JPH05165495A - Noise suppressing device - Google Patents

Noise suppressing device

Info

Publication number
JPH05165495A
JPH05165495A JP3328568A JP32856891A JPH05165495A JP H05165495 A JPH05165495 A JP H05165495A JP 3328568 A JP3328568 A JP 3328568A JP 32856891 A JP32856891 A JP 32856891A JP H05165495 A JPH05165495 A JP H05165495A
Authority
JP
Japan
Prior art keywords
noise
power spectrum
impulse response
output
wiener filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3328568A
Other languages
Japanese (ja)
Other versions
JP3010864B2 (en
Inventor
Takeo Kanamori
丈郎 金森
Hiromoto Furukawa
博基 古川
Satoru Ibaraki
悟 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3328568A priority Critical patent/JP3010864B2/en
Publication of JPH05165495A publication Critical patent/JPH05165495A/en
Application granted granted Critical
Publication of JP3010864B2 publication Critical patent/JP3010864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the quality of processing sounds at the noise suppressing device to suppress a noise component from an acoustic signal mixing constant noise into a required signal. CONSTITUTION:A Wiener filter estimating means 8 estimates a Wiener filter transmission function from the estimated values of an input signal power spectrum and a noise power spectrum, a filter transmission function correcting means 9 sets the value of the frequency component of the Wiener filter transmission function smaller than a threshold value equally to the threshold value so as to prevent a signal component from being missed by adding/subtracting the noise component, an impulse response control means 11 provides a time constant in an impulse response intermittently outputted from an inverse FFT 10 for every (m) sample cycles so as to prevent foreign sounds from being generated in the processing sounds by continuous changes for every samples, and a high frequency emphasizing means 3 is provided in the preceding step of the FFT 5 so as to improve accuracy for calculating a high frequency band when calculating the fixed decimal of a finite word length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は音響信号に定常的な雑音
が混入した信号から雑音成分を抑圧する雑音抑圧装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a noise suppressing device for suppressing a noise component from a signal in which stationary noise is mixed in an acoustic signal.

【0002】[0002]

【従来の技術】以下図面を参照しながら、従来の雑音抑
圧装置の一例について説明する。(図2)は従来の雑音
抑圧装置のブロック図を示すものである。(図2)にお
いて、1はA/D変換器である。2はシフトレジスタ
で、A/D変換器1からの出力信号の過去Nサンプル分
を保持する。4は雑音区間検出手段で、シフトレジスタ
2の後段に設けられ現在の信号が雑音成分のみか否かを
判定する。5はFFTで、シフトレジスタ2の後段に設
けられ、時系列信号を周波数スペクトルに変換する。6
はパワスペクトル変換手段で、FFT5の出力信号をパ
ワスペクトルに変換する。7は雑音パワスペクトル推定
手段で、雑音区間検出手段4とパワスペクトル変換手段
6からの出力信号を入力として雑音パワスペクトルを推
定する。8はウィナーフィルタ推定手段で、パワスペク
トル変換手段6と雑音パワスペクトル推定手段7からの
出力信号を入力としてウィナーフィルタの伝達関数を推
定する。10は逆FFTで、ウィナーフィルタ推定手段
8の後段に設けられウィナーフィルタのインパルス応答
を出力する。12は畳み込み演算手段で、シフトレジス
タ2及び逆FFT10からの信号について畳み込み演算
を行う。13はD/A変換器で、畳み込み演算手段12
の後段に設けられディジタル信号をアナログ信号に変換
する。
2. Description of the Related Art An example of a conventional noise suppressor will be described below with reference to the drawings. (FIG. 2) is a block diagram of a conventional noise suppression device. In FIG. 2, 1 is an A / D converter. A shift register 2 holds the past N samples of the output signal from the A / D converter 1. Reference numeral 4 denotes a noise section detection means, which is provided in the subsequent stage of the shift register 2 and determines whether or not the current signal is only a noise component. Reference numeral 5 denotes an FFT, which is provided at the subsequent stage of the shift register 2 and converts a time series signal into a frequency spectrum. 6
Is a power spectrum conversion means for converting the output signal of the FFT 5 into a power spectrum. Reference numeral 7 is a noise power spectrum estimation means, which estimates the noise power spectrum using the output signals from the noise section detection means 4 and the power spectrum conversion means 6 as inputs. Reference numeral 8 is a Wiener filter estimation means, which estimates the transfer function of the Wiener filter using the output signals from the power spectrum conversion means 6 and the noise power spectrum estimation means 7 as inputs. An inverse FFT 10 is provided after the Wiener filter estimator 8 and outputs the impulse response of the Wiener filter. Reference numeral 12 is a convolution operation means, which performs a convolution operation on the signals from the shift register 2 and the inverse FFT 10. Reference numeral 13 denotes a D / A converter, which is a convolution operation means 12
It is provided in the subsequent stage and converts a digital signal into an analog signal.

【0003】ウィナーフィルタは信号の過去の観測値に
基づいて、信号の未来の値を予測したり、雑音に埋もれ
た信号を抽出するときに用いられるフィルタで(例え
ば、「片山徹:応用カルマンフィルタ,朝倉書店,P.57
〜P.70」参照)、従来例の雑音抑圧装置はFFTを利用
して信号のパワスペクトルから前記した雑音を抑圧する
ウィナーフィルタのインパルス応答を推定し、推定した
インパルス応答を入力信号に畳み込むことでフィルタリ
ングを行い雑音を抑圧している。
The Wiener filter is a filter used for predicting a future value of a signal or extracting a signal buried in noise based on a past observed value of the signal (for example, "Toru Katayama: Applied Kalman filter, Asakura Shoten, P.57
~ P.70)), the conventional noise suppressor uses the FFT to estimate the impulse response of the Wiener filter that suppresses the noise from the power spectrum of the signal, and convolves the estimated impulse response with the input signal. Noise is suppressed by filtering with.

