AgI−
3Ag2 O−2V2 5 で表される固体電解質を用い、
ポリエステル樹脂としては、実施例2と同様にVite
l PE−200を用い、実施例7と同様にして電極シ
ートを作成した。
Example 8 Ag 0.8 V as an electrode active material
A composite oxide composed of silver and vanadium oxide represented by 2 O 5 was used, and as a silver ion conductive solid electrolyte composed of silver halide-silver oxyacid, as in Example 2, 5 AgI-
Using a solid electrolyte represented by 3Ag 2 O-2V 2 O 5 ,
As the polyester resin, as in Example 2, Vite
An electrode sheet was prepared in the same manner as in Example 7 by using PE-200.

【0070】ただし、電極活物質であるAg0.8 2
5 は、出発物質であるV2 5 で表されるバナジウム酸
化物と金属銀をモル比で1:0.8の割合で混合した以
外は実施例7と同様の方法で合成した。また、電極材料
に対するポリエステル樹脂の割合は3.5重量%とし
た。
However, Ag 0.8 V 2 O which is an electrode active material
5 was synthesized in the same manner as in Example 7, except that vanadium oxide represented by V 2 O 5 as a starting material and metallic silver were mixed at a molar ratio of 1: 0.8. The ratio of the polyester resin to the electrode material was 3.5% by weight.

【0071】この電極シートの安定性は、実施例7と同
様にその起電力を測定することにより評価した。その結
果、保存前の起電力は70mVであり、保存後も69m
Vとほとんど変化していなかった。
The stability of this electrode sheet was evaluated by measuring its electromotive force in the same manner as in Example 7. As a result, the electromotive force before storage was 70 mV and 69 m after storage.
It was almost unchanged from V.

【0072】以上のように本発明の実施例8によると、
高温保存においても安定である電極シートが得られるこ
とが判った。
As described above, according to the eighth embodiment of the present invention,
It was found that an electrode sheet that is stable even at high temperature storage can be obtained.

【0073】(実施例9)電極活物質として実施例7で
得たAg0.7 2 5 で表される銀とバナジウム酸化物
よりなる複合酸化物を用い、ハロゲン化銀−酸素酸銀よ
りなる銀イオン導電性固体電解質として、実施例1と同
様に4AgI−Ag2 WO4 で表されるヨウ化銀とタン
グステン酸銀よりなる固体電解質を用い、ポリエステル
樹脂としては、実施例1と同様にバイロン300を用
い、全固体電気化学素子として全固体二次電池を以下の
方法で作成した。
Example 9 A composite oxide composed of Ag 0.7 V 2 O 5 represented by Ag 7 V 2 O 5 and vanadium oxide obtained in Example 7 was used as an electrode active material, and silver halide-silver oxynate was used. As the silver ion conductive solid electrolyte, a solid electrolyte composed of silver iodide and silver tungstate represented by 4AgI-Ag 2 WO 4 was used as in the case of Example 1, and as the polyester resin, byron was used as in the case of Example 1. 300 was used to prepare an all-solid-state secondary battery as an all-solid-state electrochemical device by the following method.

【0074】先ず、実施例1と同様にして銀イオン導電
性固体電解質シートを作成した。次に実施例7と同様に
して電極シートを得た。ただしその際に図1中のスキー
ジ3のスリット間隔を調整し、厚さ100μmの電極シ
ートと厚さ200μmのものを作成した。
First, a silver ion conductive solid electrolyte sheet was prepared in the same manner as in Example 1. Then, an electrode sheet was obtained in the same manner as in Example 7. However, in that case, the slit interval of the squeegee 3 in FIG. 1 was adjusted to prepare an electrode sheet having a thickness of 100 μm and a thickness of 200 μm.

【0075】固体電解質シートの両面にこの2種類の電
極シートを熱圧着し、10mm×10mmに切断の後リード
端子を銀ペーストにより接着し、全固体二次電池を得
た。この断面図を図2に示す。図中、7は厚さ100μ
mの正極電極シート、8は厚さ200μmの負極電極シ
ートである。9は固体電解質シート、10、11は集電
体であるカーボンペースト、12,13はリード端子で
ある。
These two kinds of electrode sheets were thermocompression-bonded to both surfaces of the solid electrolyte sheet, cut into 10 mm × 10 mm, and the lead terminals were adhered with silver paste to obtain an all-solid secondary battery. This sectional view is shown in FIG. In the figure, 7 is 100 μ thick
m is a positive electrode sheet, and 8 is a negative electrode sheet having a thickness of 200 μm. Reference numeral 9 is a solid electrolyte sheet, 10 and 11 are carbon pastes that are current collectors, and 12 and 13 are lead terminals.

