JPH0516362A - Liquid discharge device - Google Patents

Liquid discharge device

Info

Publication number
JPH0516362A
JPH0516362A JP16964291A JP16964291A JPH0516362A JP H0516362 A JPH0516362 A JP H0516362A JP 16964291 A JP16964291 A JP 16964291A JP 16964291 A JP16964291 A JP 16964291A JP H0516362 A JPH0516362 A JP H0516362A
Authority
JP
Japan
Prior art keywords
liquid
discharge
electrodes
flow path
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16964291A
Other languages
Japanese (ja)
Inventor
Tsutomu Ota
勉 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16964291A priority Critical patent/JPH0516362A/en
Publication of JPH0516362A publication Critical patent/JPH0516362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To enable high-speed repetitive operation to be performed by a method wherein a pair of electrodes are arranged on an inner surface of a liquid passage near a liquid discharge opening of an ink jet printer or the like, liquid is gasified by discharge energy between a pair of the electrodes, and a liquid drop is discharged by pressure at that time. CONSTITUTION:A discharge head 1 of the title liquid discharge device is constructed by a passage 2 and tank 3 connected thereto, of which an inside is filled by liquid. A positive electrode 5 and a negative electrode 6 are formed as a pair of electrodes in the passage 2 near a discharge opening 4. Then, the liquid is gasified by heating by discharge energy when voltage is applied between both electrodes 5, 6 to discharge between both electrodes, and a bubble 7 is generated. A liquid drop 8 is discharged from the discharge opening 4 by pressure of the bubble 7. Since an energy supply part for discharging the liquid can be structured finely, simply thereby, a fine and highly integrated multi-nozzle discharge device can be easily realized and besides, repetitive operation at a high speed is enabled to be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微量定量吐出機やインク
ジェットプリンターに使う事ができる液体吐出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid ejecting apparatus which can be used in a micro-quantity dispensing machine or an ink jet printer.

【0002】[0002]

【従来の技術】従来の液体吐出装置は液体の微粒子を吐
出させる為の力を発生させる手段として液体流路の外部
から機械的な力を直接作用させる方法や液体流路内部に
微細な電気ヒーターを配置しこれを加熱して液体流路内
部に泡を発生させて間接的な力を作用させる方法があっ
た。前者の具体例を図3に示す。吐出ヘッド1には流路
2とこれに連続するタンク3があり内部は液体で満たし
てある。流路2の先端部は外部に開口し吐出口4となっ
ている。吐出ヘッド1のうち流路2にかかる一部分の肉
厚を薄くしここに圧電素子12を接着してある。一部分
の肉厚を薄くする理由は、圧電素子12の屈曲運動によ
り発生する力を有効に液体に作用させる為であり図3
(b)のように圧電素子12に電圧を印加して流路2の
一部を内側に変形させる事により吐出口4から液滴8を
吐出させるものであった。一方後者の電気ヒーターによ
り液滴を吐出させる方法を図4に示す。前例と同様に吐
出ヘッド1は流路2とこれに通ずるタンク3によって構
成され吐出口4の近傍の流路2に電気ヒーター13を形
成してある。電気ヒーター13に電流を流して加熱する
事により図4(b)に示すように流路2内部に泡7が発
生し吐出口4から液滴8が吐出するものであった。前者
と比較して後者のほうが小型化微細化が可能であると同
時に製造し易い為近年はこの方法を用いたインクジェッ
トプリンターが多く製造され利用されるようになってい
た。
2. Description of the Related Art A conventional liquid ejecting apparatus is a method for directly applying a mechanical force from the outside of a liquid flow path or a fine electric heater inside the liquid flow path as a means for generating a force for ejecting liquid fine particles. There was a method of arranging and heating this to generate bubbles inside the liquid flow path to exert an indirect force. A specific example of the former is shown in FIG. The ejection head 1 has a flow path 2 and a tank 3 continuous with the flow path 2, and the inside thereof is filled with a liquid. The tip of the flow path 2 is opened to the outside and serves as a discharge port 4. The thickness of a part of the discharge head 1 that is in contact with the flow path 2 is reduced, and the piezoelectric element 12 is bonded thereto. The reason for reducing the thickness of a part is to effectively apply the force generated by the bending motion of the piezoelectric element 12 to the liquid.
As in (b), a voltage is applied to the piezoelectric element 12 to deform a part of the flow path 2 inward, so that the droplet 8 is ejected from the ejection port 4. On the other hand, FIG. 4 shows a method of ejecting droplets by the latter electric heater. Similar to the previous example, the discharge head 1 is composed of the flow path 2 and the tank 3 communicating with the flow path 2, and the electric heater 13 is formed in the flow path 2 near the discharge port 4. By heating the electric heater 13 by applying an electric current, bubbles 7 are generated inside the flow path 2 and droplets 8 are ejected from the ejection port 4 as shown in FIG. 4B. In comparison with the former, the latter is more compact and can be miniaturized, and at the same time is easier to manufacture. In recent years, therefore, many inkjet printers using this method have been manufactured and used.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では液滴
を吐出させる為の泡発生方法として電気ヒーター加熱を
利用している。この為ある程度の面積の電気ヒーターを
流路内に構成する事が必要で複数吐出口を有するマルチ
ノズルヘッドの高集積化のネックとなっていた。また泡
の発生は電気ヒーターの加熱とこの熱を液体に熱伝導す
る事により誘起される為に余分なエネルギーを投入する
必要があると同時に、繰り返し吐出を行なう場合加熱時
の時間遅れや電気ヒーター近傍の冷却に時間が必要であ
るなど熱的な制御が複雑であるとともに高速繰り返し性
に難があるという欠点を有していた。
In the above-mentioned prior art, heating with an electric heater is used as a bubble generating method for discharging droplets. For this reason, it is necessary to construct an electric heater having a certain area in the flow path, which has been a bottleneck for high integration of a multi-nozzle head having a plurality of ejection ports. In addition, since the generation of bubbles is induced by heating the electric heater and conducting this heat to the liquid, it is necessary to input extra energy, and at the same time when repeatedly discharging, there is a delay in heating or the electric heater. It has drawbacks in that thermal control is complicated, such as the time required for cooling in the vicinity, and high-speed repeatability is difficult.

【0004】本発明の目的は複数吐出口を有する高集積
で高速動作可能なマルチノズル液体吐出装置を安価に提
供する事にある。
An object of the present invention is to provide a highly integrated multi-nozzle liquid ejecting apparatus which has a plurality of ejecting ports and can operate at high speed at low cost.

【0005】[0005]

【課題を解決するための手段】上記目的は、液体流路内
面に一対の電極を配置しこの電極間に電圧を印加して放
電させこの放電エネルギーにより液体流路内に泡を発生
しこれにより生ずる圧力によって液体滴を吐出させる事
で達成される。
The above object is to arrange a pair of electrodes on the inner surface of a liquid flow path, apply a voltage between the electrodes to cause discharge, and generate a bubble in the liquid flow path by the discharge energy. This is achieved by ejecting a liquid drop by the pressure generated.

【0006】[0006]

【実施例】以下本発明の一実施例を図1及び図2により
説明する。まず本発明実施例の基本的な原理を図1
(a)及び(b)により説明する。吐出ヘッド1は流路
2とこれに連続するタンク3により構成されており内部
は液体で満たしてある。吐出口4近傍の流路2の内部に
は一対の電極として正電極5と負電極6を形成してあ
る。このような構成において図1(b)のように正電極
5と負電極6の間に電圧を印加すると電極間で放電が発
生しこの放電エネルギーにより液体が加熱気化され泡7
を発生する。これにより吐出口4より液滴8が吐出され
る。このような構成において吐出させたい液体の体積・
吐出速度を制御する為に考慮しなければならない要因と
しては、液体の電気抵抗・絶縁抵抗・粘性・比熱や電極
間距離・印加電圧・放電時間それに流路断面積などがあ
る。流体に水を使った例では、流路断面積1600平方
マイクロメートル、電極間距離20マイクロメートルの
試作ヘッドで実験した場合60Vの放電電圧で約0.2
マイクロ立方センチメートルの液滴を吐出させる事がで
きている。応用例としてインクジェットプリンターのヘ
ッドがあり、この場合は吐出させる液体として特殊なイ
ンクを使用する事になるが特に電気的な性質を安定的に
放電が発生するように調整する事により15kHzまで
の高速繰り返し駆動ができる。図2は本発明の液体吐出
原理の特徴である高集積性を活かした実施例でマルチノ
ズルヘッドを示したものである。図2(a)に示すよう
にガラス板に吐出口及び流路に相当する溝を複数個加工
したノズル基板9とアルミナ製基板上にタングステンに
よる正電極5と負電極6を20マイクロメートルの間隔
で一対として複数個パターニングした電極基板10を接
着して一体化し図2(b)のようにマルチノズルヘッド
としたものである。この際放電発生部位を吐出口4の近
傍にする為に正電極5及び負電極6の表面は放電部14
及び給電部15以外の部分は絶縁膜11で覆っておく。
絶縁膜としては耐熱性・耐腐食性を確保する為SiO2
膜を使った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, the basic principle of the embodiment of the present invention is shown in FIG.
This will be described with reference to (a) and (b). The ejection head 1 is composed of a flow path 2 and a tank 3 continuous with the flow path 2, and the inside thereof is filled with a liquid. Inside the flow path 2 near the discharge port 4, a positive electrode 5 and a negative electrode 6 are formed as a pair of electrodes. In such a structure, when a voltage is applied between the positive electrode 5 and the negative electrode 6 as shown in FIG. 1B, a discharge is generated between the electrodes, and the discharge energy causes the liquid to be heated and vaporized to generate bubbles 7
To occur. As a result, the droplet 8 is ejected from the ejection port 4. The volume of liquid to be discharged in such a configuration
Factors that must be taken into consideration for controlling the discharge speed include electric resistance, insulation resistance, viscosity, specific heat of liquid, distance between electrodes, applied voltage, discharge time, and flow passage cross-sectional area. In the case of using water as the fluid, in the case of experimenting with a prototype head having a flow path cross-sectional area of 1600 square micrometers and a distance between electrodes of 20 micrometers, a discharge voltage of 60 V results in about 0.2.
It is possible to eject micro cubic centimeter droplets. As an application example, there is an inkjet printer head. In this case, a special ink is used as the liquid to be ejected, but especially by adjusting the electrical properties so that stable discharge is generated, high speed up to 15 kHz It can be driven repeatedly. FIG. 2 shows a multi-nozzle head in an embodiment that makes use of the high integration characteristic of the liquid ejection principle of the present invention. As shown in FIG. 2 (a), a nozzle substrate 9 in which a plurality of grooves corresponding to discharge ports and flow paths are formed on a glass plate, and a positive electrode 5 and a negative electrode 6 made of tungsten are provided on a substrate made of alumina at an interval of 20 micrometers Then, a plurality of patterned electrode substrates 10 are bonded and integrated to form a multi-nozzle head as shown in FIG. At this time, the surfaces of the positive electrode 5 and the negative electrode 6 are provided with the discharge part 14 so that the discharge generation site is near the discharge port 4.
Also, the portions other than the power feeding portion 15 are covered with the insulating film 11.
SiO2 is used as an insulating film to ensure heat resistance and corrosion resistance
I used a membrane.

【0007】[0007]

【発明の効果】本発明によれば、液体吐出の為のエネル
ギー供給部を微細かつ単純な構造にする事ができる為微
細且つ高集積度のマルチノズル吐出装置が容易に実現で
きる。またエネルギー供給が直接的である為エネルギー
変換効率が良く、高速の繰り返し動作が可能になる。
According to the present invention, since the energy supply unit for discharging liquid can be made fine and simple in structure, a fine and highly integrated multi-nozzle discharging device can be easily realized. Further, since the energy supply is direct, the energy conversion efficiency is good and high-speed repetitive operation becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の液体吐出装置の構造及び動
作原理を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure and operation principle of a liquid ejection device according to an embodiment of the present invention.

