JPH0516542B2 - - Google Patents

Info

Publication number
JPH0516542B2
JPH0516542B2 JP58110917A JP11091783A JPH0516542B2 JP H0516542 B2 JPH0516542 B2 JP H0516542B2 JP 58110917 A JP58110917 A JP 58110917A JP 11091783 A JP11091783 A JP 11091783A JP H0516542 B2 JPH0516542 B2 JP H0516542B2
Authority
JP
Japan
Prior art keywords
satellite
thermal
heat input
data
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110917A
Other languages
Japanese (ja)
Other versions
JPS603543A (en
Inventor
Masao Adachi
Seiju Funabashi
Akira Muramatsu
Takashi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11091783A priority Critical patent/JPS603543A/en
Publication of JPS603543A publication Critical patent/JPS603543A/en
Publication of JPH0516542B2 publication Critical patent/JPH0516542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スペースチエンバにおいて衛星への
熱入力と計測温度データをフイードバツクし、衛
星への熱入力を制御することにより、衛星の熱挙
動をあらわす数学モデル(衛星熱モデル)の高精
度化、熱試験期間の短縮・低コスト化を可能にす
る衛星の熱試験装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention controls the thermal behavior of a satellite by feeding back heat input to the satellite and measured temperature data in a space chamber and controlling the heat input to the satellite. The present invention relates to a satellite thermal testing device that enables higher accuracy of the mathematical model (satellite thermal model) that represents the satellite, as well as shorter thermal testing periods and lower costs.

〔発明の背景〕 第1図は従来の熱試験装置の概略図である。そ
こでは、十分な精度の熱モデルの作成に必要なデ
ータを得るのは困難であり、したがつて、宇宙空
間での衛星の熱挙動を計算機シミユレーシヨンに
よつて再現するのは不可能であるとして、軌道に
おける特徴的な各熱環境を模擬して、その各状態
における衛星への熱入力情報11を熱入力装置1
01で物理量に変換した熱入力21を衛星102
に与えることにより得られる衛星の温度分布3を
温度測定装置103により取つていた。
[Background of the Invention] FIG. 1 is a schematic diagram of a conventional thermal testing apparatus. It is difficult to obtain the data necessary to create a thermal model with sufficient accuracy, and it is therefore impossible to reproduce the thermal behavior of a satellite in space using computer simulation. , the heat input device 1 simulates each characteristic thermal environment in the orbit and transmits heat input information 11 to the satellite in each state.
The heat input 21 converted into a physical quantity in 01 is transferred to the satellite 102.
The temperature distribution 3 of the satellite obtained by giving .

スペースチエンバと軌道における熱環境の相異
に基づく補正を計測された温度分布データに施す
ことにより、軌道上の衛星の温度分布を予測して
いたので、多くの熱環境条件におけるスペースチ
エンバ試験を行なわねばならなかつた。これは、
日本では年間約2個の衛星しか打ち上げることが
できない、大きな原因の一つとなつている。
The temperature distribution of the satellite in orbit was predicted by applying corrections to the measured temperature distribution data based on the differences in the thermal environment between the space chamber and the orbit, so space chamber tests under many thermal environment conditions were possible. I had to do it. this is,
This is one of the major reasons why Japan is only able to launch about two satellites a year.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、スペースチエンバによる高価
な熱試験の期間短縮を目ざして、衛星の熱モデル
の高精度化を実現するための熱試験装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal testing device for achieving high accuracy of a thermal model of a satellite, with the aim of shortening the period of expensive thermal testing using a space chamber.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明では、熱モデル
を有意に決定できるだけの衛星への熱入力デー
タ・温度計測データを短時間に取得する方法が不
明であつたのにたいし、データ量の可同定性(熱
モデルを唯一に定められること)を逐次検定し、
残された不確定なモデル部分を決定できるように
熱入力を制御する点に特徴がある。
In order to achieve the above object, the present invention solves the problem of how to obtain enough heat input data and temperature measurement data to a satellite in a short time to meaningfully determine a thermal model. (the ability to uniquely define a thermal model) is sequentially verified.
The feature is that the heat input is controlled so that the remaining uncertain model parts can be determined.

本方法によれば、熱モデル決定に必要十分なだ
けの熱環境における熱試験しかおこなわないの
で、最小のデータ量で信頼性の高い熱モデルを推
定することが可能となる。
According to this method, only enough thermal tests in a thermal environment are performed to determine the thermal model, so it is possible to estimate a highly reliable thermal model with a minimum amount of data.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図により説明す
る。
Embodiments of the present invention will be described below with reference to FIG.