【0076】この全固体二次電池を用いて、250mV
から500mVの定電流充放電試験を行った。その結
果、充放電効率はほぼ100%であり、放電容量は43
0μA・hrであった。
Using this all-solid secondary battery, 250 mV
To 500 mV constant current charge / discharge test was performed. As a result, the charge / discharge efficiency was almost 100%, and the discharge capacity was 43%.
It was 0 μA · hr.

【0077】次に、本実施例による全固体二次電池の熱
的安定性を調べるために、100℃で48時間保存し
た。その後、上記と同様の充放電試験を行ったところ、
充放電効率はほぼ100%であり、放電容量は420μ
A・hrであり、高温保存前と同等の性能を示した。ま
た、充放電を繰り返したところ、500サイクル経過後
も特性の劣化はなかった。
Next, in order to examine the thermal stability of the all solid state secondary battery according to this example, it was stored at 100 ° C. for 48 hours. Then, when the same charge and discharge test as above was performed,
Charge / discharge efficiency is almost 100%, discharge capacity is 420μ
It was A · hr, and showed performance equivalent to that before storage at high temperature. Further, when charging and discharging were repeated, there was no deterioration in characteristics even after 500 cycles.

【0078】以上にように本発明の実施例9によると、
高温保存においても安定である全固体電気化学素子が得
られることが判った。
As described above, according to the ninth embodiment of the present invention,
It was found that an all-solid-state electrochemical device that is stable even at high temperature storage can be obtained.

【0079】(比較例4)比較例1で得た固体電解質シ
ートと、比較例3で得た電極シートとを用い、実施例9
と同様にして全固体電気化学素子として全固体二次電池
を作成した。この全固体二次電池を用いて実施例9と同
様に高温保存における安定性を評価した。
(Comparative Example 4) Using the solid electrolyte sheet obtained in Comparative Example 1 and the electrode sheet obtained in Comparative Example 3, Example 9 was used.
An all-solid-state secondary battery was prepared as an all-solid-state electrochemical device in the same manner as in. Using this all-solid-state secondary battery, stability in high temperature storage was evaluated in the same manner as in Example 9.

【0080】その結果、高温保存前では、充放電効率は
ほぼ100%であり、放電容量は420μA・hrと実
施例9とほぼ同等の性能を示した。しかしながら、高温
保存後は充放電効率は93%、放電容量は380μAと
いづれも低下した。また、その後充放電を繰り返すにつ
れ充放電効率は低下した。電池を分解しその原因を探っ
たところ、負極に金属銀の析出が認められ、電解質が樹
脂と反応し金属銀が生じていたことが判った。
As a result, before high-temperature storage, the charge / discharge efficiency was almost 100% and the discharge capacity was 420 μA · hr, which was almost the same as that of Example 9. However, after high temperature storage, the charge / discharge efficiency was 93%, and the discharge capacity was 380 μA, which were all decreased. Further, the charge / discharge efficiency decreased as the charge / discharge was repeated thereafter. When the battery was disassembled and the cause thereof was investigated, deposition of metallic silver was observed on the negative electrode, and it was found that the electrolyte reacted with the resin to produce metallic silver.

【0081】(実施例10)電極活動質として実施例7
で得たAg0.7 2 5 で表される銀とバナジウム酸化
物よりなる複合酸化物を用い、ハロゲン化銀−酸素酸銀
よりなる銀イオン導電性固体電解質として、実施例2と
同様に5AgI−3Ag2 O−2V2 5 で4AgI−
Ag2 WO4 で表される銀イオン導電性固体電解質を用
い、ポリエステル樹脂としては、実施例1と同様に線状
飽和ポリエステル樹脂を用い、全固体電気化学素子とし
て全固体二次電池を以下のようにして作成した。
Example 10 Example 7 as electrode active material
Using a composite oxide composed of Ag 0.7 V 2 O 5 represented by Ag 0.7 V 2 O 5 consisting of silver and vanadium oxide, as a silver ion conductive solid electrolyte composed of silver halide-silver oxyacid, as in Example 2, 5 AgI -3Ag 2 O-2V 2 O 5 with 4AgI-
A silver ion conductive solid electrolyte represented by Ag 2 WO 4 was used, a linear saturated polyester resin was used as the polyester resin in the same manner as in Example 1, and an all-solid secondary battery was used as an all-solid electrochemical element as follows. I made it like this.

