JPH0516539B2 - - Google Patents

Info

Publication number
JPH0516539B2
JPH0516539B2 JP59031121A JP3112184A JPH0516539B2 JP H0516539 B2 JPH0516539 B2 JP H0516539B2 JP 59031121 A JP59031121 A JP 59031121A JP 3112184 A JP3112184 A JP 3112184A JP H0516539 B2 JPH0516539 B2 JP H0516539B2
Authority
JP
Japan
Prior art keywords
roller
tension
displacement
equation
sensing roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59031121A
Other languages
Japanese (ja)
Other versions
JPS60173436A (en
Inventor
Yoji Yamada
Mitsunori Matsura
Yoshiaki Kakeshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINHO KOGYO KK
Original Assignee
SHINHO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINHO KOGYO KK filed Critical SHINHO KOGYO KK
Priority to JP3112184A priority Critical patent/JPS60173436A/en
Priority to DE19853505693 priority patent/DE3505693C2/en
Publication of JPS60173436A publication Critical patent/JPS60173436A/en
Publication of JPH0516539B2 publication Critical patent/JPH0516539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/106Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means for measuring a reaction force applied on a cantilever beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/107Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means for measuring a reaction force applied on an element disposed between two supports, e.g. on a plurality of rollers or gliders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 この発明はテンシヨンメータに関する。[Detailed description of the invention] This invention relates to a tension meter.

長尺状の線条物、テープ、シート類(以下単に
長尺物と言う。)のテンシヨンを測定するのに、
回転自在の3個のローラを用い、長尺物を各ロー
ラに順次添纒させ、その中央にあるセンシングロ
ーラの、前記長尺物のテンシヨンによる変位か
ら、テンシヨンを測定するようにしたものはよく
知られている。しかし従来ではセンシングローラ
の変位のみからテンシヨンを測定するようにして
いるので、正確なテンシヨン測定を期待すること
ができない。
To measure the tension of long linear objects, tapes, sheets (hereinafter simply referred to as long objects),
It is common to use three rotatable rollers, attach a long object to each roller in turn, and measure the tension from the displacement of the sensing roller in the center due to the tension of the long object. Are known. However, in the past, tension has been measured only from the displacement of the sensing roller, so accurate tension measurement cannot be expected.

すなわち前記したように3個のローラによる測
定方法では、そのローラからなる検出部の姿勢が
問題となる。すなわちセンシングローラの、テン
シヨンによる変位方向とセンシングローラに作用
する重力の方向とが常に垂直であれば問題ではな
いが、もし変位方向が垂直とならずに傾いていた
とすると、センシングローラを弾力的に支持して
いるバネに対して、本来のテンシヨンと、検出部
の重量の垂直方向の分力とが加つて作用するよう
になる。これによつてセンシングローラの変位量
のみから求めるテンシヨンに誤差が加わるのであ
る。従来この種テンシヨンメータにおいて、検出
部の姿勢による誤差の影響を排除しようとしたも
のはその例を知らない。
That is, in the measurement method using three rollers as described above, the attitude of the detection unit made up of the rollers becomes a problem. In other words, if the direction of displacement of the sensing roller due to the tension and the direction of gravity acting on the sensing roller are always perpendicular, there is no problem, but if the direction of displacement is not perpendicular but tilted, the sensing roller will not be elastically The original tension and the vertical component of the weight of the detection unit act on the supporting spring. This adds an error to the tension determined only from the displacement amount of the sensing roller. Conventionally, in this type of tension meter, there is no known example in which an attempt has been made to eliminate the influence of errors due to the orientation of the detection section.

この発明はセンシングローラの変位量から測定
対象の長尺物のテンシヨンを測定するにあたり、
検出部の自重による誤差を回避することを目的と
する。
This invention measures the tension of a long object to be measured from the amount of displacement of the sensing roller.
The purpose is to avoid errors caused by the weight of the detection unit.