衛星の熱モデルは、各ノード(衛星の等温とみ
なせる領域)における熱平衡式によつて次のよう
に与えられる。
The thermal model of the satellite is given by the thermal balance equation at each node (area of the satellite that can be considered isothermal) as follows.

CidTi/dt=Qioj=i Kij(Tj−Ti)+σo+1j=i Rij(T4 j−T4 i) i=1、…、n ……(1) ただし、 n:衛星のノードの数 Ci:iノードの熱容量 Ti:iノードの絶対温度 Qi:iノードの内部発熱量と衛星以外からiノー
ドへの入力熱量の和 Kij:ノードi、j間の熱伝導係数 Rij:ノードi、j間の輻射熱交換係数 t:時刻 σ:ステフアン・ボルツマン定数 To+1:スペースチエンバ壁の温度(衛星が宇宙
空間にあるときは絶対零度) である。
C i dT i /dt=Q i + oj=i K ij (T j −T i )+σ o+1j=i R ij (T 4 j −T 4 i ) i=1,...,n ...(1) where, n: Number of nodes on the satellite C i : Heat capacity of the i-node T i : Absolute temperature of the i-node Q i : Sum of internal calorific value of the i-node and input heat amount to the i-node from sources other than the satellite K ij : Heat conduction coefficient between nodes i and j R ij : Radiation heat exchange coefficient between nodes i and j t : Time σ : Stefan-Boltzmann constant T o+1 : Temperature of space chamber wall (temperature of space chamber wall (sometimes it's absolute zero).

第2図において、衛星102への熱入力22は
熱モデル同定のために最適計算された結果に基づ
くものである点で、軌道上の熱環境における衛星
への熱入力を模擬した第1図の熱入力21とは異
なる。
In Fig. 2, the heat input 22 to the satellite 102 is based on the results optimally calculated for thermal model identification, and is different from that in Fig. 1, which simulates the heat input to the satellite in the thermal environment in orbit. It is different from the heat input 21.

このモデルの係数(熱容量Ci、熱伝導係数Kij
輻射熱交換係数Rij)として先験情報(衛星の形
状、物理法則、物性の基礎的データ)からの推定
値を用いたモデルの精度は良くないので、衛星へ
の熱入力データ12および温度計測データ4より
係数を同定しなければならない。同定すべき係数
ベクトルをpで表わすと、(1)式より、 g=A×p ……(2) ただし、 g:熱入力データ(Qi、i=1、…、n)よりな
るベクトル A:全ノードの計測温度時系列データとσよりな
る行列 である。よつて、pを有意に定めることができる
かどうかは、データ行列ATA(ATはA行列の転置
行列)の正則性を調べることにより判定ができ
る。ATAが正則のときは、p=(ATA)-1ATgと
推定される。
The coefficients of this model (heat capacity C i , heat conduction coefficient K ij ,
Since the accuracy of the model that uses estimates from a priori information (basic data on the satellite's shape, physical laws, and physical properties) as the radiant heat exchange coefficient (R ij ) is not good, the heat input data to the satellite12 and the temperature measurement data are 4, the coefficients must be identified. If the coefficient vector to be identified is represented by p, then from equation (1), g = A × p ... (2) where g: vector A consisting of heat input data (Q i , i = 1, ..., n) : A matrix consisting of the measured temperature time series data of all nodes and σ. Therefore, whether p can be determined significantly can be determined by examining the regularity of the data matrix A T A (A T is the transposed matrix of the A matrix). When A T A is regular, it is estimated that p = (A T A) -1 A T g.

しかし、各ノードの温度は同定すべき係数に依
存するので、前もつてデータ行列ATAが正則と
なるように熱入力を決定することはできない。そ
こで、逐次データ行列の正則性を判定し、その時
刻までのデータからは決定できない係数の部分を
決定できるように熱入力を制御する。この熱入力
計算手順を第3図に示し、以下で詳しく述べる。
However, since the temperature of each node depends on the coefficients to be identified, the heat input cannot be determined in advance so that the data matrix AT A is regular. Therefore, the regularity of the sequential data matrix is determined, and the heat input is controlled so that the part of the coefficient that cannot be determined from the data up to that time can be determined. This heat input calculation procedure is shown in FIG. 3 and will be described in detail below.