【0004】まず、A/D変換器1で入力信号がディジ
タル値に変換され、入力信号はレジスタ長Nのシフトレ
ジスタ2にN個の時系列データx(n) として蓄えられ
る。雑音区間検出手段4では信号レベルや信号の周期性
や信号スペクトルの形状が調べられて、シフトレジスタ
2に貯えられている時系列データx(n) が定常的な雑音
成分のみであるか否かが検出される。FFT5ではシフ
トレジスタ2に貯えられた時系列データのうち時間の新
しいデータからM個のデータに対しフーリエ変換が行わ
れ、データ数Mの複素スペクトルが出力される(ただ
し、M≦N)。パワスペクトル変換手段6ではFFT5
から出力される複素スペクトルのパワスペクトルX(ω)
が求められる。雑音パワスペクトル推定手段7では雑音
区間検出手段4で入力信号が雑音成分のみであると検出
された場合のパワスペクトル変換手段6からの出力X
(ω)を平均化することで推定雑音スペクトルN(ω)が求
められる。ウィナーフィルタ推定手段8ではパワスペク
トル変換手段6からの出力信号である入力信号のパワス
ペクトルX(ω)と雑音パワスペクトル推定手段7からの
出力信号である平均的な雑音パワスペクトルN(ω)から
ウィナーフィルタの伝達関数W(ω)が求められる。入力
信号の信号成分と雑音成分のパワスペクトルをそれそれ
0(ω)とN0(ω)としたとき、ウィナーフィルタは一般
に(数1)で与えられる(例えば、「片山徹:応用カル
マンフィルタ,朝倉書店,P.60,式(4.19)」)。
First, the A / D converter 1 converts the input signal into a digital value, and the input signal is stored in the shift register 2 having a register length N as N time-series data x (n). The noise section detecting means 4 examines the signal level, the periodicity of the signal, and the shape of the signal spectrum, and determines whether the time series data x (n) stored in the shift register 2 is only a stationary noise component. Is detected. In the FFT 5, the Fourier transform is performed on the M pieces of data from the newest data of the time series data stored in the shift register 2 and a complex spectrum of the number of data M is output (where M ≦ N). In the power spectrum conversion means 6, FFT5
Power spectrum X (ω) of the complex spectrum output from
Is required. The noise power spectrum estimating means 7 outputs X from the power spectrum converting means 6 when the noise section detecting means 4 detects that the input signal is a noise component only.
The estimated noise spectrum N (ω) is obtained by averaging (ω). In the Wiener filter estimation means 8, from the power spectrum X (ω) of the input signal which is the output signal from the power spectrum conversion means 6 and the average noise power spectrum N (ω) which is the output signal from the noise power spectrum estimation means 7. The transfer function W (ω) of the Wiener filter is obtained. When the power spectra of the signal component and the noise component of the input signal are S 0 (ω) and N 0 (ω), the Wiener filter is generally given by (Equation 1) (for example, “Toru Katayama: Applied Kalman filter, Asakura Shoten, P.60, Formula (4.19) ”).

【0005】[0005]

【数1】 [Equation 1]

【0006】ここで、実際には入力信号から得ることが
できる情報は、入力信号パワスペクトルX(ω)(=S
0(ω)+N0(ω))と推定雑音スペクトルN(ω)(m20
(ω))であるため、(数1)は近似的に(数2)で求め
られる。
Here, the information that can be actually obtained from the input signal is the input signal power spectrum X (ω) (= S
0 (ω) + N 0 (ω)) and the estimated noise spectrum N (ω) (m 2 N 0
Since (ω)), (Equation 1) is approximately obtained by (Equation 2).

【0007】[0007]

【数2】 [Equation 2]

