JPH0516292B2 - - Google Patents

Info

Publication number
JPH0516292B2
JPH0516292B2 JP59174709A JP17470984A JPH0516292B2 JP H0516292 B2 JPH0516292 B2 JP H0516292B2 JP 59174709 A JP59174709 A JP 59174709A JP 17470984 A JP17470984 A JP 17470984A JP H0516292 B2 JPH0516292 B2 JP H0516292B2
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
tank
carbonated
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59174709A
Other languages
Japanese (ja)
Other versions
JPS6154226A (en
Inventor
Akira Ogawa
Toyoaki Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP59174709A priority Critical patent/JPS6154226A/en
Publication of JPS6154226A publication Critical patent/JPS6154226A/en
Publication of JPH0516292B2 publication Critical patent/JPH0516292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、噴射カーボネーシヨン法による炭
酸水の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for producing carbonated water using an injection carbonation method.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

一般に、炭酸水を製造する方法の1つに、加圧
炭酸ガスが供給された密閉タンク内にポンプ等で
加圧された水を噴射し、この水に炭酸ガスを溶解
させるようにした所謂噴射カーボネーシヨン法と
称されるものがあることは周知である。
Generally, one method for producing carbonated water is so-called injection, in which pressurized water is injected with a pump or the like into a closed tank supplied with pressurized carbon dioxide gas, and the carbon dioxide gas is dissolved in the water. It is well known that there is a method called carbonation method.

従来、この種の炭酸水の製造装置においては、
第3図に例示するように、密閉タンク1内の頂部
に、水道等の飲用水源2に接続された給水管3の
先端のノズル部4を臨ませ、かつ前記給水管3の
途中に給水電磁弁5を設けて開閉制御可能にする
とともに、前記ノズル部4と給水電磁弁5との間
に設けたポンプ6の駆動により、前記密閉タンク
1内に飲用水を噴射させる一方、前記密閉タンク
1内の頂部に、調圧器7を介して炭酸ガス供給源
(図示せず)に接続されたガス供給管8を臨ませ
て前記密閉タンク1内に適当な圧力に調圧された
炭酸ガスを供給充満させ、水の噴射撹拌力を利用
して密閉タンク1内で水と炭酸ガスとを激しく接
触混合させることにより、水に炭酸ガスを溶解さ
せて炭酸水Cを製造し得るように構成してなるも
のである。
Conventionally, in this type of carbonated water production equipment,
As illustrated in FIG. 3, a nozzle portion 4 at the tip of a water supply pipe 3 connected to a drinking water source 2 such as tap water is exposed to the top of the closed tank 1, and a water supply is provided midway through the water supply pipe 3. A solenoid valve 5 is provided to enable opening/closing control, and a pump 6 provided between the nozzle section 4 and the water supply solenoid valve 5 is driven to inject potable water into the sealed tank 1, while also injecting drinking water into the sealed tank 1. A gas supply pipe 8 connected to a carbon dioxide gas supply source (not shown) through a pressure regulator 7 faces the top of the tank 1, and carbon dioxide gas regulated to an appropriate pressure is supplied to the sealed tank 1. The structure is configured such that carbonated water C can be produced by dissolving carbonic acid gas in water by filling the water supply and vigorously contacting and mixing water and carbonic acid gas in a closed tank 1 using the jet stirring power of water. That's what happens.