【0082】先ず、実施例1と同様にして銀イオン導電
性固体電解質シートを作成した。この固体電解質シート
の片面に実施例7で得た電極スラリーを厚さ50μmの
厚みにスクリーン印刷法で塗布し正極層とした。続いて
固体電解質シートの他の片面に実施例7で得た電極スラ
リーを厚さ100μmの厚みにスクリーン印刷法で塗布
し負極層とした。このようにして両面に電極を形成した
固体電解質シートを減圧中で溶媒を乾燥し、さらに電極
にカーボンペーストを塗布し集電体とした。さらに、こ
の固体電解質シート7mm×7mmの大きさに切断し、リー
ド端子をカーボンペーストより接着し、全固体二次電池
とした。ただし、50μmの厚みに電極スラリーを印刷
した方を正極、100μmの厚みに印刷した方を負極と
している。
First, a silver ion conductive solid electrolyte sheet was prepared in the same manner as in Example 1. The electrode slurry obtained in Example 7 was applied to one surface of this solid electrolyte sheet by screen printing to a thickness of 50 μm to form a positive electrode layer. Subsequently, the other side of the solid electrolyte sheet was coated with the electrode slurry obtained in Example 7 to a thickness of 100 μm by a screen printing method to form a negative electrode layer. The solid electrolyte sheet having electrodes formed on both sides in this way was dried under reduced pressure to remove the solvent, and the electrodes were coated with carbon paste to obtain a current collector. Further, this solid electrolyte sheet was cut into a size of 7 mm × 7 mm, and lead terminals were bonded with a carbon paste to obtain an all solid state secondary battery. However, the electrode slurry having a thickness of 50 μm was printed as a positive electrode, and the electrode slurry having a thickness of 100 μm was used as a negative electrode.

【0083】この全固体二次電池を用いて、250mV
から500mVの定電流充放電試験を行った。その結
果、充放電効率はほぼ100%であり、放電容量は11
0μA・hrであった。
Using this all-solid-state secondary battery, 250 mV
To 500 mV constant current charge / discharge test was performed. As a result, the charge / discharge efficiency was almost 100%, and the discharge capacity was 11%.
It was 0 μA · hr.

【0084】次に、本実施例による全固体二次電池の熱
的安定性を調べるために、100℃48時間保存した。
その後、上記と同様の充放電試験を行ったところ、充放
電効率はほぼ100%であり、放電容量は110μA・
hrであり、高温保存前と同等の性能を示した。また、
充放電を繰り返したところ、500サイクル経過後も特
性の劣化はなかった。
Next, in order to examine the thermal stability of the all-solid secondary battery according to this example, it was stored at 100 ° C. for 48 hours.
After that, when the same charge / discharge test as above was performed, the charge / discharge efficiency was almost 100%, and the discharge capacity was 110 μA.
It was hr and showed the same performance as that before storage at high temperature. Also,
When charging and discharging were repeated, there was no deterioration in characteristics even after 500 cycles.

【0085】以上のように本発明の実施例10による
と、高温保存においても安定である全固体電気化学素子
が得られることが判った。
As described above, according to Example 10 of the present invention, it was found that an all-solid-state electrochemical device which is stable even at high temperature storage can be obtained.

【0086】(実施例11)電極活物質として実施例7
で得たAg0.7 2 5 で表される銀とバナジウム酸化
物よりなる複合酸化物を用い、ハロゲン化銀−酸素酸銀
よりなる銀イオン導電性固体電解質として、実施例1と
同様に4AgI−Ag2 WO4 で表されるヨウ化銀とダ
ングステン酸銀よりなる固体電解質を用い、ポリエステ
ル樹脂としては、実施例1と同様にバイロン300を用
い、全固体電気化学素子として全固体二次電池を以下の
方法で作成した。
Example 11 Example 7 as an electrode active material
Using a composite oxide of Ag 0.7 V 2 O 5 represented by Ag 0.7 V 2 O 5 composed of silver and vanadium oxide as a silver ion conductive solid electrolyte of silver halide-silver oxyacid oxide, 4 AgI -A solid electrolyte composed of silver iodide represented by Ag 2 WO 4 and silver dungstate is used, the polyester resin is Vylon 300 as in Example 1, and an all-solid secondary battery is used as an all-solid electrochemical device. Was created by the following method.