【0008】ただし、βは雑音の抑圧量を制御するため
の定数で0<βである。雑音パワスペクトルN(ω)が時
刻毎に正確に求めることができる場合,β=1とすれば
最適なウィナーフィルタW(ω)が得られるが、実際の音
響信号に含まれる雑音成分は非定常である一方、推定雑
音パワスペクトルN(ω)は長時間平均による代表値であ
るのでN(ω)は常に正確であるとはいえず、雑音の性質
や装置の用途によって適切なβの値が選択される。例え
ば、信号成分が音声であればβを大きくすれば雑音抑圧
効果は大きくなるが音声明瞭度の低下も大きくなり、雑
音抑圧量と音声明瞭度の関係で明瞭度が重視されるよう
な場合はβは小さめに設定される。逆FFT10ではウ
ィナーフィルタ伝達関数W(ω)の逆フーリエ変換が行わ
れ,ウィナーフィルタのインパルス応答h(n) が求めら
れる。畳み込み演算手段12ではインパルス応答h(n)
とシフトレジスタ2に蓄えられた入力時系列信号x(n)
との畳み込み演算が行われD/A変換器13に出力さ
れ、アナログ信号に変換される。
However, β is a constant for controlling the amount of noise suppression and 0 <β. When the noise power spectrum N (ω) can be accurately obtained at each time, if β = 1, the optimal Wiener filter W (ω) is obtained, but the noise component included in the actual acoustic signal is non-stationary. On the other hand, since the estimated noise power spectrum N (ω) is a representative value obtained by averaging over a long period of time, it cannot be said that N (ω) is always accurate. To be selected. For example, if the signal component is voice, increasing β increases the noise suppression effect but also decreases the voice intelligibility, and in the case where the intelligibility is emphasized in the relationship between the noise suppression amount and the voice intelligibility, β is set small. In the inverse FFT 10, the inverse Fourier transform of the Wiener filter transfer function W (ω) is performed, and the impulse response h (n) of the Wiener filter is obtained. In the convolution operation means 12, the impulse response h (n)
And the input time series signal x (n) stored in the shift register 2
And a convolution operation is performed and the result is output to the D / A converter 13 and converted into an analog signal.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、最適なウィナーフィルタの特性は信号成
分と雑音成分のスペクトルの変化に従って時々刻々変化
していくため、インパルス応答h(n) はサンプリング周
期毎に更新されることが望ましい.しかしながら、ウィ
ナーフィルタのインパルス応答h(n) を求めるための雑
音検出手段4から、FFT5、パワスペクトル変換手段
6、雑音パワスペクトル推定手段7、ウィナーフィルタ
推定手段8、逆FFT10までの処理は1サンプル周期
に比べかなり長い演算時間を要し、現状の実時間処理で
は数十サンプルに一度の割合でしかインパルス応答h
(n)を更新することができないので、インパルス応答h
(n) の変化時点での変化量が大きくなり信号波形に歪を
与え、結果として処理音に異音が発生するという問題点
や、雑音成分に非定常性がある場合には雑音パワスペク
トルN(ω)の推定誤差が大きくなるためインパルス応答
h(n) の誤差も増大して処理音の異音がさらに大きくな
るという問題点を有していた。
However, in the above-mentioned configuration, the optimum Wiener filter characteristics change from moment to moment in accordance with changes in the spectrum of the signal component and the noise component, so that the impulse response h (n) is sampled. It is desirable to be updated every cycle. However, the process from the noise detection means 4 for obtaining the impulse response h (n) of the Wiener filter to the FFT 5, the power spectrum conversion means 6, the noise power spectrum estimation means 7, the Wiener filter estimation means 8 and the inverse FFT 10 is one sample. The calculation time is considerably longer than the cycle, and in the current real-time processing, the impulse response h
Since (n) cannot be updated, impulse response h
When the change amount of (n) becomes large, the signal waveform is distorted, resulting in abnormal noise in the processed sound, and when the noise component has non-stationarity, the noise power spectrum N Since the estimation error of (ω) becomes large, the error of the impulse response h (n) also increases, and the abnormal noise of the processed sound becomes larger.

【0010】本発明は上記問題点に鑑み、処理後の信号
に異音が発生しない品質のよい処理音を得る雑音抑圧装
置を提供するものである。
In view of the above-mentioned problems, the present invention provides a noise suppression apparatus for obtaining a processed sound of high quality in which no abnormal noise is generated in a processed signal.

【0011】[0011]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の雑音抑圧装置は、入力信号をディジタル信
号に変換するA/D変換器と、前記A/D変換器からの
出力信号の過去Nサンプル分を保持するシフトレジスタ
と、前記シフトレジスタに保持されている時系列データ
から入力信号が雑音区間であるか否かを判定する雑音区
間検出手段と、前記シフトレジスタに保持される時系列
データの周波数スペクトルを求めるFFTと、前記FF
Tの出力をパワスペクトルに変換するパワスペクトル変
換手段と、前記パワスペクトル変換手段と前記雑音区間
検出手段からの出力信号を入力として雑音パワスペクト
ルを推定する雑音パワスペクトル推定手段と、前記パワ
スペクトル変換手段と前記雑音パワスペクトル推定手段
からの出力信号を入力としてウィナーフィルタ伝達関数
を推定するウィナーフィルタ推定手段と、前記ウィナー
フィルタ推定手段の出力から逆フーリエ変換によりイン
パルス応答を求める逆FFTと、前記逆FFTからのイ
ンパルス応答出力の時間的な変化に対して時定数をもっ
て変化するインパルス応答を出力するインパルス応答制
御手段と、前記シフトレジスタの時系列データと前記イ
ンパルス応答制御手段からの出力との畳み込み演算を行
う畳み込み演算手段と、前記畳み込み演算手段の出力を
アナログ信号に変換するD/A変換器とを備えるたもの
である。
In order to solve the above problems, a noise suppressing device of the present invention is an A / D converter for converting an input signal into a digital signal, and an output signal from the A / D converter. Of the past N samples, noise section detection means for judging whether or not the input signal is in the noise section from the time series data held in the shift register, and held in the shift register. An FFT for obtaining a frequency spectrum of time series data, and the FF
Power spectrum conversion means for converting the output of T into a power spectrum; noise power spectrum estimation means for estimating a noise power spectrum using the output signals from the power spectrum conversion means and the noise section detection means as inputs; and the power spectrum conversion. Means and an output signal from the noise power spectrum estimating means as an input, a Wiener filter estimating means for estimating a Wiener filter transfer function, an inverse FFT for obtaining an impulse response from the output of the Wiener filter estimating means by an inverse Fourier transform, and the inverse Impulse response control means for outputting an impulse response that changes with a time constant with respect to the temporal change of the impulse response output from the FFT, and convolution operation of the time series data of the shift register and the output from the impulse response control means. A convolution operator When the output of the convolution arithmetic means is obtained and a D / A converter for converting the analog signal.

【0012】[0012]

【作用】本発明は上記した構成によって、インパルス応
答制御手段の時定数を適切に選択することにより、断続
的に大きな変化量で変化していたウィナーフィルタのイ
ンパルス応答が毎サンプル連続的に変化するようにな
り、処理後の信号の不連続性がなくなり異音が発生しな
くなる。また、逆FFTから出力されたインパルス応答
に大きな推定誤差があった場合でも前後のいくつかのイ
ンパルス応答がほぼ正しく推定されていれば、時定数に
応じた平滑化効果により処理音の品質劣化を緩和するこ
ととなる。
According to the present invention, by properly selecting the time constant of the impulse response control means, the impulse response of the Wiener filter, which has been intermittently changed by a large amount of change, continuously changes every sample. As a result, the discontinuity of the processed signal disappears and abnormal noise does not occur. Further, even if there is a large estimation error in the impulse response output from the inverse FFT, if some preceding and following impulse responses are estimated almost correctly, the smoothing effect according to the time constant may cause deterioration in the quality of the processed sound. It will be alleviated.