衛星への熱入力・温度計測データ31を用い
て、ステツプ32でデータ行列の固有値計算を行な
い、零固有値が、s(>0)個ある場合には、ス
テツプ33におけるデータ行列の正則性判定により
非正則と判定され、次のステツプ36で零固有値に
対応する正規化された固有ベクトル計算を次のよ
うに行なう。現時点におけるデータ行列ATAの
非零固有値と判定されたものに対応する正規化さ
れた固有ベクトルをV1、…、Vo-sで表わす。同
定すべき係数よりなるベクトル空間において、 {wi、i=1、…、s|wi⊥wj、i≠j;‖wi‖=1
;wi⊥vl、l=1、…、n−s}……(3) 方向の情報をデータ行列は持たない。上式にお
ける記号⊥、‖‖は、直交とノルムをそれぞれ表
わす。上式のwi、(i=1、…、s)は、行列 のs個の一次独立な列ベクトルを正規直交化する
と得られる。このwi、(i=1、…、s)が求め
るべき、データ行列の零固有値に対応する正規化
された固有ベクトルである。
Using the heat input/temperature measurement data 31 to the satellite, the eigenvalues of the data matrix are calculated in step 32, and if there are s (>0) zero eigenvalues, the regularity of the data matrix is determined in step 33. It is determined that the eigenvalue is non-regular, and in the next step 36, the normalized eigenvector corresponding to the zero eigenvalue is calculated as follows. The normalized eigenvectors corresponding to the non-zero eigenvalues of the data matrix ATA at the present time are expressed as V 1 , . . . , V os . In the vector space consisting of the coefficients to be identified, {w i , i=1, ..., s|w i ⊥w j , i≠j; ‖w i ‖=1
;w i ⊥v l , l=1,..., n-s}...(3) The data matrix does not have direction information. The symbols ⊥ and ‖‖ in the above formula represent orthogonality and norm, respectively. w i , (i=1,...,s) in the above equation is a matrix It is obtained by orthonormalizing s linearly independent column vectors of . This w i (i=1, . . . , s) is the normalized eigenvector corresponding to the zero eigenvalue of the data matrix to be determined.

次のステツプ37では、以下の計算を行なう。現
在より単位時間未来までの間に得られるデータ行
列をA*で表わす。単位時間後のデータ行列(AT
A+A*TA*)が正則に近づくためには、A*wi
(i=1、…、s)が十分大きな値を取る必要が
ある。しかし、A*は同定すべき係数に依存する
ので求まらない。そこで、A*の推定値A**で代
用し、A**wi(i=1、…、s)が十分大きな値
を取るように単位時間の熱入力を求める。A**
は、現時刻での熱モデルの係数の推定値p^を(1)式
の係数のかわりに使つて(1)式を積分することによ
り求められる。現時刻の係数の推定値p^は次のよ
うに求める。データ行列の擬似逆行列(ATA)+
により、係数のあらい推定値 p〓=(ATA)+ATg ……(5) を計算する。p^はp〓から、 () p〓の要素で、先験情報より積み上げられた
係数の推定値と大きく異なるものは、先験情報
による推定値を採用、 () ()の後、負値を取る要素は、その要素
の値として零を採用 により求める。
In the next step 37, the following calculations are performed. The data matrix obtained between the present and a unit time in the future is represented by A * . Data matrix after unit time (A T
In order for A+A *T A * ) to approach regularity, A * w i ,
(i=1, . . . , s) needs to take a sufficiently large value. However, A * cannot be determined because it depends on the coefficients to be identified. Therefore, the estimated value A ** of A * is substituted, and the heat input per unit time is determined so that A ** w i (i=1, . . . , s) takes a sufficiently large value. A **
is obtained by integrating equation (1) using the estimated value p^ of the coefficient of the thermal model at the current time instead of the coefficient in equation (1). The estimated value p^ of the coefficient at the current time is calculated as follows. Pseudo-inverse matrix of data matrix (A T A) +
The roughness estimate of the coefficient p = (A T A) + A T g (5) is calculated as follows. p^ is from p〓, () If the elements of p〓 are significantly different from the estimated value of the coefficient accumulated from a priori information, the estimated value based on a priori information is adopted, () After (), a negative value For elements that take , zero is used as the value of the element.