【図2】本発明の一実施例のマルチノズルヘッドの構造
を示す斜視図である。
FIG. 2 is a perspective view showing the structure of a multi-nozzle head according to an embodiment of the present invention.

【図3】従来の液体吐出装置の構造及び動作原理を示す
断面図である。
FIG. 3 is a cross-sectional view showing the structure and operation principle of a conventional liquid ejection device.

【図4】従来の液体吐出装置の構造及び動作原理を示す
断面図である。
FIG. 4 is a cross-sectional view showing the structure and operation principle of a conventional liquid ejection device.

【符号の説明】[Explanation of symbols]

1 吐出ヘッド 2 流路 3 タンク 4 吐出口 5 正電極 6 負電極 7 泡 8 液滴 9 ノズル基板 10 電極基板 11 絶縁膜 12 圧電素子 13 電気モーター 14 放電部 15 給電部 1 Discharge Head 2 Flow Path 3 Tank 4 Discharge Port 5 Positive Electrode 6 Negative Electrode 7 Bubble 8 Droplet 9 Nozzle Substrate 10 Electrode Substrate 11 Insulating Film 12 Piezoelectric Element 13 Electric Motor 14 Discharge Section 15 Power Supply Section

Claims (1)

【特許請求の範囲】 【請求項1】 液体吐出口近傍の液体流路内面に一対の
電極を対向もしくは並置し、該一対の電極間に電圧を印
加して放電させこの放電エネルギーにより液体が気化し
て泡になる時に発生する圧力によって液体滴を吐出させ
る事を特徴とする液体吐出装置。
Claim: What is claimed is: 1. A pair of electrodes are opposed or juxtaposed to the inner surface of the liquid flow path near the liquid discharge port, and a voltage is applied between the pair of electrodes to discharge the liquid. A liquid ejecting device characterized in that a liquid drop is ejected by a pressure generated when the ink is turned into bubbles.
JP16964291A 1991-07-10 1991-07-10 Liquid discharge device Pending JPH0516362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16964291A JPH0516362A (en) 1991-07-10 1991-07-10 Liquid discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16964291A JPH0516362A (en) 1991-07-10 1991-07-10 Liquid discharge device

Publications (1)

Publication Number Publication Date
JPH0516362A true JPH0516362A (en) 1993-01-26

Family

ID=15890270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16964291A Pending JPH0516362A (en) 1991-07-10 1991-07-10 Liquid discharge device

Country Status (1)

Country Link
JP (1) JPH0516362A (en)

Similar Documents

Publication Publication Date Title
KR100474851B1 (en) Ink expelling method amd inkjet printhead adopting the method
JP2880147B2 (en) Injection apparatus and injection method for inkjet printer
JPH0516362A (en) Liquid discharge device
JPH1158743A (en) Liquid jetting head and production method thereof
JP2650584B2 (en) Inkjet recording head
KR100205745B1 (en) Ejection apparatus and ejection method of inkjet printer
JP2001341309A (en) Thermal ink jet head
KR100205747B1 (en) Apparatus for ejection of inkjet printer and method thereof
TW590903B (en) Ink-jet print head with a chamber sidewall heating mechanism and a method for manufacturing the same
JPH02151446A (en) Ink jet recording apparatus
JPS6317623B2 (en)
JP3063970B2 (en) Injection device for inkjet printer
JPS6342872A (en) Ink jet recording head
JP3277203B2 (en) Liquid jet recording apparatus and recording head
KR20020048115A (en) Inkjet printhead
JPH0230544A (en) Printer
JP3109729B2 (en) Liquid jet recording head
US6106103A (en) Ink-jet spraying device and method using ultrasonic waves
KR100209522B1 (en) Ejection apparatus and method of inkjet printer
JPH0760963A (en) Ink jet head
JPS60196356A (en) Ink jet printer
JPH01150550A (en) Ink jet head
JPH0250842A (en) Ink jet recording apparatus
JPH0470148B2 (en)
JPH0530184B2 (en)