JPH05164804A - Fault section detecting method for power cable line - Google Patents

Fault section detecting method for power cable line

Info

Publication number
JPH05164804A
JPH05164804A JP35215591A JP35215591A JPH05164804A JP H05164804 A JPH05164804 A JP H05164804A JP 35215591 A JP35215591 A JP 35215591A JP 35215591 A JP35215591 A JP 35215591A JP H05164804 A JPH05164804 A JP H05164804A
Authority
JP
Japan
Prior art keywords
fault
phase
current
section
earthing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35215591A
Other languages
Japanese (ja)
Other versions
JP2794237B2 (en
Inventor
Kazuo Amano
一夫 天野
Shotaro Yoshida
昭太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP35215591A priority Critical patent/JP2794237B2/en
Publication of JPH05164804A publication Critical patent/JPH05164804A/en
Application granted granted Critical
Publication of JP2794237B2 publication Critical patent/JP2794237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To correctly detect a fault section of a power cable line by presuming a fault section from combination of the intensity and direction of a fault current flowing through the earthing conductor of each ordinary junction box and intensity of a cable conductor current, and, thereafter, by measuring the degree of the correlated phase- difference between the earth current in the fault phase and the one in another phase. CONSTITUTION:A current sensor 30 is set up in the earthing line 20 of each of ordinary junction boxes N1-N3 and the intensity and direction of a current flowing through the earthing line 20 are continually measured with the said sensor 30. And a current sensor 32 is set up into a terminal 18 of each phase of a power load and the current flowing through each of cable conductors is continually measured. When the fault of earthing takes place, the records of the current sensors 30 and 32 are examined and it is assumed from the combined pattern that there is the fault in, for instance, D section. But, when the earthing fault occurs at a close position of the ordinary junction box N2, it is difficult to decide which of A or D is in fault. Hence, by using a phase difference measuring device 40 connected to the junction box N1 one step nearer to the power supply side, the degree of correlated phase difference of an earth current between the faulty phase and another phase is measured and fault section is confirmed based on these results.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力ケーブル線路に
おける地絡事故区間の検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a ground fault accident section in a power cable line.

【0002】[0002]

【従来の技術】図3に示す次の方法が知られている(特
開昭62−265578号公報参照)。同図において、
10はケーブル、16は電源側の終端部、18は負荷側
の終端部である。N1,N2,−−−−は普通接続箱を
示す。以下煩雑を避けるため、普通接続箱N1,N2な
どと書くべきところを、単にN1,N2などと書くこと
にする。NはNJのNである。普通接続箱を総称すると
きはNJで示す。20は接地線である。また、I1,I
2,−−−−は絶縁接続箱を示す。これも、絶縁接続箱
I1,I2などと書くべきところを、単にI1,I2な
どと書くことにする。IはIJのIである。絶縁接続箱
を総称するときはIJで示す。22はボンド線である。
2. Description of the Related Art The following method shown in FIG. 3 is known (see Japanese Patent Laid-Open No. 62-265578). In the figure,
Reference numeral 10 is a cable, 16 is a power supply side end portion, and 18 is a load side end portion. N1, N2, ----- indicate ordinary junction boxes. In order to avoid complication, the ordinary connection boxes N1, N2, etc. will be simply written as N1, N2, etc. N is N of NJ. Ordinary junction boxes are collectively referred to as NJ. 20 is a ground wire. Also, I1, I
2, ----- indicates an insulated junction box. Also in this case, what should be written as the insulated junction boxes I1, I2, etc. will be simply written as I1, I2, etc. I is I of IJ. IJ is used as a general term for insulated junction boxes. 22 is a bond line.

【0003】各NJの接地線20に電流センサ30を取
り付ける。また、負荷側の各相の終端部18に、それぞ
れケーブル導体電流測定用の電流センサ32を設ける。
A current sensor 30 is attached to the ground wire 20 of each NJ. Further, a current sensor 32 for measuring the cable conductor current is provided at each of the terminal ends 18 of the respective phases on the load side.