この発明の実施例の説明にさきだつて、センシ
ングローラの変位量とテンシヨンとの関係を説明
する。第1図はこの種テンシヨンメータの検出部
を示したもので、1はセンシングローラ、2,3
はガイドローラ、4は測定対象の長尺物である。
ローラ1〜3の各半径をR、R1、R2、長尺物4
の直径又は厚み(以下単に直径と言う。)をD、
ローラ1とローラ2、ローラ3との水平方向の軸
間距離をA1、A2、ローラ1にテンシヨンが加わ
つていないとき(図中2点鎖線で示す。)のロー
ラ1とローラ2,3との垂直方向の軸間距離を
B1、B2、ローラ1にテンシヨンが加わつたとき
のローラ1の軸心の垂直方向の変位量をx、Tを
長尺物4に加わるテンシヨンとする。
Before explaining the embodiments of the present invention, the relationship between the displacement amount of the sensing roller and the tension will be explained. Figure 1 shows the detection section of this type of tension meter, where 1 is a sensing roller, 2, 3
4 is a guide roller, and 4 is a long object to be measured.
Each radius of rollers 1 to 3 is R, R 1 , R 2 , long object 4
The diameter or thickness (hereinafter simply referred to as the diameter) of D,
The horizontal axis distances between roller 1, roller 2, and roller 3 are A 1 , A 2 , and roller 1 and roller 2 when no tension is applied to roller 1 (indicated by the two-dot chain line in the figure). The vertical axis distance with 3 is
B 1 , B 2 , x is the vertical displacement of the axis of the roller 1 when tension is applied to the roller 1, and T is the tension applied to the elongated object 4.

ローラ1の長尺物4との添接点から各ローラ
2,3までの各長尺物部分の、ローラの軸心を通
る垂直線に対する角をθ1、θ2とし、前記各長尺物
部分のテンシヨンによるローラ1に作用する力を
F1、F2とすれば、これらの関係をペクトル図で
示すと第2図のようになる。更に長尺物4の中心
を通る線を図中1点鎖線で示すようにMとした場
合、ローラ1,2間での線Mのうちの直線部分を
左右に延長し、ローラ1の軸心Oと、その軸心O
を通る垂直線との交点N1との間の距離をP1、ロ
ーラ2の軸心O1と、その軸心O1を通る垂直線と
の交点N2との間の距離をP2、交点N1、N2間の垂
直方向の距離をQとすれば、これらの関係を幾何
学的に示すと第3図のようになる。
Let θ 1 and θ 2 be the angle of each long object portion from the contact point with the long object 4 of the roller 1 to each roller 2, 3 with respect to a vertical line passing through the axis of the roller, and each of the long object portions The force acting on roller 1 due to the tension of
If F 1 and F 2 are used, the relationship between them is shown in a vector diagram as shown in FIG. 2. Furthermore, if the line passing through the center of the long object 4 is M as shown by the dashed-dotted line in the figure, then the straight part of the line M between the rollers 1 and 2 is extended left and right, and the axis of the roller 1 is O and its axis O
P 1 is the distance between the intersection point N 1 with the vertical line passing through the roller 2, P 2 is the distance between the axis O 1 of the roller 2 and the intersection N 2 with the vertical line passing through the axis O 1 , If the vertical distance between the intersection points N 1 and N 2 is Q, then the relationship between them can be expressed geometrically as shown in FIG.

