JPH05163493A - Production of gasoline - Google Patents

Production of gasoline

Info

Publication number
JPH05163493A
JPH05163493A JP3350478A JP35047891A JPH05163493A JP H05163493 A JPH05163493 A JP H05163493A JP 3350478 A JP3350478 A JP 3350478A JP 35047891 A JP35047891 A JP 35047891A JP H05163493 A JPH05163493 A JP H05163493A
Authority
JP
Japan
Prior art keywords
gasoline
density
vapor pressure
research octane
butane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3350478A
Other languages
Japanese (ja)
Other versions
JP2901797B2 (en
Inventor
Yutaka Ishikawa
豊 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP35047891A priority Critical patent/JP2901797B2/en
Publication of JPH05163493A publication Critical patent/JPH05163493A/en
Application granted granted Critical
Publication of JP2901797B2 publication Critical patent/JP2901797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain gasoline in good productivity by controlling research octane value, density and vapor pressure of a mixture of cracked gasoline, reformate, light naphtha and butane by using analyzed values of gas chromatography distillation and estimating physical properties in high accuracy. CONSTITUTION:In producing gasoline by mixing cracked gasoline with reformate, light naphtha, butane and optionally another gasoline base fraction, research octane value, density and vapor pressure of the mixture of cracked gasoline, reformate, light naphtha, butane and another gasoline base fraction are assumed by estimation formula I [(a1) to (a3) are coefficient; (n) is research octane value of mixed components; (p) is area fraction corrected with weight fraction; (f) is blending ratio (volume R)], formula II ((b1) to (b3) are coefficient; (d) is density of mixed components) and formula III ((c1) to (c3) are coefficient; (r) is vapor pressure of mixed components) utilizing analyzed result of gas chromatography distillation of the mixture and amounts of the components blended are adjusted based on the result to give gasoline having desired octane value, density and vapor pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分解ガソリン、改質ガソ
リン、軽質ナフサ、ブタン及びその他のガソリン基材留
分を混合して所望のリサーチオクタン価、密度及び蒸気
圧を有するガソリンを製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method of mixing cracked gasoline, reformed gasoline, light naphtha, butane and other gasoline base fractions to produce gasoline having a desired research octane number, density and vapor pressure. ..

【0002】[0002]

【従来の技術】分解ガソリン、改質ガソリン、軽質ナフ
サ、ブタン及びその他のガソリン基材留分を混合し、必
要に応じて添加剤を加えてガソリンを製造する場合、こ
れらガソリン原料成分の混合割合は、ガソリン原料成分
を混合して得られた混合物のリサーチオクタン価、密度
及び蒸気圧の測定結果に基づいて、所望のリサーチオク
タン価、密度及び蒸気圧を有するガソリンが得られるよ
う決定されている。リサーチオクタン価はJIS K
2280、密度はJIS K 2279、蒸気圧はJI
S K 2258に基づいて測定されるが、ガソリン製
造工程中でこれらの測定法に基づいてリサーチオクタン
価、密度、蒸気圧を測定することは操作が煩雑で時間を
要し、ガソリン製造工程中に連続的にこれらの値を測定
することは困難である。
2. Description of the Related Art When cracked gasoline, reformed gasoline, light naphtha, butane and other gasoline base fractions are mixed and additives are added as required to produce gasoline, the mixing ratio of these gasoline raw material components Is determined so that a gasoline having a desired research octane number, density and vapor pressure can be obtained based on the measurement results of the research octane number, density and vapor pressure of a mixture obtained by mixing gasoline raw material components. Research octane number is JIS K
2280, density is JIS K 2279, vapor pressure is JI
It is measured based on SK 2258, but measuring the research octane number, density, and vapor pressure based on these measuring methods in the gasoline manufacturing process is complicated and time-consuming, and continuous during the gasoline manufacturing process. It is difficult to measure these values.