上記した従来装置は、密閉タンク1の内底部
に、その内壁と僅かな隙間を存して泡除け板9を
適宜な高さ位置に配置してなるとともに、フロー
ト10を有する水位検知器11が内装されてお
り、前記給水電磁弁5の開弁と同時にポンプ6を
運転駆動させて前記ノズル部4から水を密閉タン
ク1内の頂部から噴射させ、ガス供給管8から供
給される炭酸ガスと混合させて炭酸水を作り、さ
らに密閉タンク1内に溜りつつある炭酸水の水面
を水の噴射作用で激しくたたくことにより炭酸水
中に炭酸ガスを気泡として巻き込ませて炭酸ガス
の溶解度合(以下、炭酸度と称す)を高め、この
状態で密閉タンク1内の炭酸水の水位が上限水位
Hに達したとき、前記水位検知器11の検知動作
により前記ポンプ6の運転を停止させると同時に
給水電磁弁5を閉弁させ、前記密閉タンク1の底
部に設けた注出管12の注出弁13を開くことに
より炭酸水Cを注出させるようになつている。こ
の炭酸水Cの注出によつて密閉タンク1内の炭酸
水の水位が下限水位Lに下降したとき、前記水位
検知器11による検知動作で再度給水電磁弁5を
開弁させ同時にポンプ6を運転させることによ
り、前回と同様に炭酸水を作り、補充し得るよう
になつている。
The conventional device described above has a bubble prevention plate 9 disposed at an appropriate height on the inner bottom of a closed tank 1 with a slight gap between it and the inner wall thereof, and a water level detector 11 having a float 10. When the water supply solenoid valve 5 is opened, the pump 6 is driven to inject water from the nozzle part 4 from the top of the sealed tank 1, and the water is mixed with carbon dioxide gas supplied from the gas supply pipe 8. The water is mixed to produce carbonated water, and the surface of the carbonated water that is collecting in the sealed tank 1 is violently hit by the jet action of water to entrain carbon dioxide gas as bubbles in the carbonated water, thereby increasing the solubility of carbon dioxide gas (hereinafter referred to as When the level of carbonated water in the sealed tank 1 reaches the upper limit water level H in this state, the operation of the pump 6 is stopped by the detection operation of the water level detector 11, and at the same time the water supply electromagnetic The carbonated water C is poured out by closing the valve 5 and opening the pouring valve 13 of the pouring pipe 12 provided at the bottom of the sealed tank 1. When the water level of the carbonated water in the sealed tank 1 falls to the lower limit water level L by pouring out the carbonated water C, the water supply solenoid valve 5 is opened again by the detection operation of the water level detector 11, and the pump 6 is turned on at the same time. By running it, you can make carbonated water and refill it as you did last time.

しかしながら、このような従来装置にあつて
は、ノズル部4から噴射された水が密閉タンク1
の内底部に溜つている水の表面に到達するまでの
時間は、密閉タンク1の高さ寸法が限られている
ことから極めて短く、その時間内に噴射水に多く
の炭酸ガスを溶解させることは困難であり、主た
る炭酸ガスの溶解は、密閉タンク1の内底部に水
がある程度溜つてから噴射水による圧力でその水
面を激しく撹拌して炭酸ガスの気泡を巻き込み、
水に接触させることにより行なわれている。この
ため、作られた炭酸水の炭酸度は密閉タンク1内
での水と炭酸ガスの気泡との接触の度合に大きく
左右されることになり、その接触の度合を高める
には、ノズル部4からの水の噴射時間を長くし、
さらに水の噴射による密閉タンク1の内底部に貯
溜する水への炭酸ガスの気泡の巻き込みを多くす
ることが必要である。
However, in such a conventional device, the water sprayed from the nozzle part 4 flows into the closed tank 1.
Since the height of the closed tank 1 is limited, the time it takes for the water accumulated at the inner bottom of the tank to reach the surface is extremely short, and it is difficult to dissolve a large amount of carbon dioxide in the sprayed water within that time. The main method of dissolving carbon dioxide gas is to collect a certain amount of water at the inner bottom of the closed tank 1, and then violently stir the surface of the water using the pressure of jetted water to entrain carbon dioxide gas bubbles.
This is done by contacting it with water. For this reason, the degree of carbonation of the carbonated water produced depends largely on the degree of contact between the water and carbon dioxide gas bubbles in the closed tank 1, and in order to increase the degree of contact, it is necessary to Increase the water injection time from
Furthermore, it is necessary to increase the entrainment of carbon dioxide gas bubbles into the water stored in the inner bottom of the closed tank 1 by water injection.