【0087】先ず、実施例1と同様にして銀イオン導電
性固体電解質シートを作成した。次に実施例7と同様の
方法で電極シートを得た。ただしその際に図1中のスキ
ージ3のスリット間隔を調整し、厚さ100μmの電極
シートと厚さ200μmのものを作成した。
First, a silver ion conductive solid electrolyte sheet was prepared in the same manner as in Example 1. Next, an electrode sheet was obtained in the same manner as in Example 7. However, in that case, the slit interval of the squeegee 3 in FIG. 1 was adjusted to prepare an electrode sheet having a thickness of 100 μm and a thickness of 200 μm.

【0088】固体電解質シートの両面にこの2種類の電
極シートを熱圧着し、10mm×10mmに切断の後リード
端子を銀ペーストにより接着し全固体二次電池を得た。
この断面図は実施例9における図2に示した構成と同じ
である。
The two types of electrode sheets were thermocompression bonded to both sides of the solid electrolyte sheet, cut into 10 mm × 10 mm, and the lead terminals were adhered with silver paste to obtain an all solid state secondary battery.
This sectional view is the same as the structure shown in FIG. 2 in the ninth embodiment.

【0089】この全固体二次電池を用いて、250mV
から500mVの定電流充放電試験を行った。その結
果、充放電効率はほぼ100%であり、放電容量は43
0μA・hrであった。
Using this all-solid-state secondary battery, 250 mV
To 500 mV constant current charge / discharge test was performed. As a result, the charge / discharge efficiency was almost 100%, and the discharge capacity was 43%.
It was 0 μA · hr.

【0090】次に、本実施例による全固体二次電池の熱
的安定性を調べるために100℃で48時間保存した。
その後、上記と同様の充放電試験を行ったところ、充放
電効率はほぼ100%であり、放電容量は420μA・
hrであり、高温保存前と同等の性能を示した。また、
充放電を繰り返したところ、500サイクル経過後も特
性の劣化はなかった。
Next, in order to investigate the thermal stability of the all solid state secondary battery according to this example, it was stored at 100 ° C. for 48 hours.
After that, when the same charge / discharge test as above was performed, the charge / discharge efficiency was almost 100%, and the discharge capacity was 420 μA.
It was hr and showed the same performance as that before storage at high temperature. Also,
When charging and discharging were repeated, there was no deterioration in characteristics even after 500 cycles.

【0091】以上のように本発明の実施例11による
と、高温保存においても安定である全固体電気化学素子
が得られることが判った。
As described above, according to Example 11 of the present invention, it was found that an all-solid-state electrochemical device which is stable even at high temperature storage can be obtained.

【0092】(実施例12)電極活物質として実施例7
で得たAg0.7 2 5 で表される銀とバナジウム酸化
物よりなる複合酸化物を用い、ハロゲン化銀−酸素酸銀
よりなる銀イオン導電性固体電解質として、実施例1と
同様に4AgI−Ag2 WO4 で表されるヨウ化銀とダ
ングステン酸銀よりなる固体電解質を用い、ポリエステ
ル樹脂としては、実施例1と同様にバイロン300を用
い、全固体電気化学素子として電気化学アクチューエー
タを以下の方法で作成した。
Example 12 Example 7 as an electrode active material
Using a composite oxide of Ag 0.7 V 2 O 5 represented by Ag 0.7 V 2 O 5 composed of silver and vanadium oxide as a silver ion conductive solid electrolyte of silver halide-silver oxyacid oxide, 4 AgI -A solid electrolyte composed of silver iodide represented by Ag 2 WO 4 and silver dungstate is used, as the polyester resin, Vylon 300 is used as in Example 1, and an electrochemical actuator is used as an all-solid-state electrochemical device. Was created by the following method.

【0093】先ず、実施例1で得た固体電解質スラリー
と、実施例7で得た電極スラリーを減圧下で70℃に加
熱し、溶媒を蒸発させた。この固体電解質とポリエステ
ル樹脂の混合物を200mg、電極材料とポリエステル
樹脂の混合物200mgを秤量し、7mmφで電極材料/
固体電解質/電極材料の3層構造のペレット状に加圧成
形した。このペレットの両端にカーボンペーストにより
リード端子を接着し、電気化学アクチュエータとした。
First, the solid electrolyte slurry obtained in Example 1 and the electrode slurry obtained in Example 7 were heated to 70 ° C. under reduced pressure to evaporate the solvent. 200 mg of the mixture of the solid electrolyte and the polyester resin and 200 mg of the mixture of the electrode material and the polyester resin were weighed, and the electrode material /
The solid electrolyte / electrode material was pressure-molded into a pellet having a three-layer structure. Lead terminals were bonded to both ends of this pellet with a carbon paste to form an electrochemical actuator.