評価関数、 si=l wT i(A**TA**wi ……(6) が大きくなるように、単位時間までの熱入力Qi
(i=1、…、n)を求めればよいのであるが、
Qiを時間依存にすると膨大な計算量を必要と
し、実際上不可能であるので、以下で代用す
る。
Heat input Q i up to unit time is increased so that the evaluation function, si=l w T i (A ** ) T A ** w i ……(6)
All you have to do is find (i=1,...,n), but
Making Q i time-dependent requires a huge amount of calculation and is practically impossible, so the following is used instead.

Qi(i=1、…、n)は単位時間の間時定数
とし、零から物理的に可能な最大熱入力
Qinaxまでの間の値に制限する。この制約の
もとに、数値シミユレーシヨンにより、(6)式の
極値を取るQi(i=1、…、n)をSUMT
(Sequential Unconstrained Minimization
Technique、参考文献…「非線形最適化計算
法」、L.C.W.デイクソン著)で求める。ただ
し、SUMTを使つた計算過程において、各ノ
ードの推定値がそのノードの許容温度範囲(そ
のノードで代表される衛星機器の高信頼で正常
に動作する温度範囲)を越えた場合は、−∞の
ペナルテイを与える。以上がステツプ37の計算
であり、そこで求められた熱入力22を衛星へ
与え、単位時間の温度計測データを取る。
Q i (i=1,...,n) is a time constant for unit time, and the maximum physically possible heat input from zero
Q i , limited to values up to nax . Under this constraint, by numerical simulation, Q i (i=1,...,n) that takes the extreme value of equation (6) is SUMT
(Sequential Unconstrained Minimization
Technique, Reference..."Nonlinear Optimization Calculation Method", written by LCW Dickson). However, during the calculation process using SUMT, if the estimated value of each node exceeds the permissible temperature range of that node (the temperature range in which the satellite equipment represented by that node operates reliably and normally), -∞ give a penalty of The above is the calculation in step 37, where the calculated heat input 22 is given to the satellite and temperature measurement data per unit time is obtained.

以上の手順をデータ行列が正則と判定されるま
でくり返し、ステツプ33でデータ行列が正則と判
定されると、次のステツプ34で、衛星熱モデルの
係数は、p=(ATA)-1ATgと計算され、衛星熱
モデルの同定を修了し、熱試験も修了する。
The above steps are repeated until the data matrix is determined to be regular. When the data matrix is determined to be regular in step 33, the coefficients of the satellite thermal model are determined as p=(A T A) -1 in the next step 34. A T g is calculated, the satellite thermal model identification is completed, and the thermal test is also completed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、過去の温度計測および熱入力
データより不可決定となる衛星熱モデルの係数を
算出する装置の導入により、その係数が決定でき
るように以後の衛星への熱入力を制御することが
できる。さらに本発明により、無意味なデータの
取得を減らし、係数の同定に十分なだけのデータ
を取ることができる。よつて、スペースチエンバ
による熱試験期間の短縮、それによるコスト低
下、また、数学モデルの高精度化が図れるという
効果が得られる。
According to the present invention, by introducing a device that calculates coefficients of a satellite thermal model that cannot be determined from past temperature measurements and heat input data, it is possible to control subsequent heat input to the satellite so that the coefficients can be determined. I can do it. Further, according to the present invention, it is possible to reduce the acquisition of meaningless data and to acquire enough data to identify coefficients. Therefore, the effect of shortening the thermal test period using the space chamber, thereby reducing costs, and increasing the accuracy of the mathematical model can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の衛星熱試験装置の説明図、第2
図は本発明の熱試験装置の説明図、第3図は本発
明における熱入力計算及び衛星熱モデルの同定装
置における計算手順を示す説明図である。 104……熱入力計算及び衛星熱モデルの同定
装置。
Figure 1 is an explanatory diagram of the conventional satellite thermal test equipment, Figure 2
The figure is an explanatory diagram of the thermal test device of the present invention, and FIG. 3 is an explanatory diagram showing the calculation procedure in the heat input calculation and satellite thermal model identification device of the present invention. 104... Heat input calculation and satellite thermal model identification device.