ところが、従来装置における炭酸水の毎回の製
造サイクルタイムは、密閉タンク1内の下限水位
Lから上限水位Hまでの水の量と、ノズル部4か
らの水の噴射量によつて決まり、水の噴射時間を
長くする方法の1つとして噴射流量を少なくする
方法があるが、これによつて水の噴射エネルギが
減少して水に炭酸ガスの気泡を巻き込む力が著し
く弱まりかえつて炭酸ガス溶解量が低下してしま
う。また密閉タンク1内の上下限間の水量(毎炭
酸化水量)を多くすると、噴射水による炭酸ガス
気泡の巻き込み作用を水の深部まで及ぼすことが
できないばかりか、密閉タンク1の容量を大きく
しなければならず、装置全体が大型化する不具合
があり、これらの条件によつて最も効率良く炭酸
ガスを溶かし得るような毎炭酸化水量及び水の噴
射流量が決まつてしまい、その結果、製造される
炭酸水の炭酸度も一定の値に止まり、それ以上に
炭酸度を上げることはできないなどの欠点があつ
た。
However, the cycle time for producing carbonated water each time in the conventional device is determined by the amount of water from the lower limit water level L to the upper limit water level H in the closed tank 1 and the amount of water jetted from the nozzle part 4. One way to lengthen the injection time is to reduce the injection flow rate, but this reduces the water injection energy and significantly weakens the ability to entrain carbon dioxide bubbles into the water, reducing the amount of carbon dioxide dissolved. will decrease. Furthermore, if the amount of water between the upper and lower limits (the amount of water per carbonation) in the sealed tank 1 is increased, not only will the entrainment effect of carbon dioxide gas bubbles by the jet water not reach the deep part of the water, but the capacity of the sealed tank 1 will also increase. The problem is that the entire device becomes larger, and these conditions determine the amount of carbonated water and water injection flow rate that can dissolve carbon dioxide most efficiently.As a result, the manufacturing The drawback was that the carbonation level of the carbonated water remained at a certain value, and it was not possible to increase the carbonation level beyond that level.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の事情のもとになされたもの
で、その目的とするところは、密閉タンク内への
水の噴射時間を任意に長くすることができるよう
にして炭酸水の炭酸度を高め得ることができると
ともに噴射時間を調節して所望の炭酸度の炭酸水
を作ることができる炭酸水の製造装置を提供する
ことにある。
This invention was made under the above circumstances, and its purpose is to increase the carbonation level of carbonated water by making it possible to arbitrarily lengthen the injection time of water into a closed tank. An object of the present invention is to provide an apparatus for producing carbonated water that can produce carbonated water with a desired carbonation degree by adjusting the injection time.

〔発明の概要〕[Summary of the invention]

上記した目的を達成させるために、炭酸ガスが
供給される密閉タンク内に給水経路からの水をポ
ンプにより頂部からノズル部を介して加圧噴射
し、該密閉タンク内で水に炭酸ガスを溶解させる
ようにしてなる炭酸水の製造装置において、前記
密閉タンク内の底部付近から電磁弁を介して前記
給水経路及びポンプを経てノズル部に至る循環経
路を形成し、タイマーによりこの電磁弁とポンプ
の駆動を制御して、この循環経路による循環運転
時間を調整可能としたものである。
In order to achieve the above purpose, water from the water supply route is injected under pressure from the top of the tank through a nozzle using a pump into a closed tank where carbon dioxide gas is supplied, and carbon dioxide gas is dissolved in the water in the closed tank. In the apparatus for producing carbonated water, a circulation path is formed from near the bottom of the sealed tank through the solenoid valve, through the water supply path and the pump, to the nozzle section, and a timer is used to control the flow of the solenoid valve and the pump. By controlling the drive, it is possible to adjust the circulation operation time along this circulation path.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明を図示の一実施例を参照しなが
ら説明する。なお、この発明に係る図示の実施例
において、第3図に示す従来装置と構成が重複す
る部分は同一符号を用い、その説明は省略する。
The present invention will be described below with reference to an illustrated embodiment. In the illustrated embodiment of the present invention, the same reference numerals are used for parts having the same configuration as those of the conventional device shown in FIG. 3, and the explanation thereof will be omitted.