第2図のペクトル図から Tcosθ1+Tcosθ2=Kx (1) ただしKはローラ1にテンシヨンとは逆方向に
作用するバネの定数とする。又第3図より P2−(B1+x)+P1=Q R1+D/2=P2sinθ1 R+D/2=P1sinθ1 A1=Qtanθ1 上式よりcosθ1を求めると、 cosθ1=A1(R+R1+D)−(B1−x)√A2
1+(B1+x)2−(R+R1+D)2/A21+(B1+x
2 同じ手法によりcosθ2を求めると、 cosθ2=A2(R+R2+D)−(B2−x)√A2
2+(B2+x)2−(R+R2+D)2/A22+(B2+x
2 上式を(1)式に代入すればテンシヨンTが求めら
れる。ここでたとえば、A1=A2、B1=B2、R=
R1=R2とすれば すなわち長尺物4を各ローラに添纒させたと
き、ローラ1がxだけ変位したとすれば、そのx
を(2)式に代入すれば、そのときの長尺物4のテン
シヨンTが求められることになるのである。Tと
xとの関係は上式のみで表わせるものではなく、
他の手法によれば別の関係式も成立する。したが
つて上式は一般式 T=F(x) (3) となる関数式として示す。
From the spectral diagram in FIG. 2, Tcosθ 1 +Tcosθ 2 =Kx (1) where K is the constant of the spring acting on the roller 1 in the opposite direction to the tension. Also , from Figure 3 , P 2 - ( B 1 + 1 = A 1 (R + R 1 + D) - (B 1 - x)√A 2
/ 1 + (B 1 + x) 2 - (R + R 1 + D) 2 / A 2 / 1 + (B 1 + x
) 2 Find cosθ 2 using the same method, cosθ 2 = A 2 (R + R 2 + D) − (B 2 − x) √A 2
/ 2 + (B 2 + x) 2 - (R + R 2 + D) 2 / A 2 / 2 + (B 2 + x
) 2 By substituting the above equation into equation (1), the tension T can be found. Here, for example, A 1 =A 2 , B 1 =B 2 , R=
If R 1 = R 2 In other words, when the long object 4 is attached to each roller, if the roller 1 is displaced by x, then
By substituting (2) into equation (2), the tension T of the long object 4 at that time can be found. The relationship between T and x cannot be expressed only by the above formula,
According to other methods, other relational expressions also hold true. Therefore, the above equation is expressed as a general equation T=F(x) (3).

しかしこの式は長尺物として剛性のない理想的
な長尺物について成立する。剛性によるテンシヨ
ン測定の誤差を無視してもよいときは上式をその
まま使用してもよいが、無視しないときは、剛性
を考慮した関係式に補正すればよい。剛性は長尺
物の直径に関係するので、センシングローラの変
位量をX00としたとき、これを剛性のない長尺物
について測定したときの変位量X0に換算し、こ
れをX00に代えて(3)式に代入して演算すればよ
い。X0、X00の関係式の一例を示すと次のように
なる。ただしK01、K00、K11、K10は定数で、測
定対象を同じとする長尺物につき、既知の直径の
ものの、変位量とテンシヨンとの関係から定める
ことができる。
However, this equation holds true for an ideal long object with no rigidity. If the error in tension measurement due to stiffness can be ignored, the above equation may be used as is, but if it is not, it may be corrected to a relational equation that takes stiffness into account. Rigidity is related to the diameter of a long object, so if the displacement of the sensing roller is set to Instead, it can be calculated by substituting it into equation (3). An example of the relational expression between X 0 and X 00 is as follows. However, K 01 , K 00 , K 11 , and K 10 are constants, and can be determined from the relationship between displacement and tension of a long object of known diameter for the same long object to be measured.

X0=(X00−K01・D0−K00)/K11・D0+K10) (4) 実際には上式から求めたX0を更に(3)式の関数
式に代入して演算するのが面倒であるときは、変
数のX0につき、それぞれに対応する関数値を
ROMに記憶させておき、X0をアドレスとして読
出すようにしてもよい。
X 0 = (X 00 −K 01・D 0 −K 00 )/K 11・D 0 +K 10 ) (4) Actually, X 0 obtained from the above equation is further substituted into the function equation of equation (3). If it is troublesome to calculate the function value for each variable X 0 ,
It may be stored in ROM and read out using X 0 as an address.