【0094】この電気化学アクチュエータに、±1mA
の電流値で1分間の定電流パルスを印可し、その際のア
クチュエータの長さ変化をレーザー変位計を用いて測定
した。その結果、定電流パルスの印可にともない±0.
6μmの変位が観測された。
In this electrochemical actuator, ± 1 mA
A constant current pulse for 1 minute was applied with the current value of, and the change in the length of the actuator at that time was measured using a laser displacement meter. As a result, with the application of the constant current pulse, ± 0.
A displacement of 6 μm was observed.

【0095】次に、本実施例による全固体二次電池の熱
的安定性を調べるために、100℃で48時間保存し
た。その後、上記と同様の作動試験を行ったところ、保
存前と大きな変化はなく、1000サイクルの作動後も
その特性に変化は現れなかった。
Next, in order to examine the thermal stability of the all-solid secondary battery according to this example, it was stored at 100 ° C. for 48 hours. After that, when an operation test similar to the above was conducted, there was no significant change from that before storage, and no change appeared in the characteristics after 1000 cycles of operation.

【0096】以上のように本発明によると、高温保存に
おいても安定である全固体電気化学素子が得られること
が判った。
As described above, according to the present invention, it was found that an all-solid-state electrochemical device which is stable even at high temperature storage can be obtained.

【0097】(比較例5)実施例12で用いた固体電解
質スラリーと電極スラリーにかえて、比較例1で得た固
体電解質スラリー、と、比較例3で得た電極スラリーを
用いた以外は、実施例12と同様にして全固体電気化学
素子として電気化学アクチュエータを作成した。この電
気化学アクチュエータを用いて実施例12と同様に高温
保存における安定性を評価した。
Comparative Example 5 The solid electrolyte slurry and the electrode slurry used in Example 12 were replaced with the solid electrolyte slurry obtained in Comparative Example 1 and the electrode slurry obtained in Comparative Example 3, respectively. An electrochemical actuator was produced as an all-solid-state electrochemical device in the same manner as in Example 12. Using this electrochemical actuator, stability in high temperature storage was evaluated in the same manner as in Example 12.

【0098】その結果、本比較例におけるアクチュエー
タは、高温保存前では実施例12とほぼ同等の特性を示
したが、高温保存後の作動サイクルにおいては230サ
イクル経過後に作動不能となった。そこでアクチュエー
タを分解しその原因を探ったところ負極に金属銀の析出
が認められ、負極と電解質の間が剥離していることが判
り、電解質が樹脂と反応し金属銀が生じていたことが判
った。
As a result, the actuator in this comparative example showed substantially the same characteristics as in Example 12 before the high temperature storage, but became inoperable after 230 cycles in the operation cycle after the high temperature storage. When the actuator was disassembled and the cause was investigated, metal silver deposition was found on the negative electrode, and it was found that there was separation between the negative electrode and the electrolyte, and it was found that the reaction of the electrolyte with the resin produced metal silver. It was

【0099】なお、本発明の実施例においてはハロゲン
化銀−酸素酸銀系の銀イオン導伝性固体電解質として、
4AgI−Ag2 WO4 ,5AgI−3Ag2 O−2V
2 5 ,3AgI−Ag4 SiO4 ,AgI−Ag2
−2B2 3 で表わされる銀イオン導電性の固体電解質
を用いたものについて説明を行ったが、これら固体電解
質の組成比が異なるもの、AgI−Ag2 O−MoO3
等他の還移金属酸化物や酸素酸銀を含むもの、あるいは
AgI−Ag2 O−WO3 −B2 3 等の4成分系のも
の、AgCI−Ag2 WO4 等のヨウ化銀以外のハロゲ
ン化銀を含むものについても同様の効果が得られること
はいうまでもなく、本発明はこれら実施例に挙げた固体
電解質に限定されるものではない。
In the examples of the present invention, halogen is used.
As a silver ion-conducting solid electrolyte of silver oxide-silver oxyacid system,
4AgI-Ag2WOFour, 5AgI-3Ag2O-2V
2O Five, 3AgI-AgFourSiOFour, AgI-Ag2O
-2B2O3Silver ion conductive solid electrolyte represented by
I explained about the solid electrolytic
With different quality composition ratios, AgI-Ag2O-MoO3
Other transfer metal oxides or those containing silver oxygenate, or
AgI-Ag2O-WO3-B2O34 component system such as
Of AgCI-Ag2WOFourHalogen other than silver iodide
Similar effects can be obtained with silver halide
Needless to say, the present invention includes the solids listed in these examples.
It is not limited to the electrolyte.