この発明は、第1図に示すように、密閉タンク
1内へノズル部4を介して噴射させる水の給水管
3を給水電磁弁5とポンプ6との間で分岐させる
とともに、該分岐管14を前記密閉タンク1の底
部から内部に臨ませて循環経路を形成してなるも
ので、前記分岐管14の途中には、密閉タンク1
内に設けた水位検知器11と電気的に関連する循
環電磁弁15が設置され、該循環電磁弁15はタ
イマー16により開弁時間が制御されるようにな
つている。また、図中17は前記分岐管14の分
岐部と給水電磁弁5との間の給水経路に設けた逆
止弁で、万一給水電磁弁5が故障しても循環時に
おいて炭酸水Cが給水源側に逆流するのを防止す
るようになつている。
As shown in FIG. 1, this invention branches a water supply pipe 3 for injecting water into a closed tank 1 through a nozzle part 4 between a water supply electromagnetic valve 5 and a pump 6, and also branches the water supply pipe 3 into a closed tank 1 through a nozzle part 4. is formed by facing the inside from the bottom of the sealed tank 1 to form a circulation path, and in the middle of the branch pipe 14, the sealed tank 1
A circulating electromagnetic valve 15 is installed which is electrically associated with a water level detector 11 provided therein, and the opening time of the circulating electromagnetic valve 15 is controlled by a timer 16. Reference numeral 17 in the figure is a check valve installed in the water supply path between the branch part of the branch pipe 14 and the water supply solenoid valve 5, so that even if the water supply solenoid valve 5 breaks down, the carbonated water C will not flow during circulation. It is designed to prevent water from flowing back to the water supply source.

次に、上記した本装置の制御動作を第2図を参
照しながら説明する。
Next, the control operation of the above-mentioned apparatus will be explained with reference to FIG.