Claims (1)

【特許請求の範囲】[Claims] 1 人工衛星への熱入力手段と、衛星各部材の温
度を計測する手段より成るスペースチエンバによ
り衛星熱モデルを同定するための熱試験装置にお
いて、計測された温度データの可同定性を判定す
る手段と、判定した結果にもとづき衛星熱モデル
の不可同定部分を抽出する手段と、抽出された不
可同定部分を決定するのに必要な熱入力を求める
手段とを設けたことを特徴とする人工衛星の熱試
験装置。
1. Determine the identifiability of the measured temperature data in a thermal test device for identifying a satellite thermal model using a space chamber consisting of a means for inputting heat to the satellite and a means for measuring the temperature of each satellite component. An artificial satellite characterized by comprising: a means for extracting an unidentified portion of a satellite thermal model based on the determined result; and a means for determining a heat input necessary to determine the extracted unidentified portion. thermal testing equipment.
JP11091783A 1983-06-22 1983-06-22 Heat tester for artificial satellite Granted JPS603543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11091783A JPS603543A (en) 1983-06-22 1983-06-22 Heat tester for artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11091783A JPS603543A (en) 1983-06-22 1983-06-22 Heat tester for artificial satellite

Publications (2)

Publication Number Publication Date
JPS603543A JPS603543A (en) 1985-01-09
JPH0516542B2 true JPH0516542B2 (en) 1993-03-04

Family

ID=14547903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11091783A Granted JPS603543A (en) 1983-06-22 1983-06-22 Heat tester for artificial satellite

Country Status (1)

Country Link
JP (1) JPS603543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073396A1 (en) 2008-12-26 2010-07-01 三菱電機株式会社 Operation control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627660B2 (en) * 1976-02-14 1981-06-26
JPS56159681A (en) * 1980-05-14 1981-12-09 Mitsubishi Electric Corp Training simulator
JPS5747300A (en) * 1980-09-05 1982-03-18 Mitsubishi Heavy Ind Ltd Heating simulation device
JPS5827079A (en) * 1981-08-11 1983-02-17 Toshiba Corp Radiation analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611391Y2 (en) * 1979-08-10 1986-01-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627660B2 (en) * 1976-02-14 1981-06-26
JPS56159681A (en) * 1980-05-14 1981-12-09 Mitsubishi Electric Corp Training simulator
JPS5747300A (en) * 1980-09-05 1982-03-18 Mitsubishi Heavy Ind Ltd Heating simulation device
JPS5827079A (en) * 1981-08-11 1983-02-17 Toshiba Corp Radiation analyzer

Also Published As

Publication number Publication date
JPS603543A (en) 1985-01-09

Similar Documents

Publication Publication Date Title
Clausnitzer et al. Parameter uncertainty analysis of common infiltration models
Kupper et al. Age-period-cohort analysis: an illustration of the problems in assessing interaction in one observation per cell data
Dai et al. Time-domain testing strategies and fault diagnosis for analog systems
WO2019001025A1 (en) Sensor deployment method for simultaneous acquiring local deformation and overall modal information of structure
Benner et al. Comparison of model order reduction methods for optimal sensor placement for thermo-elastic models
Levine-West et al. Mode shape expansion techniques for prediction-Experimental evaluation
CN110362902B (en) Single-source dynamic load identification method based on interval dimension-by-dimension analysis
WO2013087301A2 (en) Method to determine the distribution of temperature sensors, method to estimate the spatial and temporal thermal distribution and apparatus
Hensel et al. Steady-state two-dimensional inverse heat conduction
CN110377941B (en) Method for establishing penalty blind likelihood kriging proxy model of satellite temperature field
CN113722860B (en) Transient thermodynamic state online evaluation method, device and medium based on reduced order model
JPH0516542B2 (en)
Videcoq et al. Experimental modelling and estimation of time varying thermal sources
Tay et al. Estimation of wafer warpage profile during thermal processing in microlithography
CN113467590B (en) Many-core chip temperature reconstruction method based on correlation and artificial neural network
CN110018679B (en) Closed-loop test system and test method for spacecraft autonomous temperature control system
Strąkowska et al. Identification of the thermal constants of the dpl heat transfer model of a single layer porous material
Raynaud et al. Experimental validation of a new space marching finite difference algorithm for the inverse heat conduction problem
Liu et al. Calibration method for high temperature and high precision quartz pressure sensor
Gavrus et al. Thermo‐viscoplastic parameter identification formulated as an inverse finite element analysis of the hot torsion test
Gilman Inverse Conduction Method for Complex Thermal Loading
ROEMER et al. An enhanced mode shape identification algorithm
Kuz'min Determination of thermal flux density, medium temperature and heat liberation coefficient by solution of the converse thermal conductivity problem
Koffman et al. Application of the NIST testing strategies to a multi-range instrument
CN114383736A (en) Method and device for evaluating temperature resolution of infrared remote sensing satellite based on intersection