【0100】また、本発明の実施例においては電極活物
質としてAg0.7 2 5 あるいはAg0.8 2 5
表される銀とバナジウム酸化物よりなる複合酸化物を用
いた例について説明を行ったが、さらに銀イオン濃度が
異なる複合酸化物やあるいはセレン化銀、セレン化銀−
リン酸銀固溶体、二硫化ニオブ、ヨウ素錯体、金属銀な
ど銀イオン導電性固体電解質に対して活物質として作用
する他の活物質についても同様の効果が得られることは
いうまでもなく、本発明はこれら実施例に挙げた電極活
物質に限定されるものではない。
In the examples of the present invention, an example in which a composite oxide composed of silver and vanadium oxide represented by Ag 0.7 V 2 O 5 or Ag 0.8 V 2 O 5 is used as an electrode active material will be described. It was carried out, but further, a complex oxide having a different silver ion concentration, silver selenide, silver selenide-
It goes without saying that similar effects can be obtained with other active materials such as silver phosphate solid solution, niobium disulfide, iodine complex, and metallic silver that act as active materials with respect to the silver ion conductive solid electrolyte. Is not limited to the electrode active materials listed in these examples.

【0101】また、本発明の実施例においては全固体電
気化学素子として、全固体二次電池あるいは電気化学ア
クチュエータを例に採り説明を行ったが、電量計、セン
サ等の他の全固体電気化学素子についても同様の効果が
得られることはいうまでもなく、本発明はこれら実施例
に挙げた全固体電気化学素子に限定されるものではな
い。
In the embodiments of the present invention, the all-solid-state electrochemical device is described by taking an all-solid secondary battery or an electrochemical actuator as an example. However, other all-solid-state electrochemical devices such as coulometers and sensors are used. Needless to say, the same effects can be obtained for the devices, and the present invention is not limited to the all-solid-state electrochemical devices described in these examples.

【0102】また、本発明の実施例においてはポリエス
テル樹脂とバイロン300,Vitel PE−200
例に採り説明を行ったが、バイロン200(東洋紡績
製)、Vitel PE−207(グッドイヤー社
製)、du Pont Adhesive 46950
(デュポン社製)等の他のポリエステル樹脂についても
同様の効果が得られることはいうまでもなく、本発明は
これら実施例に挙げた全固体電気化学素子に限定される
ものではない。
Further, in the embodiment of the present invention, polyester resin and Byron 300, Vitel PE-200 are used.
As an example, explanations are given, but byron 200 (manufactured by Toyobo), Vitel PE-207 (manufactured by Goodyear), du Pont Adhesive 46950.
Needless to say, the same effect can be obtained with other polyester resins (manufactured by DuPont) and the like, and the present invention is not limited to the all-solid-state electrochemical elements described in these examples.

【0103】[0103]

【発明の効果】以上のように本発明によると、高温でも
安定な銀イオン導電性固体電解質成形体例えばシート状
成形体および同成形体と共に使用する電極成形体ならび
に両成形体を使用する全固体電気化学素子を得ることが
できた。
As described above, according to the present invention, a silver ion conductive solid electrolyte molded body which is stable even at high temperature, for example, a sheet-shaped molded body, an electrode molded body used together with the molded body, and an all solid body using both molded bodies. An electrochemical device could be obtained.