第2図の接点状態は、ポンプ6が停止し、密閉
タンク1内の水位が上限水位Hと下限水位Lの中
間にある場合を示すもので、密閉タンク1内に水
が溜つていないときは、フロート10が下端に下
つて水位検知器11の下限接点FSLを閉成させ、
リレーコイル1Rに通電してその接点1R1を閉
成することによりリレーコイル1Rが自己保持さ
れると共に、ポンプモータPに通電されてポンプ
6が運転を開始し、同時に接点1R2,1R3も閉
成して給水電磁弁5のソレノイド1Vにも通電
し、給水電磁弁5を開弁して飲用水源2からの水
をノズル部4から適当な流量でもつて密閉タンク
1内に噴射させるような回路構成を有している。
そして、前記ノズル部4から密閉タンク1内に噴
射される水は、落下過程においても密閉タンク1
内に充満する炭酸ガスと接触してある程度炭酸ガ
スが溶解した状態で密閉タンク1の内底部に溜
り、次第にその水位が上昇して泡除け板9より上
方に達すると、水面は噴射水によつて激しく撹拌
され、水は巻き込まれた炭酸ガスの気泡と強烈に
接触して炭酸ガスを溶解しながら水位はさらに上
昇する。この状態で、水位が下限水位Lを越える
と、水位検知器11の下限接点FSLは開成する
が、リレーコイル1Rは自己保持状態を継続して
いるため、水位は更に上昇し、上限水位Hに達し
た時点で水位検知器11の上限接点FSHが閉成
され、リレーコイル2Rに通電されてその接点2
R1が閉成し、これによつてリレーコイル2Rが
自己保持されると共に、タイマーTに給電され
る。これと同時に常閉接点2R2が開き、給水電
磁弁5のソレノイド1Vへの通電を断つて給水電
磁弁5を閉弁させる一方、接点2R3が閉成して
循環電磁弁15のソレノイド2Vに通電させ、循
環電磁弁15を開弁させ、駆動状態を維持するポ
ンプ6の吸込作用によつて密閉タンク1内の炭酸
水Cを吸い込んで分岐管14及び給水管3を介し
てノズル部4から密閉タンク1内に炭酸水を噴射
循環させるようになつている。これによつて、密
閉タンク1内に噴射された炭酸水は、下に溜つて
いる炭酸水中に炭酸ガスの気泡を巻き込み、炭酸
ガスを溶解させて炭酸度を高め、これらの循環過
程をタイマー16によつて設定される適当な時間
継続することにより、炭酸水を所要の炭酸度に更
に高めることができる。そして、タイマー16に
よる設定時間の経過で、時限接点T1が開成し、
リレーコイル1Rへの通電が断れてその接点1
R1,1R2,1R3が開成し、ポンプモータP、リ
レーコイル2R及びソレノイド1Vが断電され、
更に接点2R1,2R3が開成してタイマーコイル
T及びソレノイド2Vが断電され、ポンプ6を停
止させると共に循環電磁弁15を閉弁させ、これ
によつて一回の炭酸水の製造サイクルが完了す
る。
The contact state in Figure 2 shows the case when the pump 6 is stopped and the water level in the sealed tank 1 is between the upper limit water level H and the lower limit water level L, and when no water is accumulated in the sealed tank 1. The float 10 lowers to the lower end and closes the lower limit contact FSL of the water level detector 11,
By energizing the relay coil 1R and closing its contact 1R 1 , the relay coil 1R is self-held, and the pump motor P is energized and the pump 6 starts operating, and at the same time, the contacts 1R 2 and 1R 3 are also closed. When the water supply solenoid valve 5 is closed, the solenoid 1V of the water supply solenoid valve 5 is also energized, and the water supply solenoid valve 5 is opened so that water from the drinking water source 2 is injected into the sealed tank 1 from the nozzle part 4 at an appropriate flow rate. It has a circuit configuration.
The water sprayed from the nozzle part 4 into the sealed tank 1 is also sprayed into the sealed tank 1 even during the falling process.
A certain amount of dissolved carbon dioxide collects at the inner bottom of the sealed tank 1 due to contact with the carbon dioxide filling the tank, and when the water level gradually rises and reaches above the bubble prevention plate 9, the water surface is covered by the jet water. The water is violently stirred, and the water comes into intense contact with the entrained carbon dioxide bubbles, causing the carbon dioxide to dissolve and the water level to rise further. In this state, when the water level exceeds the lower limit water level L, the lower limit contact FSL of the water level detector 11 opens, but since the relay coil 1R continues to maintain its self-holding state, the water level rises further and reaches the upper limit water level H. When the water level reaches the upper limit contact FSH of the water level detector 11 is closed, the relay coil 2R is energized and its contact 2 is closed.
R1 is closed, thereby self-holding the relay coil 2R and supplying power to the timer T. At the same time, the normally closed contact 2R2 opens, cutting off the power to the solenoid 1V of the water supply solenoid valve 5 and closing the water supply solenoid valve 5, while the contact 2R3 closes and the solenoid 2V of the circulation solenoid valve 15 closes. Electrification is applied, the circulation solenoid valve 15 is opened, and the carbonated water C in the sealed tank 1 is sucked in by the suction action of the pump 6 that maintains the driving state, and the carbonated water C is sucked in from the nozzle part 4 via the branch pipe 14 and the water supply pipe 3. Carbonated water is sprayed and circulated in a closed tank 1. As a result, the carbonated water injected into the sealed tank 1 entrains carbon dioxide gas bubbles into the carbonated water collected below, dissolves the carbon dioxide gas, and increases the carbonic acidity. By continuing the process for an appropriate period of time set by , the carbonated water can be further increased to the required carbonation level. Then, when the time set by the timer 16 elapses, the time contact T1 opens,
Power to relay coil 1R is cut off and its contact 1
R 1 , 1R 2 , and 1R 3 are opened, and the pump motor P, relay coil 2R, and solenoid 1V are de-energized.
Furthermore, the contacts 2R 1 and 2R 3 are opened, the timer coil T and the solenoid 2V are cut off, the pump 6 is stopped, and the circulation solenoid valve 15 is closed, thereby completing one carbonated water production cycle. Complete.

また、上記した本装置は、製造サイクル中にお
いても注出弁13からの炭酸水の注出が可能であ
り、注出される炭酸水は泡除け板9の下部に貯溜
する炭酸水であることから、泡除け板9によつて
気泡の混入しない炭酸水を注出でき、また炭酸ガ
スは、水に溶解した分だけ自動的にガス源から密
閉タンク内に補給されるようになつている。
In addition, this device described above is capable of dispensing carbonated water from the dispensing valve 13 even during the manufacturing cycle, and the dispensed carbonated water is carbonated water stored in the lower part of the bubble prevention plate 9. Carbonated water without air bubbles can be poured out using the bubble prevention plate 9, and the amount of carbonated gas dissolved in the water is automatically replenished from the gas source into the closed tank.