次に検出部における可動部分の重量が測定に与
える影響について説明する。この影響を回避しよ
うとするのがこの発明の趣旨である。第4図aの
ようにローラ1〜3の配置関係が傾むいていたと
する。水平線に対するローラ1の、テンシヨンに
よる変位方向の角をαとすると、検出部の可動部
分の質量をW(gr)、重力加速度をg(CN/gr)
とすれば、ローラ1の変位に反する弾力を付与す
るバネに及ぼす力fは、第4図bの解析図から f=g・W・sinα この力fが本来のテンシヨンによりローラ1を
変位させようとする力Fに加わつてバネに作用す
ることになる。したがつて(1)式は Tcosθ1+Tcosθ2+f=Kx として表わせる。これから T=Kx−f/cosθ1+cosθ2=(1−f/
Kx)(Kx/cosθ1+cosθ2) 上式の Kx/cosθ1+cosθ2 はローラ1の変位方向を無視したときのテンシヨ
ンの値であり、これをf(x)とすれば T=(1−f/Kx)・f(x) 又テンシヨンが0で、ローラ1に作用する重力
がローラ1の変位方向に作用しない状態、具体的
には前記重力と前記変位方向とが垂直関係にある
場合(この場合はローラ1の変位方向には重力の
影響は起こらない。)の、ローラ1の位置をx1
する。又実際の測定状態において、ローラ1に作
用する重力とローラ1の変位方向とが垂直関係に
あれ、非垂直関係にあれ、その測定時におけるロ
ーラ1の位置をx2とする(ただしテンシヨンは0
であるとする。)。そしてその両位置の変位量(x2
−x1)をxtとすれば、 f=Kxt したがつて上式は T=(1−xt/x)・f(x) (5) 上式の意味するところから、ローラ1の変位量
xから、テンシヨンf(x)を演算によつて求めると
ともに、x、xtをf(x)とともに代入演算すれば、
検出部の自重による誤差を回避したテンシヨンT
を求めることができるようになる。
Next, the influence of the weight of the movable part in the detection unit on measurement will be explained. The purpose of the present invention is to avoid this influence. Assume that the arrangement of rollers 1 to 3 is inclined as shown in FIG. 4a. If the angle in the direction of displacement of roller 1 due to tension with respect to the horizontal line is α, then the mass of the movable part of the detection unit is W (gr), and the gravitational acceleration is g (CN/gr).
Then, from the analytical diagram in Figure 4b, the force f exerted on the spring that provides elasticity that opposes the displacement of roller 1 is f=g・W・sinα This force f will displace roller 1 due to its original tension. This will act on the spring in addition to the force F. Therefore, equation (1) can be expressed as Tcosθ 1 +Tcosθ 2 +f=Kx. From now on, T=Kx-f/cosθ 1 +cosθ 2 = (1-f/
Kx) (Kx/cosθ 1 +cosθ 2 ) In the above equation, Kx/cosθ 1 + cosθ 2 is the tension value when the displacement direction of roller 1 is ignored, and if this is f(x), then T = (1- f/Kx)・f(x) In addition, when the tension is 0 and the gravity acting on the roller 1 does not act in the direction of displacement of the roller 1, specifically, when the gravity and the displacement direction are perpendicular to each other ( In this case, the influence of gravity does not occur in the direction of displacement of roller 1.) Let the position of roller 1 be x 1 . In addition, in the actual measurement state, regardless of whether the gravity acting on roller 1 and the direction of displacement of roller 1 are perpendicular or non-perpendicular, the position of roller 1 at the time of measurement is x 2 (however, the tension is 0).
Suppose that ). And the amount of displacement at both positions (x 2
−x 1 ) as xt, f=Kx t Therefore, the above equation is T=(1−x t /x)・f(x) (5) From the meaning of the above equation, the displacement of roller 1 is If we calculate the tension f(x) from the quantity x, and also substitute x and x t with f(x), we get
Tension T that avoids errors due to the detection part's own weight
You will be able to ask for