【0003】ガスクロ蒸留を行い、リサーチオクタン
価、密度及び蒸気圧を推定する方法は知られている
(R.P.Walsh and J.V.Mortim
er,Hydrocarbon Processin
g,153(1971))。この方法はガスクロにより
分離したピークを31にグルーピングし、下記式に基づ
いて推定するものであるが、実測値と一致する満足な推
定値は得られていない。 オクタン価=Σ(ns・ps) 蒸気圧 =Σ(rs・ps) nsは各ピークのリサーチオクタン価、rsは各ピークの
蒸気圧、psは各ピークの面積分率である。
A method for estimating research octane number, density and vapor pressure by performing gas chromatography distillation is known (RP Walsh and JV Mortim).
er, Hydrocarbon Processin
g, 153 (1971)). According to this method, peaks separated by gas chromatography are grouped into 31 and estimated based on the following formula, but a satisfactory estimated value that agrees with the actually measured value has not been obtained. Octane = Σ (n s · p s ) the vapor pressure = Σ (r s · p s ) n s is research octane number of each peak, r s is the vapor pressure of each peak, p s is the area fraction of each peak ..

【0004】[0004]

【発明が解決しようとする課題】本発明は、ガソリン製
造工程中で、ガソリン原料成分を混合して得られた混合
物のリサーチオクタン価、密度及び蒸気圧を簡便な方法
で精度良く推定し、この推定値を連続的に把握すること
により、ガソリン製造の生産性を向上させることを目的
とする。
DISCLOSURE OF THE INVENTION The present invention estimates the research octane number, density and vapor pressure of a mixture obtained by mixing gasoline raw material components in a gasoline manufacturing process with a simple method and accurately It aims to improve the productivity of gasoline production by continuously grasping the value.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究を行った結果、ガスクロ蒸留の
分析結果を利用した推定式であって、分解ガソリン混合
比率を組込んだ特定な推定式を用いることによって、ガ
ソリン原料成分を混合して得られた混合物のリサーチオ
クタン価、密度及び蒸気圧の推定が簡便に精度良く行わ
れることを見出し、この知見に基づいて本発明を完成す
るに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, it is an estimation formula using the analysis result of gas chromatography distillation and incorporates a cracked gasoline mixing ratio. It was found that the estimation of research octane number, density and vapor pressure of a mixture obtained by mixing gasoline raw material components can be easily and accurately estimated by using a specific estimation formula, and the present invention was completed based on this finding. Came to do.

【0006】すなわち、本発明は分解ガソリン、改質ガ
ソリン、軽質ナフサ、ブタン及び必要に応じその他のガ
ソリン基材留分を混合してガソリンを製造するにあた
り、分解ガソリン、改質ガソリン、軽質ナフサ、ブタン
及びその他のガソリン基材留分の混合物のリサーチオク
タン価、密度及び蒸気圧をこの混合物のガスクロ蒸留に
よる分析結果を利用した下記推定式より推定し、その推
定結果に基づいて分解ガソリン、改質ガソリン、軽質ナ
フサ、ブタン及びその他のガソリン基材留分の混合量を
調整して所望のリサーチオクタン価、密度及び蒸気圧を
有するガソリンを製造することを特徴とするガソリンの
製造方法を提供するものである。 リサーチオクタン価=a1Σ(n・p)+a2・f+a3 密度 =b1Σ(d・p)+b2・f+b3 蒸気圧 =c1Σ(r・p)+c2・f+c3 「式中、nは各ガスクロピークに該当する混合成分のリ
サーチオクタン価、dは各ガスクロピークに該当する混
合成分の密度、rは各ガスクロピークに該当する混合成
分の蒸気圧、pは各ガスクロピークの面積分率を重量分
率に補正したもの(各ピーク面積・各ガスクロピークに
該当する混合成分の密度/各ピーク面積・各ガスクロピ
ークに該当する混合成分の密度の総和)、fは分解ガソ
リンの混合比率(体積%)、a1、a2、a3、b1
2、b3、c1、c2及びc3は分解ガソリン、改質ガソ
リン、軽質ナフサ、ブタン及びその他のガソリン留分の
種類に応じて定まる係数である。」
That is, in the present invention, when cracked gasoline, reformed gasoline, light naphtha, butane and other gasoline base fractions are mixed to produce gasoline, cracked gasoline, reformed gasoline, light naphtha, The research octane number, density, and vapor pressure of a mixture of butane and other gasoline-based fractions were estimated from the following estimation formula using the analysis results of this mixture by gas chromatography distillation, and based on the estimation results, cracked gasoline, reformed gasoline And a light naphtha, butane, and other gasoline-based fractions are adjusted to prepare a gasoline having a desired research octane number, density and vapor pressure. .. Research octane number = a 1 Σ (n · p) + a 2 · f + a 3 Density = b 1 Σ (d · p) + b 2 · f + b 3 Vapor pressure = c 1 Σ (r · p) + c 2 · f + c 3 , N is the research octane number of the mixed component corresponding to each gas chroma peak, d is the density of the mixed component corresponding to each gas chroma peak, r is the vapor pressure of the mixed component corresponding to each gas chroma peak, and p is the area of each gas chroma peak. The ratio is corrected to a weight fraction (the peak area, the density of the mixed components corresponding to each gas chromatopeak / the sum of the density of each peak area and the mixed components corresponding to each gas chromatopeak), and f is the mixture ratio of cracked gasoline (Volume%), a 1 , a 2 , a 3 , b 1 ,
b 2 , b 3 , c 1 , c 2 and c 3 are coefficients determined according to the types of cracked gasoline, reformed gasoline, light naphtha, butane and other gasoline fractions. "