なお、この発明は、上記実施例に限定されるも
のではなく、例えば、密閉タンク内の炭酸水の水
位が上限水位に達した後は、ポンプは既に多量の
炭酸ガスの溶けた炭酸水を吸い込んでノズル部よ
り噴射させることから、細いノズル部の先端前後
での圧力差が大きいと一旦溶けていた炭酸ガスが
噴射時に発泡遊離することがあるので、水位が上
限水位に達した後は、給水電磁弁を閉弁させ、循
環電磁弁を開弁すると同時にポンプの回転数を減
少させるなどしてノズル部からの噴射量を減少さ
せたりノズル部4の孔径を拡大することにより、
ノズル部の先端前後における圧力差を小さくする
ようにすれば、循環時のノズル部から噴射される
炭酸水中の溶解炭酸ガスの発泡遊離を抑えること
が可能になる。
Note that the present invention is not limited to the above-described embodiment; for example, after the level of carbonated water in the sealed tank reaches the upper limit water level, the pump has already sucked in carbonated water in which a large amount of carbon dioxide gas has been dissolved. Since the water is injected from the nozzle part, if there is a large pressure difference before and after the tip of the thin nozzle part, the carbon dioxide gas that has been dissolved may foam and become liberated during the injection process. By closing the solenoid valve and opening the circulation solenoid valve, at the same time reducing the rotation speed of the pump, the amount of injection from the nozzle section is reduced or the hole diameter of the nozzle section 4 is expanded.
By reducing the pressure difference before and after the tip of the nozzle part, it becomes possible to suppress the foaming and release of dissolved carbon dioxide in the carbonated water injected from the nozzle part during circulation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、毎回
の製造サイクルにおいて密閉タンク内に補給すべ
き水の量に関係なく炭酸ガスを溶解するに最適な
流量でノズル部から水を噴射することができ、か
つその噴射時間は製造される炭酸水を循環させる
ことにより任意に設定できるため、炭酸水の炭酸
度を容易に所望の値に高めたり、調整することが
できるなどのすぐれた効果を奏する。
As explained above, according to the present invention, water can be injected from the nozzle at the optimum flow rate to dissolve carbon dioxide gas, regardless of the amount of water to be replenished into the closed tank in each production cycle. , and the injection time can be arbitrarily set by circulating the produced carbonated water, so the carbonicity of the carbonated water can be easily increased or adjusted to a desired value, providing excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る炭酸水の製造装置の一
実施例を示す概略的説明図、第2図は同じく制御
動作を示す電気配線図、第3図は従来の製造装置
の概略的説明図である。 1…密閉タンク、2…飲用水源、3…給水管、
4…ノズル部、5…給水電磁弁、6…ポンプ、7
…調圧器、8…ガス供給管、11…水位検知器、
14…分岐管、15…循環電磁弁、C…炭酸水、
H…上限水位、L…下限水位。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the carbonated water manufacturing device according to the present invention, FIG. 2 is an electrical wiring diagram also showing the control operation, and FIG. 3 is a schematic explanatory diagram of a conventional manufacturing device. It is. 1... Sealed tank, 2... Drinking water source, 3... Water supply pipe,
4... Nozzle part, 5... Water supply solenoid valve, 6... Pump, 7
...Pressure regulator, 8...Gas supply pipe, 11...Water level detector,
14... Branch pipe, 15... Circulation solenoid valve, C... Carbonated water,
H... Upper limit water level, L... Lower limit water level.