以下この発明の実施例を第5図以降の各図によ
つて説明する。5は基枠、6はガイド用のローラ
2,3を一定の間隔で支持するアーム、7はアー
ム6を支持する昇降自在のロツドで、その下端と
基枠5との間にバネ8が介在されてあり、その弾
力によつてロツド7に下降力が付与されている。
1Aはセンシング用のローラ1を支持する昇降自
在のロツドで、これは基枠5に基端が支持された
板状のバネ9の先端に連結されてあるアーム10
に連結されてある。したがつてローラ1が昇降す
るとき、バネ9の弾力に抗してロツド1Aも昇降
する。バネ9が(1)式で言うバネ定数Kのバネであ
る。
Embodiments of the present invention will be described below with reference to FIG. 5 and subsequent figures. 5 is a base frame, 6 is an arm that supports guide rollers 2 and 3 at regular intervals, and 7 is a vertically movable rod that supports arm 6, and a spring 8 is interposed between its lower end and base frame 5. The rod 7 is provided with a downward force due to its elasticity.
1A is a rod that can be raised and lowered to support the sensing roller 1, and this is an arm 10 connected to the tip of a plate-shaped spring 9 whose base end is supported by the base frame 5.
It is connected to. Therefore, when the roller 1 moves up and down, the rod 1A also moves up and down against the elasticity of the spring 9. Spring 9 is a spring with a spring constant K in equation (1).

11はローラ1の位置(変位)を検出する位置
検出装置で、ここではロツド1Aの変位をCCD
型イメージセンサによつて検出するようにしてい
る。12はその検出用の発光素子、13は縦方向
に並べられた受光素子である。発光素子13はロ
ツド8に設置されてあるので、ロツド1Aの変位
に応じて発光素子12からの光の受光点が変化す
る。どの受光素子が受光したかによつてロツド1
Aの変位量が検出できる。
11 is a position detection device that detects the position (displacement) of the roller 1. Here, the displacement of the rod 1A is detected using a CCD.
It is detected by a type image sensor. 12 is a light emitting element for detection, and 13 is a light receiving element arranged in the vertical direction. Since the light emitting element 13 is installed on the rod 8, the receiving point of light from the light emitting element 12 changes according to the displacement of the rod 1A. Rod 1 depending on which light receiving element receives the light.
The amount of displacement of A can be detected.

15はローラ1に対してローラ2,3の位置を
補正する補正装置で、長尺物4の直径に応じて補
正する。すなわちロツド7と一体のブロツク16
と基枠5と一体のアーム5Aとを互いに相対して
設置することによつて補正装置15が構成されて
あり、ブロツク16とアーム5Aとの間に、測定
対象の長尺物4と同じ直径のゲージ17を挾持す
る。これによりゲージ17の直径分だけロツド7
が上方に変位する。この変位によつてローラ2,
3の基準位置が変位されることになるので、ロー
ラ1に加わる長尺物4による張力が同じであれ
ば、長尺物4の直径の大小如何に係らず、ローラ
1を添纒する長尺物4の角度(第2図で言う角
θ1、θ2)はほとんど同じとなる。換言すれば前記
張力が同じであつても、直径が大であれば前記角
度は小さくなるはずであるが、このときローラ
2,3を直径分だけ上昇させれば、近似的に、直
径が零のときの角度に変更されることになる。以
上のようにして直径の大小にかかわらず、同じ弾
力に対してほとんど同じ角度となるのである。
A correction device 15 corrects the position of the rollers 2 and 3 with respect to the roller 1, and corrects the position of the rollers 2 and 3 in accordance with the diameter of the elongated object 4. In other words, block 16 integrated with rod 7
The correction device 15 is constructed by installing a base frame 5 and an integrated arm 5A opposite to each other, and a block 16 and an arm 5A having the same diameter as the long object 4 to be measured are arranged between the block 16 and the arm 5A. Clamp the gauge 17. This allows the rod 7 to be adjusted by the diameter of the gauge 17.
is displaced upward. Due to this displacement, the roller 2,
3 will be displaced, so if the tension exerted by the long object 4 on the roller 1 is the same, regardless of the diameter of the long object 4, the long object 4 to which the roller 1 is attached will be displaced. The angles of object 4 (angles θ 1 and θ 2 in FIG. 2) are almost the same. In other words, even if the tension is the same, if the diameter is large, the angle should be small, but if the rollers 2 and 3 are raised by the diameter, the diameter will approximately become zero. The angle will be changed to that at . As described above, regardless of the size of the diameter, the angle will be almost the same for the same elasticity.