【0007】分解ガソリン、改質ガソリン、軽質ナフサ
及びブタンの混合物の全組成ガスクロ分析を行うと、通
常ガソリン成分は約180の成分に分離される。180
の成分からオクタン価等を推定すれば、従来に比較して
精度が上がるのは当然であるが、測定に時間を要するの
で測定結果を即座に反映させるプロセスアナライザーと
して使用するのは困難である。本発明におけるガスクロ
蒸留による分析ではピークの数は30〜50程度となり
測定時間が短縮される。また、ガスクロ蒸留により得ら
れたピークを更に公知の方法により15〜25にグルー
ピングすることにより測定時間の短縮が図れ、これに分
解ガソリンの混合比率をファクターとして加えることに
よる精度向上とが複合化されて、本法がプロセスアナラ
イザーとして使用されることが可能となった。ただし、
このグルーピングした各ピークごとのオクタン価、密
度、蒸気圧はあらかじめ求めておく必要がある。以下に
その求め方を記載する。
A total composition gas chromatographic analysis of a mixture of cracked gasoline, reformed gasoline, light naphtha and butane usually separates gasoline components into about 180 components. 180
If the octane number or the like is estimated from the component of, the accuracy will be improved as compared with the conventional one, but it takes time to measure, so it is difficult to use it as a process analyzer that immediately reflects the measurement result. In the analysis by gas chromatography distillation in the present invention, the number of peaks is about 30 to 50, and the measurement time is shortened. Moreover, the measurement time can be shortened by grouping the peaks obtained by gas chromatography distillation into 15 to 25 by a known method, and the accuracy can be improved by adding the mixing ratio of cracked gasoline as a factor to the measurement time. Thus, the method can be used as a process analyzer. However,
It is necessary to obtain the octane number, density and vapor pressure for each grouped peak in advance. The method for obtaining this is described below.

【0008】(1)各ピークのオクタン価、密度 各ピークに含まれる複数成分の各成分ごとのリサーチオ
クタン価、密度をそれぞれ、あらかじめJIS K 2
280、JIS K 2249を用いて測定しておき、
Andersonの方法(J.Inst.Petr,
8(560),83(1972))で補正して求める。
この場合、成分が少数で類似した物質の混合物であるの
で、Andersonの方法で精度よく、各ピークのリ
サーチオクタン価、密度を推定することが可能である。
(1) Octane number and density of each peak The research octane number and density of each of a plurality of components contained in each peak are preliminarily specified in JIS K 2
280, measured using JIS K 2249,
Anderson's method (J. Inst. Petr, 5
8 (560) , 83 (1972)).
In this case, since it is a mixture of substances having a small number of similar components, it is possible to accurately estimate the research octane number and density of each peak by the Anderson method.

【0009】(2)各ピークの蒸気圧 各ピークに含まれる複数成分の成分ごとの蒸気圧を便覧
から求め、相加平均をとって、求める。この場合、成分
が少数で類似した物質の混合物であるので、相加平均を
とることにより精度よく、蒸気圧を推定することが可能
である。
(2) Vapor pressure of each peak The vapor pressure of each of a plurality of components contained in each peak is obtained from a handbook, and the arithmetic average is calculated. In this case, since the composition is a mixture of a small number of similar substances, it is possible to accurately estimate the vapor pressure by taking the arithmetic mean.