Claims (1)

【特許請求の範囲】 1 炭酸ガスが供給される密閉タンク内に給水経
路からの水をポンプにより頂部からノズル部を介
して加圧噴射し、該密閉タンク内で水に炭酸ガス
を溶解させるようにしてなる炭酸水の製造装置に
おいて、 前記密閉タンク内の底部付近から電磁弁を介し
て前記給水経路及びポンプを経てノズル部に至る
循環経路を形成し、タイマーによりこの電磁弁と
ポンプの駆動を制御して、この循環経路による循
環運転時間を調整可能としたことを特徴とする炭
酸水の製造装置。
[Scope of Claims] 1 Water from a water supply route is injected under pressure from the top of the tank through a nozzle part into a closed tank to which carbon dioxide gas is supplied, so that carbon dioxide gas is dissolved in the water in the closed tank. In the apparatus for producing carbonated water, a circulation path is formed from near the bottom of the sealed tank via a solenoid valve to the water supply path and the pump to the nozzle part, and a timer controls the driving of the solenoid valve and the pump. A carbonated water production device characterized in that the circulation operation time of this circulation path can be adjusted by controlling.
JP59174709A 1984-08-22 1984-08-22 Manufacturing apparatus of calcareous water Granted JPS6154226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174709A JPS6154226A (en) 1984-08-22 1984-08-22 Manufacturing apparatus of calcareous water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174709A JPS6154226A (en) 1984-08-22 1984-08-22 Manufacturing apparatus of calcareous water

Publications (2)

Publication Number Publication Date
JPS6154226A JPS6154226A (en) 1986-03-18
JPH0516292B2 true JPH0516292B2 (en) 1993-03-04

Family

ID=15983279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174709A Granted JPS6154226A (en) 1984-08-22 1984-08-22 Manufacturing apparatus of calcareous water

Country Status (1)

Country Link
JP (1) JPS6154226A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130248C (en) * 1997-12-25 2003-12-10 泽田善行 Vapor-liquid mixer and polluted water purification apparatus using mixer
CA2312996C (en) * 1997-12-25 2005-07-26 Yoshiyuki Sawada Vapor/liquid mixer and polluted water purification apparatus using the mixer
JP2006263701A (en) * 2005-02-23 2006-10-05 Tatsuo Okazaki Method and apparatus for producing sterile water containing carbon dioxide, slight amount of which can be discharged
JP4878004B2 (en) * 2007-05-25 2012-02-15 ヤマハリビングテック株式会社 Gas dissolver and bubble generator
KR101098254B1 (en) * 2010-02-26 2011-12-23 (주)이노비드 Apparatus for co2 aqueous solution making
JP5932263B2 (en) * 2011-07-28 2016-06-08 株式会社大栄製作所 Gas dissolving device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3932760Y1 (en) * 1962-05-26 1964-11-05
JPS58119327A (en) * 1982-01-08 1983-07-15 Fuji Electric Co Ltd Carbonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3932760Y1 (en) * 1962-05-26 1964-11-05
JPS58119327A (en) * 1982-01-08 1983-07-15 Fuji Electric Co Ltd Carbonator

Also Published As

Publication number Publication date
JPS6154226A (en) 1986-03-18

Similar Documents

Publication Publication Date Title
JP4891127B2 (en) Microbubble / carbonated spring generator
JP2001179241A (en) Fine air bubble generator
EP0675071B1 (en) A beverage dispensing system
JPH0516292B2 (en)
KR101875128B1 (en) Apparatus for producing carbonated water and the control method
JP4895033B2 (en) Microbubble generator
JP3578888B2 (en) Salt water generator for electrolyzed water generator
JP2002330885A (en) Bathtub system
JP4507339B2 (en) Non-alkaline ground hardening chemical manufacturing equipment
JP2020069064A (en) Bathtub washing device
JP3852656B2 (en) Carbonated beverage supply device
EP0481384B1 (en) Method for manufacturing carbonated water
KR101782831B1 (en) Apparatus for producing carbonated water and the control method
JP2000220929A (en) Quantitative water-supply system
JPH10180064A (en) Carbonated water manufacturing device
JPS58119327A (en) Carbonator
EP1908443A1 (en) Mixing device for tub
US20080084784A1 (en) Mixing device for tub
JP3115522B2 (en) Cold dessert dispenser and method of cleaning relay tank
JP2007190463A (en) Gas dissolver and circulation type bathtub apparatus using the same
JP2003210958A (en) Foam generation apparatus
JP3190237B2 (en) Carbonator
JP2006159142A (en) Oil-water separation method and oil-water separator
JPH06304596A (en) Intermittent water quality improving device
JPH06178624A (en) Culture solution feeder