【0104】また、前記ポリエステル樹脂としては、線
状飽和ポリエステル樹脂がより好ましく、そのガラス転
移温度が50℃以下であるものを用いることがよりよい
ものである。
As the polyester resin, a linear saturated polyester resin is more preferable, and one having a glass transition temperature of 50 ° C. or lower is more preferable.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質シートの作成装置の原理図FIG. 1 Principle diagram of a solid electrolyte sheet producing apparatus

【図2】本発明の一実施例による全固体二次電池の断面
FIG. 2 is a sectional view of an all solid state secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ポリエステルメッシュ 2 固体電解質スラリー 3 スキージ 4 ガラス容器 5 ローラー 6 ガイド 7 正極電極シート 8 負極電極シート 9 固体電解質シート 10、11 集電体 12、13 リード端子 1 Polyester Mesh 2 Solid Electrolyte Slurry 3 Squeegee 4 Glass Container 5 Roller 6 Guide 7 Positive Electrode Sheet 8 Negative Electrode Sheet 9 Solid Electrolyte Sheet 10, 11 Current Collector 12, 13 Lead Terminal

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン化銀−酸素酸銀を主体とする銀イ
オン導電性固体電解質と、ポリエステル樹脂を含む固体
電解質成形体。
1. A solid electrolyte molded body containing a silver ion conductive solid electrolyte mainly composed of silver halide-silver oxyacid and a polyester resin.
【請求項2】請求項1におけるハロゲン化銀−酸素酸銀
は一般式aAgX−bAg2 O−cMm1n1で表わさ
れ、式中XはI,Br,Clより選ばれた1種類または
2種類以上のハロゲン元素であり、MはW,Mo,S
i,V,Cr,P,Bよりなる群から選ばれた1種類ま
たは2種類以上の元素であり、a,b,c,m1,n1
夫々係数を示す物質である固体電解質成形体。
2. A silver halide in claim 1 - oxygen silver are represented by the general formula aAgX-bAg 2 O-cM m1 O n1, wherein X is I, Br, 1 kind selected from Cl or Two or more kinds of halogen elements, M is W, Mo, S
A solid electrolyte molded body which is one or more elements selected from the group consisting of i, V, Cr, P and B, and a, b, c, m 1 and n 1 are substances showing respective coefficients. ..
【請求項3】請求項1におけるハロゲン化銀−酸素酸銀
は一般式pAgX−qAgMm22 で表わされ、式中X
はI,Br,Clより選ばれた1種類または2種類以上
のハロゲン元素であり、MはW,Mo,Si,V,C
r,P,Bよりなる群から選ばれた1種類または2種類
以上の元素であり、P、q、m2は夫々係数を示す物質
である固体電解質成形体。
3. A silver halide in claim 1 - oxygen silver are represented by the general formula pAgX-qAgM m2 O 2, wherein X
Is one or more kinds of halogen elements selected from I, Br and Cl, and M is W, Mo, Si, V and C
A solid electrolyte molded body, which is one or more elements selected from the group consisting of r, P, and B, and P, q, and m 2 are substances each showing a coefficient.
【請求項4】ポリエステル樹脂が線状飽和ポリエステル
樹脂である請求項1〜3のいずれかに記載の固体電解質
成形体。
4. The solid electrolyte molded body according to claim 1, wherein the polyester resin is a linear saturated polyester resin.
【請求項5】ポリエステル樹脂は、そのガラス転移温度
が50℃以下である請求項1〜4のいずれかに記載の固
体電解質成形体。
5. The solid electrolyte molded body according to claim 1, wherein the polyester resin has a glass transition temperature of 50 ° C. or lower.
【請求項6】ハロゲン化銀−酸素酸銀を主体とする銀イ
オン導電性固体電解質とポリエステル樹脂を含む固体電
解質成形体に組み合わされ、かつ前記固体電解質に対し
て活物質として作用する電極活物質とポリエステル樹脂
とを有する電極成形体。
6. An electrode active material which is combined with a solid electrolyte molded body containing a silver ion conductive solid electrolyte mainly composed of silver halide-silver oxyacid and a polyester resin, and which acts as an active material on the solid electrolyte. And an electrode molded body containing a polyester resin.
【請求項7】請求項6における電極活物質は銀酸化物と
他の金属酸化物との複合酸化物を主体とする物質である
電極成形体。
7. The electrode molded body according to claim 6, wherein the electrode active material is a material mainly composed of a composite oxide of silver oxide and another metal oxide.
【請求項8】固体電解質中のポリエステル樹脂と、電極
成形体中のポリエステル樹脂の一方または両方の樹脂
が、線状飽和ポリエステル樹脂である請求項6または7
記載の電極成形体。
8. The polyester resin in the solid electrolyte and / or the polyester resin in the electrode molded body is a linear saturated polyester resin.
The electrode molding described.
【請求項9】固体電解質中のポリエステル樹脂と、電極
成形体中のポリエステル樹脂の一方または両方の樹脂
が、そのガラス転移温度が50℃以下である請求項6〜
8のいずれかに記載の電極成形体。
9. The glass transition temperature of the polyester resin in the solid electrolyte and / or one or both of the polyester resins in the electrode molded body is 50 ° C. or lower.
8. The electrode molded body according to any one of 8.
【請求項10】ハロゲン化銀−酸素酸銀を主体とする銀
イオン導電性固体電解質とポリエステル樹脂を含む固体
電解質成形体と、同電解質に対して活物質として作用す
る電極活物質とポリエステル樹脂とを有する電極成形体
との両成形体を備えた全固体電気化学素子。
10. A solid electrolyte molded body containing a silver ion conductive solid electrolyte mainly composed of silver halide-silver oxyacid and a polyester resin, and an electrode active material and a polyester resin which act as an active material for the electrolyte. An all-solid-state electrochemical device provided with both an electrode molded body having and.
【請求項11】固体電解質成形体中のポリエステル樹脂
と、電極成形体中のポリエステル樹脂の一方または両方
の樹脂が、線状飽和ポリエステル樹脂である請求項10
記載の全固体電気化学素子。
11. The polyester resin in the solid electrolyte molded body and one or both of the polyester resins in the electrode molded body are linear saturated polyester resins.
The all-solid-state electrochemical device described.
【請求項12】固体電解質成形体中のポリエステル樹脂
と、電極成形体中のポリエステル樹脂の一方または両方
の樹脂は、そのガラス転移温度が50℃以下である請求
項10または11記載の全固体電気化学素子。
12. The all-solid-state electricity according to claim 10, wherein one or both of the polyester resin in the solid electrolyte molded body and the polyester resin in the electrode molded body has a glass transition temperature of 50 ° C. or lower. Chemical element.
JP3331977A 1991-12-16 1991-12-16 Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold Pending JPH05166552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331977A JPH05166552A (en) 1991-12-16 1991-12-16 Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331977A JPH05166552A (en) 1991-12-16 1991-12-16 Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold

Publications (1)

Publication Number Publication Date
JPH05166552A true JPH05166552A (en) 1993-07-02

Family

ID=18249768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331977A Pending JPH05166552A (en) 1991-12-16 1991-12-16 Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold

Country Status (1)

Country Link
JP (1) JPH05166552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976975B2 (en) 2006-09-05 2011-07-12 Seiko Epson Corporation Battery device and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976975B2 (en) 2006-09-05 2011-07-12 Seiko Epson Corporation Battery device and electronic apparatus

Similar Documents

Publication Publication Date Title
TWI363443B (en) Lithium ion conductive solid electrolyte and a method for manufacturing the same
US6805999B2 (en) Buried anode lithium thin film battery and process for forming the same
CA2016517C (en) Solid state electrochemical cell having microroughened current collector
JP5122063B2 (en) Lithium ion secondary battery and solid electrolyte
KR101945968B1 (en) High Capacity Solid State Composite Cathode, Solid State Composite Separator, Solid-State Rechargeable Lithium Battery and Methods of Making Same
JP5382573B2 (en) Lithium air battery
US20090197178A1 (en) Manufacture of lithium ion secondary battery
KR102368951B1 (en) Solid electrolyte composition, method of forming the same, and method of forming all-solid-state batteries using the same
JP2002505506A (en) Ion conductive matrix and use thereof
JPH01195676A (en) Solid lithium cell
JPS59226472A (en) Thin film lithium battery
JP2004335455A (en) Solid electrolyte and all solid battery containing it
JP3623050B2 (en) Polymer electrolytes and electrochemical devices
Soga et al. Ambient air operation rechargeable lithium-air battery with acetic acid catholyte
JPH04267055A (en) Solid electrode composition
JP4191260B2 (en) Material for anode based on titanium oxysulfide for electrochemical generator and method for producing the same
Tamainato et al. Composite Polymer Electrolytes for Lithium Batteries
JP2760090B2 (en) Solid electrolyte
JP2002093416A (en) Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JPH05166552A (en) Solid electrolyte mold and its electrode mold and total solid electrochemical element equipped with both mold
JP2002042876A (en) Lithium battery
JP2000124085A (en) Electrode material for energy-storing element and manufacture thereof
Sekido Solid state micro power sources
JPH04267056A (en) Solid electrode composition
JPH04272654A (en) Composition of solid electrode