前記した直径は線径検出装置18により検出さ
れる。これはロツド7の変位から線径(直径)を
検出するようにしている。これもたとえばCCD
型イメージセンサによつて構成される。19は検
出用の発光素子で、ロツド7に一体のアーム20
に支持されてあり、21は縦方向に並べられた受
光素子である。これもロツド7の変位に基く発光
素子19からの光を受光する受光素子からロツド
7の変位量を検出し、これから線径を求める。な
お受光素子13,21は1個で共用してもよい。
The diameter described above is detected by the wire diameter detection device 18. This is so that the wire diameter is detected from the displacement of the rod 7. This is also an example of CCD
It is composed of a type image sensor. 19 is a light emitting element for detection, and an arm 20 integrated with the rod 7
21 are light receiving elements arranged in the vertical direction. Also in this case, the amount of displacement of the rod 7 is detected from a light receiving element that receives light from the light emitting element 19 based on the displacement of the rod 7, and the wire diameter is determined from this. Note that one light receiving element 13, 21 may be used in common.

以上の説明により、第5図に示す構成からは、
ローラ1の変位量と、長尺物4の線径が各検出装
置11,18から検出できることが理解されよ
う。なおロツド7はバネ8によりローラ1の反力
(バネ9の弾力)より大きな力で附勢されている
ので、測定中にローラ2,3が上下方向に変位す
ることはない。
According to the above explanation, from the configuration shown in FIG.
It will be understood that the displacement amount of the roller 1 and the wire diameter of the elongated object 4 can be detected by each of the detection devices 11 and 18. Note that since the rod 7 is urged by the spring 8 with a force greater than the reaction force of the roller 1 (the elasticity of the spring 9), the rollers 2 and 3 will not be displaced in the vertical direction during the measurement.

各検出装置11,18からの検出値は第6図の
マイクロコンピユータ22の演算制御装置24に
与えられる。別に読出し専用のメモリ(ROM)
25が用意されている。これは既述したように演
算によつて求めるX0の変数につき(3)式の関数値
がX0をアドレスにして格納されてある。これに
より(3)式の演算の実行が省略できて都合がよい。
この場合格納されたデータはこの測定機構を構成
する機械系の個々の部品並びに組立時のバラツキ
の修正が加味された値になることはいうまでもな
い。
The detection values from each detection device 11, 18 are given to an arithmetic and control device 24 of a microcomputer 22 shown in FIG. Separate read-only memory (ROM)
25 are available. As mentioned above, the function value of equation (3) is stored for the variable X 0 obtained by calculation, with X 0 as the address. This is convenient because execution of the calculation in equation (3) can be omitted.
Needless to say, the stored data in this case will be a value that takes into account corrections for variations in the individual parts of the mechanical system constituting this measuring mechanism and during assembly.

測定にあたつては、第5図に示すように長尺物
4を各ローラ1〜3に順次添纒させる。このとき
の長尺物4のテンシヨンにより、ローラ1は下方
に変位される。この変位量は位置検出装置11に
より検出され、その検出値は線径検出装置18に
よる検出値とともに第6図のマイクロコンピユー
タ23の演算制御装置24に与えられる。演算制
御装置24は両検出装置11,18の検出値をも
つて(4)式にしたがつて演算しX0を求める。そし
てこのX0をアドレスとして読出し専用のメモリ
25から(3)式に示されるテンシヨンTを読出す。
なお長尺物の剛性の影響を無視する場合は、(4)式
で求めるX0に代えてセンシングローラの変位置
X00をそのまま用いてよい。メモリ25から読出
されたテンシヨンTは、演算制御装置24によつ
て(5)式のf(x)として使用されて(5)式の演算を行
う。
In the measurement, a long object 4 is sequentially attached to each of the rollers 1 to 3 as shown in FIG. At this time, the tension of the elongated object 4 causes the roller 1 to be displaced downward. This amount of displacement is detected by the position detecting device 11, and the detected value is given to the arithmetic and control device 24 of the microcomputer 23 in FIG. 6 together with the detected value by the wire diameter detecting device 18. The arithmetic and control device 24 calculates X 0 using the detection values of both the detection devices 11 and 18 according to equation (4). Then, using this X 0 as an address, the tension T shown in equation (3) is read out from the read-only memory 25.
Note that when ignoring the influence of the rigidity of a long object, the displacement position of the sensing roller can be used instead of X 0 determined by equation (4).
X 00 may be used as is. The tension T read from the memory 25 is used by the arithmetic and control unit 24 as f(x) in equation (5) to perform the calculation in equation (5).