【0010】前記推定式の係数は、分解ガソリンの混合
割合、リサーチオクタン価、密度、蒸気圧が既知のガソ
リン原料混合物少なくとも3種について、上記のガスク
ロ蒸留を行い、必要に応じグルーピングした各ピークの
リサーチオクタン価、密度及び蒸気圧を上記の方法で求
めて上記推定式にあてはめ、各係数を未知数とする少な
くとも9つの方程式を得、その方程式を用いて算出され
る。この係数は分解ガソリン、改質ガソリン、軽質ナフ
サ、ブタン及びその他のガソリン基材留分の種類が定ま
れば、定数として求められる。
The coefficient of the above-mentioned estimation formula is obtained by subjecting at least three types of gasoline raw material mixtures having known cracking gasoline mixing ratio, research octane number, density, and vapor pressure to the above gas chromatography distillation, and researching each peak grouped as necessary. The octane number, density and vapor pressure are obtained by the above method and applied to the above estimation formula to obtain at least nine equations in which each coefficient is an unknown number, and the equations are used for calculation. This coefficient can be obtained as a constant if the types of cracked gasoline, reformed gasoline, light naphtha, butane and other gasoline base fractions are determined.

【0011】この係数が求まれば、ガソリン原料混合物
のリサーチオクタン価、密度及び蒸気圧の推定値はガス
クロ蒸留の分析結果と分解ガソリンの割合(体積%)か
ら容易に求めることができる。この推定値は従来の方法
と比べると著しく精度に優れている。
Once this coefficient is obtained, the estimated values of the research octane number, density and vapor pressure of the gasoline raw material mixture can be easily obtained from the analysis results of gas chromatography distillation and the proportion (volume%) of cracked gasoline. This estimate is significantly more accurate than conventional methods.

【0012】ガスクロ蒸留は例えば、キャピラリーカラ
ムとしてジメチルポリシロキサン、メチルシリコン等を
用い、気化器、検出器温度を200〜300℃とし、水
素ガス等をキャリアーとして、昇温パターン50〜23
0℃(昇温速度10℃/min〜50℃/min)の条
件で行われる。
In the gas chromatography distillation, for example, dimethylpolysiloxane, methylsilicon or the like is used as a capillary column, the vaporizer and detector temperatures are set to 200 to 300 ° C., hydrogen gas or the like is used as a carrier, and heating patterns 50 to 23 are used.
It is carried out under the condition of 0 ° C. (heating rate 10 ° C./min to 50 ° C./min).

【0013】本発明は上記の推定式から、ガソリン原料
混合物のリサーチオクタン価、密度及び蒸気圧を推定
し、その推定結果に基づいて分解ガソリン、改質ガソリ
ン、軽質ナフサ及びブタンの混合量を決定し、目的とす
るガソリンを製造する。
According to the present invention, the research octane number, density and vapor pressure of a gasoline raw material mixture are estimated from the above-mentioned estimation formula, and the amount of cracked gasoline, reformed gasoline, light naphtha and butane is determined based on the estimation result. , Produce the desired gasoline.

【0014】なお、ガソリン原料のうちのその他のガソ
リン基材留分はプレミアムガソリン製造の際などに混合
されるもので必須の成分ではなく、レギュラーガソリン
製造の際には混合されないこともある。
The other gasoline-based fractions of the gasoline raw material are mixed in the production of premium gasoline and are not essential components, and may not be mixed in the production of regular gasoline.