【0013】[0013]

【実施例】以下本発明の一実施例の雑音抑圧装置につい
て、図面を参照しながら説明する。(図1)は本発明の
一実施例における雑音抑圧装置のブロック図を示すもの
である。(図1)において、A/D変換器1とシフトレ
ジスタ2は前記した従来例の雑音抑圧装置と同様であ
る。3は高域強調手段で、シフトレジスタ2に蓄えられ
た時系列データの高域成分を強調する。4は雑音区間検
出手段で、高域強調手段3の後段に設けられ現在の信号
が雑音成分のみか否かを判定する。5はFFTで、高域
強調手段3の後段に設けられ、時系列信号を周波数スペ
クトルに変換する。パワスペクトル変換手段6と雑音パ
ワスペクトル推定手段7とウィナーフィルタ推定手段8
は前記した従来例の雑音抑圧装置と同様である。9はフ
ィルタ伝達関数補正手段で、ウィナーフィルタ推定手段
8の後段に設けられ、ウィナーフィルタ伝達関数の振幅
値が閾値αより小さい周波数成分について振幅値を閾値
αに設定する。10は逆FFTで、フィルタ伝達関数補
正手段9の後段に設けられ、ウィナーフィルタのインパ
ルス応答を出力する。11はインパルス応答制御手段
で、逆FFT10から出力されたインパルス応答に対し
て時定数をもって追随するようにインパルス応答を制御
する。12は畳み込み演算手段で、インパルス応答制御
手段11からのウィナーフィルタのインパルス応答とシ
フトレジスタ2に蓄えられた入力信号の時系列データと
の畳み込み演算を行う。13はD/A変換器で畳み込み
演算手段12の出力信号をアナログに変換する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A noise suppressing device according to an embodiment of the present invention will be described below with reference to the drawings. (FIG. 1) is a block diagram of a noise suppressing apparatus according to an embodiment of the present invention. In FIG. 1, the A / D converter 1 and the shift register 2 are the same as those of the conventional noise suppression device described above. Reference numeral 3 denotes a high frequency emphasizing means for emphasizing the high frequency component of the time series data stored in the shift register 2. Reference numeral 4 denotes a noise section detecting means, which is provided after the high frequency emphasizing means 3 and determines whether or not the current signal is only a noise component. Reference numeral 5 denotes an FFT, which is provided after the high frequency emphasizing means 3 and converts the time series signal into a frequency spectrum. Power spectrum converting means 6, noise power spectrum estimating means 7 and Wiener filter estimating means 8
Is similar to the above-described conventional noise suppression device. Reference numeral 9 denotes a filter transfer function correction means, which is provided at the latter stage of the Wiener filter estimation means 8 and sets the amplitude value to the threshold value α for the frequency component whose amplitude value of the Wiener filter transfer function is smaller than the threshold value α. An inverse FFT 10 is provided after the filter transfer function correcting means 9 and outputs the impulse response of the Wiener filter. An impulse response control unit 11 controls the impulse response so as to follow the impulse response output from the inverse FFT 10 with a time constant. Reference numeral 12 denotes a convolution operation means, which performs a convolution operation on the impulse response of the Wiener filter from the impulse response control means 11 and the time series data of the input signal stored in the shift register 2. A D / A converter 13 converts the output signal of the convolution operation means 12 into analog.

【0014】以上のように構成された雑音抑圧装置につ
いて、以下(図1)を用いてその動作を説明する。(図
1)において、A/D変換器1とシフトレジスタ2は前
記した従来例の雑音抑圧装置と同様の動作をする。高域
強調手段3は、シフトレジスタ2に蓄えられたN個の時
系列データのうち最新のものからM個のデータについて
高音域を強調して、M個のデータ列を出力する。前記し
た高域強調手段3は、本実施例が固定小数点の演算で実
施されるとき、一般に音響信号のスペクトルが高域側が
下がったスペクトル傾斜を持つために、パワスペクトル
やフィルタ伝達関数を求めるための演算中に振幅の小さ
い高域成分が切り捨てられ、十分な演算精度が得られな
いという問題を解決するために設けている。ただし、高
域強調手段3の周波数特性をC(ω)とすればウィナーフ
ィルタ伝達関数W(ω)は(数3)の様になり、分子と分
母のC(ω)がお互いに相殺し合うのでW(ω)には影響し
ない。
The operation of the noise suppressor configured as above will be described below (FIG. 1). In FIG. 1, the A / D converter 1 and the shift register 2 operate similarly to the above-described conventional noise suppression device. The high-frequency emphasis unit 3 emphasizes the high-frequency range of the latest M data among the N time-series data stored in the shift register 2 and outputs M data strings. When the present embodiment is implemented by fixed point arithmetic, the high-frequency emphasizing means 3 described above generally obtains a power spectrum and a filter transfer function because the spectrum of the acoustic signal generally has a spectrum inclination in which the high frequency side is lowered. This is provided in order to solve the problem that a high-frequency component having a small amplitude is cut off during the calculation of, and a sufficient calculation accuracy cannot be obtained. However, if the frequency characteristic of the high-frequency emphasizing means 3 is C (ω), the Wiener filter transfer function W (ω) becomes as in (Equation 3), and the numerator and denominator C (ω) cancel each other out. Therefore, it does not affect W (ω).