具体的には予め長尺物4のローラ1に与えるテ
ンシヨンが零のときの、ローラ1の基準位置(第
4図における角αが0度、すなわちローラ1に作
用する重力とローラ1の変位方向とが垂直関係に
あるときの位置)からの変位量xtを記憶指令装置
21の指令に基いてマイクロコンピユータ22の
記憶装置23のRAMに記憶させておく。そして
前記の演算にあたりこの記憶値を読出し、検出装
置11の検出値及びさきのテンシヨンTとをもつ
て(5)式の演算を演算制御装置24が実行する。そ
の演算値は検出部の自重の影響を回避した真正な
テンシヨン値であり、これは表示装置26により
表示される。
Specifically, the reference position of the roller 1 when the tension applied to the roller 1 of the long object 4 is zero (the angle α in FIG. 4 is 0 degrees, that is, the gravity acting on the roller 1 and the direction of displacement of the roller 1) The amount of displacement xt from the vertical position) is stored in the RAM of the storage device 23 of the microcomputer 22 based on a command from the storage command device 21. Then, in the above calculation, this stored value is read out, and the calculation control unit 24 executes the calculation of equation (5) using the detection value of the detection device 11 and the previous tension T. The calculated value is a true tension value that avoids the influence of the detection unit's own weight, and is displayed on the display device 26.

以上詳述したようにこの発明によれば、センシ
ングローラの傾むきによる自重の影響を回避した
極めて正確なテンシヨン測定が可能となる効果を
奏する。
As described in detail above, according to the present invention, it is possible to perform extremely accurate tension measurement while avoiding the influence of the sensing roller's own weight due to its inclination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテンシヨンの測定原理を説明するため
の検出部分の拡大正面図、第2図は第1図のベク
トル図、第3図は同解析図、第4図aは検出部の
正面図、第4図bは同解析図、第5図はこの発明
の実施例を示す斜視図、第6図は演算構成を示す
ブロツク図である。 1……センシングローラ、2,3……ガイドロ
ーラ、11……位置検出装置、18……線径検出
装置、21……記憶指令装置、23……記憶装
置、26……表示装置。
Fig. 1 is an enlarged front view of the detection part to explain the principle of tension measurement, Fig. 2 is a vector diagram of Fig. 1, Fig. 3 is an analysis diagram of the same, Fig. 4a is a front view of the detection part, FIG. 4b is an analysis diagram of the same, FIG. 5 is a perspective view showing an embodiment of the present invention, and FIG. 6 is a block diagram showing the calculation configuration. 1...Sensing roller, 2, 3...Guide roller, 11...Position detection device, 18...Wire diameter detection device, 21...Storage command device, 23...Storage device, 26...Display device.