【0015】試料のサンプリングからリサーチオクタン
価の推定までをコンピューターを使用することで、一連
の作業を自動的に短時間に行うことができ、連続的に効
率良くガソリンを製造することが可能となる。
By using a computer from sampling the sample to estimating the research octane number, a series of operations can be automatically performed in a short time, and gasoline can be continuously and efficiently produced.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。 実施例 分解ガソリン(FG)としてアラビアンヘビー原油を常
圧蒸留装置で蒸留した軽油以上の高沸点油を接触分解装
置で反応させて得られた分解ガソリンを、改質ガソリン
(PG)としてマーバン原油を常圧蒸留装置で蒸留した
軽質ナフサと重質ナフサの混合物を接触改質装置で反応
させて得られた改質ガソリンを、軽質ナフサ(DLN)
としてマーバン原油を常圧蒸留装置で蒸留して得られた
軽質ナフサを用いて、これらの配合量が既知の混合物の
リサーチオクタン価、密度、蒸気圧をそれぞれJIS
K 2280、JIS K 2279、JIS K 2
258に基づいて測定し、次いで各混合物についてガス
クロ蒸留を行った後、前記推定式から係数の値を求めた
ところ、次のような値を得た。a1=−0.0859、
2=0.00046、a3=98.22、b1=−0.
938、b2=−0.00011、b3=0.0389、
1=1.789、c2=−0.00037、c3=−
0.262、
EXAMPLES The present invention will now be described in detail based on examples, but the present invention is not limited thereto. Example As cracked gasoline (FG), a cracked gasoline obtained by reacting a high-boiling oil above light oil obtained by distilling Arabian heavy crude oil with an atmospheric distillation apparatus with a catalytic cracking apparatus, and as a reformed gasoline (PG) with Mavan crude oil The reformed gasoline obtained by reacting a mixture of light naphtha and heavy naphtha distilled in an atmospheric distillation device in a catalytic reformer is used as light naphtha (DLN).
As an example, light naphtha obtained by distilling Mavan crude oil in an atmospheric distillation apparatus was used, and the research octane number, density, and vapor pressure of a mixture with a known blending amount were determined according to JIS
K 2280, JIS K 2279, JIS K 2
After the measurement was performed based on 258, and then each mixture was subjected to gas chromatography distillation, the value of the coefficient was determined from the above estimation formula, and the following values were obtained. a 1 = -0.0859,
a 2 = 0.00046, a 3 = 98.22, b 1 = -0.
938, b 2 = -0.00011, b 3 = 0.0389,
c 1 = 1.789, c 2 = -0.00037, c 3 = -
0.262,

【0017】次いで、下記表1の及びの試料につ
き、下記の条件でガスクロ蒸留を行ったところ、39
(試料)及び41(試料)のピークが認められた。
これらのピーク及びこれらを19にグルーピングしたピ
ークのリテンションタイム、ピーク面積、ピーク面積分
率及びピーク面積分率を各ピークに該当する混合成分の
密度で補正した重量分率を表2、表3に示し、グルーピ
ングしたピーク成分のリサーチオクタン価、密度、蒸気
圧を表4に示す。この分析結果と、上記係数を用いた推
定式よりリサーチオクタン価の推定値を算出した。得ら
れた推定値を実測値とともに表5に示す。 キャピラリーカラム:ジメチルポリシロキサン 気化器、検出器温度:250℃ キャリアー :H2(10cc/min) 流入量 :0.25μl 昇降パターン :50〜230℃(昇温速度40℃
/min)
Then, the gas chromatography distillation was carried out on the samples of and in Table 1 below under the following conditions.
(Sample) and 41 (Sample) peaks were observed.
Tables 2 and 3 show the retention times, peak areas, peak area fractions, and peak area fractions of these peaks and the peaks obtained by grouping these peaks in 19 with the density of the mixed component corresponding to each peak corrected. Table 4 shows the research octane number, the density, and the vapor pressure of the grouped peak components. An estimated value of the research octane number was calculated from this analysis result and an estimation formula using the above coefficient. The estimated values obtained are shown in Table 5 together with the actually measured values. Capillary column: dimethylpolysiloxane vaporizer, detector temperature: 250 ° C. Carrier: H 2 (10 cc / min) Inflow: 0.25 μl Elevating pattern: 50-230 ° C. (heating rate 40 ° C.)
/ Min)

【0018】[0018]

【表1】 ────────────────────────── FG PG DLN BS (体積%) ────────────────────────── 8 56 31 5 60 20 19 1 ──────────────────────────[Table 1] ────────────────────────── FG PG DLN BS (Volume%) ──────────── ────────────── 8 56 31 5 60 20 19 19 1 ───────────────────────────

【0019】[0019]

【表2】 A:ガスクロ蒸留によるピーク番号 B:グループ番号[Table 2] A: Peak number by gas chromatography distillation B: Group number

【0020】[0020]

【表3】 A:ガスクロ蒸留によるピーク番号 B:グループ番号[Table 3] A: Peak number by gas chromatography distillation B: Group number

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】表6に本発明及び前記Walshの方法で
求めた推定値と実測値の差の標準偏差を示す。
Table 6 shows the standard deviation of the difference between the estimated value and the actually measured value obtained by the present invention and the Walsh method.