【0004】たとえば、図3のように、R相のA区間
(N2とI5との間)で、地絡事故が発生したとする。
まず、電源側(左側)に流れる事故電流Iは、N2の接
地線20で分流する。R相の電流センサ30が検出する
事故電流は、大きさがたとえばほぼ2/3I(線路インピ
ーダンスにより変わる)で、方向は右向きである。な
お、左右は図面についていう。また、S相とT相の電流
センサ30が検出する事故電流は、大きさがたとえばほ
ぼ1/3Iで、方向は左向きである。
For example, as shown in FIG. 3, it is assumed that a ground fault accident occurs in the R-phase A section (between N2 and I5).
First, the fault current I flowing on the power supply side (left side) is shunted by the ground wire 20 of N2. The magnitude of the fault current detected by the R-phase current sensor 30 is, for example, approximately 2 / 3I (depending on the line impedance), and the direction is rightward. The left and right refer to the drawings. The magnitude of the fault current detected by the S-phase and T-phase current sensors 30 is, for example, approximately 1 / 3I, and the direction is leftward.

【0005】一方、負荷側に流れる事故電流I’は、ボ
ンド線22、S相のB区間、T相のC区間を通り、N3
の接地線20で分流する。そしてT相の電流センサ30
が検出する電流は、大きさがたとえばほぼ2/3I’で、
方向は右向きである。また、S相とR相の電流センサ3
0が検出する電流は、大きさがたとえばほぼ1/3I’
で、方向は左向きである。
On the other hand, the fault current I ′ flowing to the load side passes through the bond wire 22, the S-phase B section, the T-phase C section, and the N3.
It is shunted at the ground wire 20 of. And the T-phase current sensor 30
The current detected by is, for example, approximately 2 / 3I ',
The direction is to the right. In addition, the S-phase and R-phase current sensors 3
The current detected by 0 has a magnitude of, for example, about 1 / 3I '.
And the direction is left.

【0006】なお、S相のB、T相のCの各区間で地絡
事故が生じたとしても、N2,N3において上記同様の
事故電流が検出される。
Even if a ground fault occurs in each of the S-phase B section and the T-phase C section, the same fault current as above is detected in N2 and N3.

【0007】そこで、地絡事故が発生したとき、各NJ
の電流センサ30の記録を調べ、 上記のように、3相のうち、1相だけ電流値が大きく
かつ方向が反対のものを見つけることにより、事故電流
の流れる区間を知り、 電流センサ32により、事故相を知ると、事故区間が
分かる。
Therefore, when a ground fault occurs, each NJ
By checking the record of the current sensor 30 of No. 3, and finding the one in which the current value is large and the direction is opposite in only one of the three phases as described above, the section in which the fault current flows is known. If you know the accident phase, you can know the accident section.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記の方法を
実施したとき、地絡がNJのごく近く(区間長により異
なるが数m〜数10m以内)で発生すると、下記のように区
間を間違える恐れがあった。
However, when a ground fault occurs in the vicinity of NJ (a few meters to a few tens of meters, depending on the section length) when the above method is carried out, the section is mistaken as follows. I was afraid.

【0009】たとえば図4のように、D区間(R相のI
4〜N2間)のN2のすぐ左側で地絡が起きたとする。
すると、負荷側に向かって非常に大きな電流I’が流れ
る。そのたとえばほぼ2/3はN2の接地線20に流れる
が、、他のたとえばほぼ1/3は上記のA,B,Cの各区
間を流れ、N3のT相の電流センサ30により検出され
る。N2の接地線20に流れる事故電流は、分流してN
3のR相とS相の各電流センサ30で検出される。しか
し分流する電流の一部は大地にも流れるので、R相,S
相の各電流センサ30で検出される電流はT相の電流セ
ンサ30で検出される電流より小さい。この事故電流の
パターンは上記の図3の場合と同じなので、A区間で事
故が起きたと間違えることがある。あるいはA区間かD
区間か分からないことがある。
For example, as shown in FIG. 4, the D section (R phase I
It is assumed that a ground fault occurs just to the left of N2 (between 4 and N2).
Then, a very large current I ′ flows toward the load side. About 2/3 of that, for example, flows to the ground line 20 of N2, but the other, for example about 1/3, flows through the sections A, B, and C, and is detected by the T-phase current sensor 30 of N3. .. The fault current flowing through the ground wire 20 of N2 is shunted to N
The R-phase and S-phase current sensors 30 of 3 are detected. However, part of the shunt current also flows to the ground, so the R phase, S
The current detected by each phase current sensor 30 is smaller than the current detected by the T phase current sensor 30. Since the pattern of this accident current is the same as the case of FIG. 3 described above, it may be mistaken for an accident to occur in the section A. Or section A or D
You may not know the section.

【0010】[0010]

【課題を解決するための手段】上記のように各NJの各
接地線を流れる事故電流の大きさと方向ならびにケーブ
ル導体電流の大きさの組合せパターンから事故区間を推
定した後、さらに事故相と他の相との前記接地線電流の
相間位相差の大きさを測定する。
As described above, after estimating the fault section from the combination pattern of the magnitude and direction of the fault current flowing through each ground wire of each NJ and the magnitude of the cable conductor current, the fault phase and other The magnitude of the phase difference between the ground wire current and the phase of the ground wire is measured.

【0011】相間位相差は、上記の各NJの電流センサ
30の記録から図1のように位相差測定器40により測
定する。なお、位相差測定器40は他のNJにも取り付
けるが、図示は省略してある。上記の方法により、たと
えば事故がA区間と推定されたとき、あるいはA区間か
D区間か不明なとき、相間位相差の測定はN1(電源側
に一つだけ近いNJ)で行う。
The phase difference between phases is measured by the phase difference measuring device 40 as shown in FIG. 1 from the recording of the current sensor 30 of each NJ. The phase difference measuring device 40 is also attached to another NJ, but is not shown. By the above method, for example, when the accident is estimated to be the section A, or when it is unclear whether the section is the section A or the section D, the phase difference between phases is measured at N1 (NJ close to the power supply side by one).

【0012】[0012]

【作 用】N1における事故電流の相間位相差は、Dお
よびA区間内の地絡位置により変化する。これは、地絡
位置が変化すると、それに応じてシース帰路インピーダ
ンスが違ってくるためである。
[Operation] The phase difference between phases of the fault current in N1 changes depending on the ground fault position in sections D and A. This is because when the ground fault position changes, the sheath return path impedance changes accordingly.

【0013】DおよびA区間内の地絡位置とN1におけ
る事故電流の相間位相差との関係は、実際のケーブル線
路について予め計算により求めておくことができる。一
例として、A(負荷側)またはD(電源側)区間で地絡
した場合における、N2から事故点までの距離とN1に
おけるR相とS相間の事故電流位相差(単位:度)との
関係を、表1に示し、また表1の関係をグラフにして図
2に示した。
The relationship between the ground fault position in the D and A sections and the phase difference between the fault currents at N1 can be calculated in advance for an actual cable line. As an example, the relationship between the distance from N2 to the fault point and the fault current phase difference between the R and S phases in N1 (unit: degree) in the case of a ground fault in the A (load side) or D (power source side) section Is shown in Table 1, and the relationship of Table 1 is shown in a graph in FIG.

【0014】[0014]

【表1】 ただしこの場合、 N1〜I3間は557m、 I3〜I4間は639m、 I4〜N2間は621m、 N2〜I5間は683m、 I5〜I6間は647m、 I6〜N3間は577m、 である。[Table 1] However, in this case, N1 to I3 are 557 m, I3 to I4 are 639 m, I4 to N2 are 621 m, N2 to I5 are 683 m, I5 to I6 are 647 m, and I6 to N3 are 577 m.

【0015】表1から、位相差が約3度以上の場合、事
故点は、N2から左側(電源側)のD区間と判断でき
る。また約3度以下の場合は、N2から右側のA区間と
判断できる。
From Table 1, when the phase difference is about 3 degrees or more, the accident point can be judged to be the section D on the left side (power supply side) from N2. If it is less than about 3 degrees, it can be judged to be the section A on the right side from N2.

【0016】N2以外のNJについても、上記と同様に
行うことができる。
The same operation as described above can be performed for NJs other than N2.

【0017】[0017]

【発明の効果】各NJの各接地線を流れる事故電流の大
きさと方向ならびにケーブル導体電流の大きさの組合せ
パターンから事故区間を推定した後、さらに事故相と他
の相との前記接地線電流の相間位相差の大きさを測定す
るので、地絡がNJのごく近く(数m〜数10m以内)で発
生した場合でも、上記のように事故区間を正しく検出す
ることができる。
EFFECTS OF THE INVENTION After estimating the fault section from the combination pattern of the magnitude and direction of the fault current flowing through each ground wire of each NJ and the magnitude of the cable conductor current, the ground line currents of the fault phase and other phases are further estimated. Since the magnitude of the phase difference between the phases is measured, even if a ground fault occurs in the vicinity of NJ (within several meters to several tens of meters), the accident section can be correctly detected as described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の方法を説明するための説明
図。
FIG. 1 is an explanatory diagram for explaining a method according to an embodiment of the present invention.

【図2】接地線事故電流の相間位相差の一例を示す図
表。
FIG. 2 is a chart showing an example of phase difference between ground wire fault currents.

【図3】従来技術の説明図。FIG. 3 is an explanatory diagram of a conventional technique.

【図4】本発明の解決すべき課題の説明図。FIG. 4 is an explanatory diagram of a problem to be solved by the present invention.

【符号の説明】[Explanation of symbols]

10 ケーブル 12 ケーブル導体 14 ケーブルシース 16 電源側終端部 18 負荷側終端部 20 接地線 22 ボンド線 30,32 電流センサ 40 位相差測定器 10 Cables 12 Cable Conductors 14 Cable Sheaths 16 Power Supply Terminals 18 Load Terminals 20 Ground Wires 22 Bond Wires 30, 32 Current Sensors 40 Phase Difference Measuring Instruments

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 各普通接続箱の接地線を流れる電流の大
きさと方向とを、各相ごとに常時測定しておき、またケ
ーブル導体電流の大きさを各相ごとに常時測定してお
き、地絡事故が発生したとき、前記各普通接続箱の各接
地線を流れる事故電流の大きさと方向ならびに前記ケー
ブル導体電流の大きさの組合せパターンから事故区間を
推定し、さらに事故相と他の相との前記事故電流の相間
位相差を測定して事故区間を確定する、電力ケーブル線
路の事故区間検出方法。
1. The magnitude and direction of the current flowing through the ground wire of each ordinary junction box is constantly measured for each phase, and the magnitude of the cable conductor current is always measured for each phase. When a ground fault occurs, the fault section is estimated from the combination pattern of the magnitude and direction of the fault current flowing through each ground wire of each of the ordinary junction boxes and the magnitude of the cable conductor current, and the fault phase and other phases A method for detecting a faulty section of a power cable line, in which the faulty section is determined by measuring the phase difference between the fault currents.
JP35215591A 1991-12-13 1991-12-13 Fault detection method for power cable lines Expired - Lifetime JP2794237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35215591A JP2794237B2 (en) 1991-12-13 1991-12-13 Fault detection method for power cable lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35215591A JP2794237B2 (en) 1991-12-13 1991-12-13 Fault detection method for power cable lines

Publications (2)

Publication Number Publication Date
JPH05164804A true JPH05164804A (en) 1993-06-29
JP2794237B2 JP2794237B2 (en) 1998-09-03

Family

ID=18422157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35215591A Expired - Lifetime JP2794237B2 (en) 1991-12-13 1991-12-13 Fault detection method for power cable lines

Country Status (1)

Country Link
JP (1) JP2794237B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97781A1 (en) * 1998-03-11 2003-08-20 Bicc Gen Uk Cables Ltd Method of and apparatus for detecting cable oversheath faults and installations in which they are used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97781A1 (en) * 1998-03-11 2003-08-20 Bicc Gen Uk Cables Ltd Method of and apparatus for detecting cable oversheath faults and installations in which they are used

Also Published As

Publication number Publication date
JP2794237B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JPH0242196B2 (en)
JPH05164804A (en) Fault section detecting method for power cable line
US4410850A (en) Water-compensated open fault locator
US3037161A (en) Method and apparatus for locating faults in transmission lines
JP2568097B2 (en) Power cable accident section detection method
JPS62261078A (en) Detection of fault point for cable
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP3229437U (en) Clamp ammeter
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JPH11326436A (en) Diagnostic device for insulation deterioration of closed bus bar
JPH02262072A (en) Fault section locating system of underground transmission line
JP2568092B2 (en) Power cable accident section detection method
JPH01162170A (en) Detection of fault section for power cable
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JPH01299476A (en) Method for determining failed section of underground transmission line
JP2568346Y2 (en) Cable loss tangent measurement device
JPH02231580A (en) Method for surveying accident point of three-phase cable
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPS5925469B2 (en) Method for detecting the location of electrical insulation layer defects within a limited area
JPH02173579A (en) Deciding method for insulation deterioration
JPH04183219A (en) Power cable line and partial discharge detecting method therefor
JPH01299477A (en) Method for determining failed section of underground transmission line
JP2009198282A (en) Leakage current measurement apparatus
JPH04286970A (en) Measuring equipment of deterioration of insulation under live wire of power cable

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120626

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14