【0015】[0015]

【数3】 [Equation 3]

【0016】雑音区間検出手段4とFFT5とパワスペ
クトル変換手段6と雑音パワスペクトル推定手段7とウ
ィナーフィルタ推定手段8は前記した従来例の雑音抑圧
装置と同様の動作をする。フィルタ伝達関数補正手段9
は、ウィナーフィルタ推定手段8からの出力であるウィ
ナーフィルタ伝達関数W(ω)の振幅値が(数4)を満た
すような閾値αより小さい周波数成分に対して、(数
5)のように振幅値を制限する。
The noise section detecting means 4, the FFT 5, the power spectrum converting means 6, the noise power spectrum estimating means 7 and the Wiener filter estimating means 8 operate in the same manner as the above-mentioned conventional noise suppressing apparatus. Filter transfer function correction means 9
Is for the frequency component smaller than the threshold value α such that the amplitude value of the Wiener filter transfer function W (ω), which is the output from the Wiener filter estimator 8, satisfies the expression (4). Limit the value.

【0017】[0017]

【数4】 [Equation 4]

【0018】[0018]

【数5】 [Equation 5]

【0019】前記したフィルタ伝達関数補正手段9は、
雑音抑圧処理によって発生する信号成分の情報の欠落を
防ぐ意味を持つ。信号成分の情報の欠落は、(数2)の
分子部分の引き算部で、雑音パワスペクトルの推定値N
(ω)に定数βを掛けたものが瞬時の真の雑音パワスペク
トルN0(ω) より大きいときに発生する。N(ω)は入力
信号パワスペクトルX(ω)を雑音区間で平均した推定値
であり、真の値N0(ω) の定常性が強ければ誤差は少な
いが、雑音の非定常性が強いときは誤差が大きくなりN
0(ω)《βN(ω) の状態が頻繁に発生して信号成分のス
ペクトルが削られてしまう。従来はβの値を調節して信
号成分の欠落を防止していたが、入力信号のSN比に応
じて変化させたり、雑音の非定常性の強さに応じて値を
設定し直す必要があり、処理が複雑で安定性が悪いこと
から、ここではN0(ω)《βN(ω) となる周波数ωでW
(ω)の値が非常に小さくなるところを閾値αで制限する
処理を行って信号成分の欠落を防止している。
The above-mentioned filter transfer function correction means 9 is
It has a meaning to prevent the loss of information of the signal component generated by the noise suppression processing. The missing information of the signal component is the estimated value N of the noise power spectrum in the subtraction part of the numerator part of (Equation 2).
This occurs when (ω) multiplied by a constant β is larger than the instantaneous true noise power spectrum N 0 (ω). N (ω) is an estimated value obtained by averaging the input signal power spectrum X (ω) in the noise section, and if the true value N 0 (ω) has strong stationarity, the error is small, but the noise nonstationarity is strong. When the error becomes large N
The state of 0 (ω) << βN (ω) frequently occurs and the spectrum of the signal component is scraped. In the past, the value of β was adjusted to prevent the loss of signal components, but it is necessary to change it according to the signal-to-noise ratio of the input signal or reset the value according to the strength of non-stationarity of noise. However, since the processing is complicated and the stability is poor, W at the frequency ω such that N 0 (ω) << βN (ω) is satisfied.
A process in which the value of (ω) becomes very small is limited by the threshold value α to prevent the loss of the signal component.

【0020】逆FFT10では、フィルタ伝達関数補正
手段9で補正された伝達関数W(ω)の逆フーリエ変換に
よってウィナーフィルタのインパルス応答h(n) を求め
る。ここで、高域強調手段3から逆FFT10までの処
理は計算量が多く、毎サンプリング周期最適なインパル
ス応答h(n) を求めることは困難であるため、インパル
ス応答h(n) はmサンプル毎に求める。
The inverse FFT 10 obtains the impulse response h (n) of the Wiener filter by inverse Fourier transform of the transfer function W (ω) corrected by the filter transfer function correction means 9. Here, the processing from the high frequency emphasizing means 3 to the inverse FFT 10 requires a large amount of calculation, and it is difficult to find the optimum impulse response h (n) for each sampling period. Therefore, the impulse response h (n) is calculated every m samples. Ask for.

【0021】インパルス応答制御手段11は、mサンプ
ル毎に求めたインパルス応答h(n)を入力として、時定
数をもって毎サンプルh(n) に近づくように変化するイ
ンパルス応答ha(n)を出力する。前記したインパルス応
答制御手段11の処理は、例えば(数6)のようにして
少ない計算量で行うことができる。
The impulse response control means 11, m samples each on the obtained impulse response h (n) as an input, when the impulse response changes as constant closer to each sample h (n) with h a (n) output To do. The above-mentioned processing of the impulse response control means 11 can be performed with a small calculation amount as in (Equation 6).

【0022】[0022]

【数6】 [Equation 6]

【0023】ただし、ha(n)k は時刻kのインパルス応
答制御手段11の出力インパルス応答ha(n)、h(n) は
逆FFT10からmサンプル周期毎に出力されるインパ
ルス応答、γはha(n)の更新時定数を決定する定数であ
る。
Where h a (n) k is the output impulse response h a (n) of the impulse response control means 11 at time k, h (n) is the impulse response output from the inverse FFT 10 every m sample periods, and γ Is a constant that determines the update time constant of h a (n).

【0024】前記したインパルス応答制御手段11は、
従来mサンプル周期毎に変化していたインパルス応答を
連続的に変化させて、さらに突発的なインパルス応答の
推定誤差を平滑化により吸収して、異音の発生しない歪
の少ない処理音を得る働きをもつ。
The above-mentioned impulse response control means 11 is
A function that continuously changes the impulse response, which has changed every m sample periods, and further absorbs the estimation error of the sudden impulse response by smoothing to obtain a processed sound with no distortion and less distortion. With.

【0025】畳み込み演算手段12はインパルス応答制
御手段11の出力であるインパルス応答ha(n)とシフト
レジスタ2に蓄えられている入力時系列信号x(n) との
畳み込み演算を行い、D/A変換器13は畳み込み演算
手段12からの信号をアナログ信号に変換して出力す
る。
The convolution operation means 12 performs a convolution operation of the impulse response ha (n) which is the output of the impulse response control means 11 and the input time series signal x (n) stored in the shift register 2, and D / A The converter 13 converts the signal from the convolution operation means 12 into an analog signal and outputs it.

【0026】以上のように本実施例によれば、入力信号
をディジタル信号に変換するA/D変換器と、前記A/
D変換器からの出力信号の過去Nサンプル分を保持する
シフトレジスタと、前記シフトレジスタに保持されてい
る時系列データから入力信号が雑音区間であるか否かを
判定する雑音区間検出手段と、前記シフトレジスタに保
持される時系列データの時刻の新しいのもからMサンプ
ルを取り出し高音域を強調してM個のデータ列を出力す
る高域強調手段と、前記高域強調手段から出力されるM
個のデータ列に対してポイント数Mの周波数スペクトル
を求めるFFTと、前記FFTの出力をパワスペクトル
に変換するパワスペクトル変換手段と、前記パワスペク
トル変換手段と前記雑音区間検出手段からの出力信号を
入力として雑音パワスペクトルを推定する雑音パワスペ
クトル推定手段と、前記パワスペクトル変換手段と前記
雑音パワスペクトル推定手段からの出力信号を入力とし
てウィナーフィルタ伝達関数を推定するウィナーフィル
タ推定手段と、前記ウィナーフィルタ推定手段から出力
されるウィナーフィルタ伝達関数の域値αより小さい振
幅の周波数成分を域値αに設定するフィルタ伝達関数補
正手段と、前記フィルタ伝達関数補正手段で補正された
ウィナーフィルタ伝達関数を逆フーリエ変換してインパ
ルス応答を求める逆FFTと、前記逆FFTからのイン
パルス応答出力の時間的な変化に対して時定数をもって
変化するインパルス応答を出力するインパルス応答制御
手段と、前記シフトレジスタの時系列データと前記イン
パルス応答制御手段からの出力との畳み込み演算を行う
畳み込み演算手段と、前記畳み込み演算手段の出力をア
ナログ信号に変換するD/A変換器とを設けることによ
り、インパルス応答を連続的に変化させ、雑音成分の加
減算を制限し、さらに演算精度が十分得られるようにす
ることで、異音の発生しない信号成分の情報が欠落しに
くい品質のよい処理音を得ることができる。
As described above, according to this embodiment, an A / D converter for converting an input signal into a digital signal, and the A / D converter
A shift register that holds the past N samples of the output signal from the D converter, and noise section detection means that determines whether or not the input signal is in the noise section from the time series data held in the shift register, The high frequency emphasizing means for extracting M samples from the newest time of the time series data held in the shift register and emphasizing the high frequency range to output M data strings, and the high frequency emphasizing means. M
The FFT for obtaining the frequency spectrum of the number M of points for each data string, the power spectrum conversion means for converting the output of the FFT into the power spectrum, and the output signals from the power spectrum conversion means and the noise section detection means. Noise power spectrum estimating means for estimating a noise power spectrum as an input, Wiener filter estimating means for estimating a Wiener filter transfer function using the output signals from the power spectrum converting means and the noise power spectrum estimating means as input, and the Wiener filter A filter transfer function correcting means for setting a frequency component having an amplitude smaller than the threshold value α of the Wiener filter transfer function output from the estimating means to the threshold value α, and the Wiener filter transfer function corrected by the filter transfer function correcting means are reversed. Inverse of Fourier transform to obtain impulse response An FFT, an impulse response control means for outputting an impulse response that changes with a time constant with respect to a temporal change of the impulse response output from the inverse FFT, time series data of the shift register, and the impulse response control means. By providing a convolution operation means for performing a convolution operation with the output and a D / A converter for converting the output of the convolution operation means into an analog signal, the impulse response is continuously changed and addition / subtraction of noise components is limited. In addition, by sufficiently obtaining the calculation accuracy, it is possible to obtain a processed sound of high quality in which the information of the signal component in which abnormal noise does not easily occur is not lost.

【0027】なお、雑音区間検出手段4は高域強調手段
3の後段に設けるとしたが、雑音区間検出手段4はシフ
トレジスタ2の後段に設けてもよい。
Although the noise section detecting means 4 is provided after the high frequency emphasizing means 3, the noise section detecting means 4 may be provided after the shift register 2.

【0028】また、フィルタ伝達関数補正手段9は、ウ
ィナーフィルタ推定手段8からの出力であるウィナーフ
ィルタ伝達関数W(ω)の振幅値が(数4)を満たすよう
な閾値αより小さい周波数成分に対して、(数5)のよ
うに振幅値を制限するとしたが、フィルタ伝達関数補正
手段9は、ウィナーフィルタ推定手段8からの出力であ
るウィナーフィルタ伝達関数W(ω)の振幅値が(数7)
を満たすような閾値関数α(ω)より小さい周波数成分に
対して、(数8)のように振幅値を制限するとしてもよ
い。
Further, the filter transfer function correction means 9 sets the frequency component smaller than the threshold value α such that the amplitude value of the Wiener filter transfer function W (ω) which is the output from the Wiener filter estimation means 8 satisfies (Equation 4). On the other hand, although the amplitude value is limited as in (Equation 5), the filter transfer function correcting unit 9 determines that the amplitude value of the Wiener filter transfer function W (ω) output from the Wiener filter estimating unit 8 is (Equation 5). 7)
The amplitude value may be limited as in (Equation 8) for frequency components smaller than the threshold function α (ω) that satisfies

【0029】[0029]

【数7】 [Equation 7]

【0030】[0030]

【数8】 [Equation 8]

【0031】[0031]

【発明の効果】以上のように本発明は、入力信号をディ
ジタル信号に変換するA/D変換器と、前記A/D変換
器からの出力信号の過去Nサンプル分を保持するシフト
レジスタと、前記シフトレジスタに保持されている時系
列データから入力信号が雑音区間であるか否かを判定す
る雑音区間検出手段と、前記シフトレジスタに保持され
る時系列データの周波数スペクトルを求めるFFTと、
前記FFTの出力をパワスペクトルに変換するパワスペ
クトル変換手段と、前記パワスペクトル変換手段と前記
雑音区間検出手段からの出力信号を入力として雑音パワ
スペクトルを推定する雑音パワスペクトル推定手段と、
前記パワスペクトル変換手段と前記雑音パワスペクトル
推定手段からの出力信号を入力としてウィナーフィルタ
伝達関数を推定するウィナーフィルタ推定手段と、前記
ウィナーフィルタ推定手段の出力から逆フーリエ変換に
よりインパルス応答を求める逆FFTと、前記逆FFT
からのインパルス応答出力の時間的な変化に対して時定
数をもって変化するインパルス応答を出力するインパル
ス応答制御手段と、前記シフトレジスタの時系列データ
と前記インパルス応答制御手段からの出力との畳み込み
演算を行う畳み込み演算手段と、前記畳み込み演算手段
の出力をアナログ信号に変換するD/A変換器とを設け
ることにより、処理後の信号成分に異音が発生せず明瞭
度のよい出力信号を得る雑音抑圧装置を実現することが
できる。
As described above, according to the present invention, an A / D converter that converts an input signal into a digital signal, a shift register that holds the past N samples of the output signal from the A / D converter, Noise interval detection means for determining whether or not the input signal is in a noise interval from the time series data held in the shift register, and FFT for obtaining the frequency spectrum of the time series data held in the shift register,
A power spectrum converting means for converting the output of the FFT into a power spectrum; and a noise power spectrum estimating means for estimating a noise power spectrum using the output signals from the power spectrum converting means and the noise section detecting means as inputs.
Wiener filter estimating means for estimating a Wiener filter transfer function using the output signals from the power spectrum converting means and the noise power spectrum estimating means as inputs, and an inverse FFT for obtaining an impulse response from the output of the winner filter estimating means by inverse Fourier transform. And the inverse FFT
An impulse response control means for outputting an impulse response that changes with a time constant with respect to a temporal change of the impulse response output from, and a convolution operation of the time series data of the shift register and the output from the impulse response control means. By providing the convolution operation means for performing and the D / A converter for converting the output of the convolution operation means into an analog signal, noise that does not generate abnormal noise in the processed signal component and obtains an output signal with good clarity A suppression device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における雑音抑圧装置のブロ
ック図である。
FIG. 1 is a block diagram of a noise suppression device according to an embodiment of the present invention.

【図2】従来の雑音抑圧装置のブロック図である。FIG. 2 is a block diagram of a conventional noise suppression device.

【符号の説明】[Explanation of symbols]

1 A/D変換器 2 シフトレジスタ 3 高域強調手段 4 雑音区間検出手段 5 FFT 6 パワスペクトル変換手段 7 雑音パワスペクトル推定手段 8 ウィナーフィルタ推定手段 9 フィルタ伝達関数補正手段 10 逆FFT 11 インパルス応答制御手段 12 畳み込み演算手段 13 D/A変換器 DESCRIPTION OF SYMBOLS 1 A / D converter 2 Shift register 3 High-frequency emphasis means 4 Noise area detection means 5 FFT 6 Power spectrum conversion means 7 Noise power spectrum estimation means 8 Wiener filter estimation means 9 Filter transfer function correction means 10 Inverse FFT 11 Impulse response control Means 12 Convolution operation means 13 D / A converter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入力信号をディジタル信号に変換するA
/D変換器と、前記A/D変換器からの出力信号の過去
Nサンプル分を保持するシフトレジスタと、前記シフト
レジスタに保持されている時系列データから入力信号が
雑音区間であるか否かを判定する雑音区間検出手段と、
前記シフトレジスタに保持される時系列データの周波数
スペクトルを求めるFFTと、前記FFTの出力をパワ
スペクトルに変換するパワスペクトル変換手段と、前記
パワスペクトル変換手段と前記雑音区間検出手段からの
出力信号を入力として雑音パワスペクトルを推定する雑
音パワスペクトル推定手段と、前記パワスペクトル変換
手段と前記雑音パワスペクトル推定手段からの出力信号
を入力としてウィナーフィルタ伝達関数を推定するウィ
ナーフィルタ推定手段と、前記ウィナーフィルタ推定手
段の出力から逆フーリエ変換によりインパルス応答を求
める逆FFTと、前記逆FFTからのインパルス応答出
力の時間的な変化に対して時定数をもって変化するイン
パルス応答を出力するインパルス応答制御手段と、前記
シフトレジスタの時系列データと前記インパルス応答制
御手段からの出力との畳み込み演算を行う畳み込み演算
手段と、前記畳み込み演算手段の出力をアナログ信号に
変換するD/A変換器とを備えることを特徴とする雑音
抑圧装置。
1. A for converting an input signal into a digital signal
Whether or not the input signal is in the noise section from the / D converter, the shift register that holds the past N samples of the output signal from the A / D converter, and the time-series data held in the shift register Noise section detection means for determining
The FFT for obtaining the frequency spectrum of the time-series data held in the shift register, the power spectrum conversion means for converting the output of the FFT into a power spectrum, and the output signals from the power spectrum conversion means and the noise section detection means Noise power spectrum estimating means for estimating a noise power spectrum as an input, Wiener filter estimating means for estimating a Wiener filter transfer function using the output signals from the power spectrum converting means and the noise power spectrum estimating means as input, and the Wiener filter An inverse FFT for obtaining an impulse response from the output of the estimating means by an inverse Fourier transform, and an impulse response control means for outputting an impulse response that changes with a time constant with respect to the temporal change of the impulse response output from the inverse FFT, Shift register A noise suppressor comprising: a convolution calculation means for performing a convolution calculation of sequence data and an output from the impulse response control means; and a D / A converter for converting the output of the convolution calculation means into an analog signal. ..
【請求項2】 ウィナーフィルタ推定手段と逆FFTと
の間に前記ウィナーフィルタ推定手段からの伝達関数の
振幅値に対して閾値αより小さい値をαに設定するフィ
ルタ伝達関数補正手段を設けた請求項1記載の雑音抑圧
装置。
2. A filter transfer function correcting means for setting a value smaller than a threshold value α to α with respect to the amplitude value of the transfer function from the Wiener filter estimating means is provided between the Wiener filter estimating means and the inverse FFT. Item 1. The noise suppression device according to Item 1.
【請求項3】 フィルタ伝達関数補正手段の閾値αが周
波数によって異なる請求項2記載の雑音抑圧装置。
3. The noise suppressing device according to claim 2, wherein the threshold value α of the filter transfer function correcting means differs depending on the frequency.
【請求項4】 シフトレジスタとFFTとの間に高音域
の周波数成分を強調する高域強調手段を設けた請求項1
記載の雑音抑圧装置。
4. A high-frequency emphasizing means for emphasizing frequency components in the high frequency range is provided between the shift register and the FFT.
The noise suppression device described.
JP3328568A 1991-12-12 1991-12-12 Noise suppression device Expired - Lifetime JP3010864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3328568A JP3010864B2 (en) 1991-12-12 1991-12-12 Noise suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328568A JP3010864B2 (en) 1991-12-12 1991-12-12 Noise suppression device

Publications (2)

Publication Number Publication Date
JPH05165495A true JPH05165495A (en) 1993-07-02
JP3010864B2 JP3010864B2 (en) 2000-02-21

Family

ID=18211730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328568A Expired - Lifetime JP3010864B2 (en) 1991-12-12 1991-12-12 Noise suppression device

Country Status (1)

Country Link
JP (1) JP3010864B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394759B1 (en) * 1995-02-17 2004-02-11 소니 가부시끼 가이샤 Method and apparatus for reducing noise in voice signals
KR100922580B1 (en) * 2006-11-17 2009-10-21 한국전자통신연구원 Apparatus and method to reduce a noise for VoIP Service
WO2024012095A1 (en) * 2022-07-12 2024-01-18 苏州旭创科技有限公司 Filter implementation method and apparatus, noise suppression method and apparatus, and computer device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394759B1 (en) * 1995-02-17 2004-02-11 소니 가부시끼 가이샤 Method and apparatus for reducing noise in voice signals
KR100922580B1 (en) * 2006-11-17 2009-10-21 한국전자통신연구원 Apparatus and method to reduce a noise for VoIP Service
WO2024012095A1 (en) * 2022-07-12 2024-01-18 苏州旭创科技有限公司 Filter implementation method and apparatus, noise suppression method and apparatus, and computer device

Also Published As

Publication number Publication date
JP3010864B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US6108610A (en) Method and system for updating noise estimates during pauses in an information signal
US6351731B1 (en) Adaptive filter featuring spectral gain smoothing and variable noise multiplier for noise reduction, and method therefor
US6175602B1 (en) Signal noise reduction by spectral subtraction using linear convolution and casual filtering
JP2714656B2 (en) Noise suppression system
US6487257B1 (en) Signal noise reduction by time-domain spectral subtraction using fixed filters
RU2127454C1 (en) Method for noise suppression
EP1169883B1 (en) System and method for dual microphone signal noise reduction using spectral subtraction
KR100335162B1 (en) Noise reduction method of noise signal and noise section detection method
KR100310030B1 (en) A noisy speech parameter enhancement method and apparatus
US6717991B1 (en) System and method for dual microphone signal noise reduction using spectral subtraction
US20040078199A1 (en) Method for auditory based noise reduction and an apparatus for auditory based noise reduction
US20070232257A1 (en) Noise suppressor
US6459914B1 (en) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
JP2003534570A (en) How to suppress noise in adaptive beamformers
WO2004036552A1 (en) Noise reduction in subbanded speech signals
US20030018471A1 (en) Mel-frequency domain based audible noise filter and method
JP3973929B2 (en) Howling detection device
JP2003140700A (en) Method and device for noise removal
US20100049507A1 (en) Apparatus for noise suppression in an audio signal
US7127072B2 (en) Method and apparatus for reducing random, continuous non-stationary noise in audio signals
US6507623B1 (en) Signal noise reduction by time-domain spectral subtraction
JPH05165495A (en) Noise suppressing device
JP3310225B2 (en) Noise level time variation calculation method and apparatus, and noise reduction method and apparatus
JP2830276B2 (en) Signal processing device
JP2000010593A (en) Spectrum noise removing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13