【0024】[0024]

【表6】 [Table 6]

【0025】上記のように本発明の推定式を用いればガ
ソリン原料成分の混合物のリサーチオクタン価、密度及
び蒸気圧を精度よく簡便に推定できるので、この推定値
に基づいてガソリン原料成分の配合量を決定することに
よりガソリンを生産性良く製造することができた。
Since the research octane number, density and vapor pressure of the mixture of gasoline raw material components can be accurately and simply estimated by using the estimation formula of the present invention as described above, the blending amount of the gasoline raw material components can be calculated based on these estimated values. By deciding, gasoline could be manufactured with high productivity.

【0026】[0026]

【発明の効果】本発明によれば、ガソリン製造工程中
で、ガソリン原料成分を混合して得られた混合物のリサ
ーチオクタン価、密度及び蒸気圧を簡便な方法で精度良
く、連続的に推定することができ、ガソリン製造の生産
性を大幅に向上させることができる。また、コンピュー
ターを使用すれば、混合物の試料のサンプリングからリ
サーチオクタン価の推定までの作業を、自動的に一連の
作業で簡便に、短時間に行うことができる。
According to the present invention, the research octane number, density and vapor pressure of a mixture obtained by mixing gasoline raw material components in a gasoline manufacturing process can be estimated accurately and continuously by a simple method. Therefore, the productivity of gasoline production can be significantly improved. Further, if a computer is used, the operations from sampling the mixture sample to estimating the research octane number can be automatically and simply performed in a short time by a series of operations.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分解ガソリン、改質ガソリン、軽質ナ
フサ、ブタン及び必要に応じその他のガソリン基材留分
を混合してガソリンを製造するにあたり、分解ガソリ
ン、改質ガソリン、軽質ナフサ、ブタン及びその他のガ
ソリン基材留分の混合物のリサーチオクタン価、密度及
び蒸気圧をこの混合物のガスクロ蒸留による分析結果を
利用した下記推定式より推定し、その推定結果に基づい
て分解ガソリン、改質ガソリン、軽質ナフサ、ブタン及
びその他のガソリン基材留分の混合量を調整して所望の
リサーチオクタン価、密度及び蒸気圧を有するガソリン
を製造することを特徴とするガソリンの製造方法。 リサーチオクタン価=a1Σ(n・p)+a2・f+a3 密度 =b1Σ(d・p)+b2・f+b3 蒸気圧 =c1Σ(r・p)+c2・f+c3 「式中、nは各ガスクロピークに該当する混合成分のリ
サーチオクタン価、dは各ガスクロピークに該当する混
合成分の密度、rは各ガスクロピークに該当する混合成
分の蒸気圧、pは各ガスクロピークの面積分率を重量分
率に補正したもの(各ピーク面積・各ガスクロピークに
該当する混合成分の密度/各ピーク面積・各ガスクロピ
ークに該当する混合成分の密度の総和)、fは分解ガソ
リンの混合比率(体積%)、a1、a2、a3、b1
2、b3、c1、c2及びc3は分解ガソリン、改質ガソ
リン、軽質ナフサ、ブタン及びその他のガソリン基材留
分の種類に応じて定まる係数である。」
1. A cracked gasoline, a reformed gasoline, a light naphtha, a butane, and others in producing a gasoline by mixing cracked gasoline, a reformed gasoline, a light naphtha, butane, and other gasoline base fractions as necessary. The research octane number, density, and vapor pressure of the mixture of gasoline-based fractions were estimated by the following estimation formula using the analysis results of this mixture by gas chromatography distillation, and based on the estimation results, cracked gasoline, reformed gasoline, and light naphtha were estimated. A method for producing gasoline, which comprises producing a gasoline having a desired research octane number, density and vapor pressure by adjusting the mixing amount of butane and other gasoline base fractions. Research octane number = a 1 Σ (n · p) + a 2 · f + a 3 Density = b 1 Σ (d · p) + b 2 · f + b 3 Vapor pressure = c 1 Σ (r · p) + c 2 · f + c 3 , N is the research octane number of the mixed component corresponding to each gas chroma peak, d is the density of the mixed component corresponding to each gas chroma peak, r is the vapor pressure of the mixed component corresponding to each gas chroma peak, and p is the area of each gas chroma peak. The ratio is corrected to a weight fraction (the peak area, the density of the mixed components corresponding to each gas chromatopeak / the sum of the density of each peak area and the mixed components corresponding to each gas chromatopeak), and f is the mixture ratio of cracked gasoline (Volume%), a 1 , a 2 , a 3 , b 1 ,
b 2 , b 3 , c 1 , c 2 and c 3 are coefficients determined depending on the types of cracked gasoline, reformed gasoline, light naphtha, butane and other gasoline base fractions. "
JP35047891A 1991-12-11 1991-12-11 Gasoline production method Expired - Fee Related JP2901797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35047891A JP2901797B2 (en) 1991-12-11 1991-12-11 Gasoline production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35047891A JP2901797B2 (en) 1991-12-11 1991-12-11 Gasoline production method