Claims (1)

【特許請求の範囲】 1 2個のガイドローラと、前記両ガイドローラ
の中間に配置されてあり、被測定物のテンシヨン
によつて変位されるセンシングローラと、前記セ
ンシングローラの、前記被測定物のテンシヨンに
基づく変位量xを検出する第1の検出手段と、前
記第1の検出手段による検出値に基づいて前記テ
ンシヨンf(x)を演算する第1の演算手段と、前記
センシングローラのテンシヨンによる変位方向と
前記センシングローラに作用する重力の方向とが
垂直で、かつテンシヨンが零であるときの前記セ
ンシングローラの位置x1と、テンシヨンが零であ
るときの実際の測定時における前記センシングロ
ーラの位置x2との変位量(x2−x1=xt)を検出す
る第2の検出手段と、前記第1及び第2の検出手
段の検出値と前記第1の演算手段の演算値f(x)と
をもつて、 (1−xt/x)・f(x)を演算し、その演算値を、求 めるテンシヨンとする第2の演算手段とからなる
テンシヨンメータ。
[Scope of Claims] 1. Two guide rollers, a sensing roller disposed between the two guide rollers and displaced by the tension of the object to be measured, and the object to be measured of the sensing roller. a first detection means for detecting a displacement amount x based on the tension of the sensing roller; a first calculation means for calculating the tension f(x) based on a detected value by the first detection means; The position x 1 of the sensing roller when the direction of displacement due to the gravitational force is perpendicular to the direction of gravity acting on the sensing roller and the tension is zero, and the sensing roller at the time of actual measurement when the tension is zero. a second detection means for detecting the amount of displacement (x 2 −x 1 =xt) with respect to the position x 2 of (x), and a second calculation means that calculates (1-xt/x)·f(x) and uses the calculated value as the desired tension.
JP3112184A 1984-02-20 1984-02-20 Tension meter Granted JPS60173436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3112184A JPS60173436A (en) 1984-02-20 1984-02-20 Tension meter
DE19853505693 DE3505693C2 (en) 1984-02-20 1985-02-19 Tension meter for determining the tension of an elongate measurement object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112184A JPS60173436A (en) 1984-02-20 1984-02-20 Tension meter

Publications (2)

Publication Number Publication Date
JPS60173436A JPS60173436A (en) 1985-09-06
JPH0516539B2 true JPH0516539B2 (en) 1993-03-04

Family

ID=12322579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112184A Granted JPS60173436A (en) 1984-02-20 1984-02-20 Tension meter

Country Status (1)

Country Link
JP (1) JPS60173436A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634481B2 (en) * 2017-07-31 2020-04-28 Justin Scott Thomason Tower guy wire maintenance apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129175A (en) * 1974-09-05 1976-03-12 Kubota Ltd ROOPUCHORYOKUKENSHUTSUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129175A (en) * 1974-09-05 1976-03-12 Kubota Ltd ROOPUCHORYOKUKENSHUTSUSOCHI

Also Published As

Publication number Publication date
JPS60173436A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
US4587855A (en) Tensionmeter
JP2988588B2 (en) Position measuring device
JP3634275B2 (en) Position measuring device
EP1766324A1 (en) Measurement probe for use in coordinate measuring machines
KR930020260A (en) Method for determining the contact position of the applied force on the display screen and its sensing device
US6543149B1 (en) Coordinate measuring system
JP5158791B2 (en) measuring device
JPH05215624A (en) Apparatus for supporting touch panel and measuring force working on touch panel
JPH0516539B2 (en)
US4689892A (en) Apparatus and method of measuring surface heights
US4748748A (en) Method and apparatus for measuring height variations on a floor surface
JPH0652208B2 (en) Tension meter
US11709050B2 (en) Position measurement method using a calibration plate to correct a detection value from the position detector
JPS5892833A (en) Measuring device for position of center of gravity
US4113040A (en) Null transducer for an analytical balance
US5659141A (en) Apparatus for measuring minute forces
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
US3940975A (en) Extensometer support
JPH067053B2 (en) Attitude sensor
JPH0428686A (en) Installation error measuring device for elevator guide rail
CN215893609U (en) Slope prism detection device
JPH0650123A (en) Oil quantity detection device of engine oil
JPS62184331A (en) Three-point bending elasticity coefficient measuring machine utilizing moving load
JPS6117912A (en) Displacement measuring mechanism
JPH0342508A (en) Measuring instrument