Publications (2)

Publication Number Publication Date
JPH05163493A true JPH05163493A (en) 1993-06-29
JP2901797B2 JP2901797B2 (en) 1999-06-07

Family

ID=18410770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35047891A Expired - Fee Related JP2901797B2 (en) 1991-12-11 1991-12-11 Gasoline production method

Country Status (1)

Country Link
JP (1) JP2901797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348083A (en) * 2005-06-13 2006-12-28 Nippon Oil Corp Gasoline
US9939821B2 (en) 2013-01-08 2018-04-10 Reliance Industries Limited Computer implemented blend control system and method for preparation of a hydrocarbon blend
JP2021119244A (en) * 2017-06-07 2021-08-12 コスモ石油株式会社 Method for providing compounding ratio of base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348083A (en) * 2005-06-13 2006-12-28 Nippon Oil Corp Gasoline
US9939821B2 (en) 2013-01-08 2018-04-10 Reliance Industries Limited Computer implemented blend control system and method for preparation of a hydrocarbon blend
JP2021119244A (en) * 2017-06-07 2021-08-12 コスモ石油株式会社 Method for providing compounding ratio of base material

Also Published As

Publication number Publication date
JP2901797B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
Myers et al. Determination of hydrocarbon-type distribution and hydrogen/carbon ratio of gasolines by nuclear magnetic resonance spectrometry
CN102374975B (en) Method for predicting physical property data of oil product by using near infrared spectrum
JPS63243736A (en) Direct measuring method octane number
US6711532B1 (en) Method and apparatus for predicting a distillation temperature range of a hydrocarbon-containing compound
CN109859805A (en) A kind of gasoline reconciliation optimization method based on molecular composition
Mühl et al. Determination of fluid catalytic cracking gasoline octane number by nmr spectrometry
Mackle et al. A study of the stereochemistry of acraldehyde and crotonaldehyde by the electron diffraction method
JP2901797B2 (en) Gasoline production method
Flumignan et al. Multivariate calibrations in gas chromatographic profiles for prediction of several physicochemical parameters of Brazilian commercial gasoline
Laufer Reactions of ethynyl radicals. Rate constants with methane, ethane, and ethane-d6
Mühl et al. Determination of reformed gasoline octane number by nmr spectrometry
JP4026794B2 (en) Analysis method of physical properties of hydrocarbons by near infrared spectroscopy
Calingaert et al. The redistribution reaction. II. The analysis of metal alkyl mixtures and the confirmation of random distribution
Carmichael et al. Viscosity of a mixture of methane and butane
JPH0750101B2 (en) Method and apparatus for measuring cetane number or cetane index
CN110412148B (en) Method for judging mixed source ratio of mixed source natural gas
JPH087200B2 (en) Method and apparatus for analyzing properties of liquid mixture
Lewis et al. Quantitative determination of anisotropic domain size in mesophase pitch
Pozharskaya et al. The spinodal approximation by the method of scattering of light in (n-hexane+ n-tetradecafluorohexane)
Kurtz et al. Determination of olefins, aromatics, paraffins, and naphthenes in gasoline
JPH05281138A (en) Method for estimating physical and chemical property of sample
SU1594391A1 (en) Method of determining component composition of oils
CN114486991B (en) Method for measuring freezing point of aviation kerosene
Mühl et al. Determination of coking gasoline octane number by nmr spectrometry
Harbert Calculation method for complex mixtures

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees