JPH05160805A - Spread spectrum communication system - Google Patents

Spread spectrum communication system

Info

Publication number
JPH05160805A
JPH05160805A JP3348190A JP34819091A JPH05160805A JP H05160805 A JPH05160805 A JP H05160805A JP 3348190 A JP3348190 A JP 3348190A JP 34819091 A JP34819091 A JP 34819091A JP H05160805 A JPH05160805 A JP H05160805A
Authority
JP
Japan
Prior art keywords
station
signal
spread
correlation
stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3348190A
Other languages
Japanese (ja)
Inventor
Atsuya Yokoi
敦也 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP3348190A priority Critical patent/JPH05160805A/en
Publication of JPH05160805A publication Critical patent/JPH05160805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent synchronizing step-out or unestablishment of synchronism caused when the correlation is tentatively larger than the autocorrelation by changing a clock phase difference tau of each station little by little. CONSTITUTION:Communication is implemented among transmission stations T1-Tn and reception stations R1-Rn by using different spread codes P1(t)-Pn(t). Let a maximum band among loop bands Lw1-LWn of spread code tracing systems 111-11n of each reception station be LWm a larger frequency difference FD than the maximum band LWm is given among each of clock frequencies FC1-FCn of each of the spread codes P1(t)-Pn(t) used for each transmission station.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペクトラム拡散通信方
式に関し、詳しくは夫々の送信局に於いて使用される各
拡散符号(類似雑音信号)p1 (t)〜pn(t)の各
クロック周波数FC1 〜FCnを異なるものとすること
により、多重通信を行う場合の相互影響を低減した多重
化通信方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum communication system, and more specifically to clock frequencies of spread codes (similar noise signals) p 1 (t) to pn (t) used in respective transmitting stations. The present invention relates to a multiplex communication system in which mutual influences when performing multiplex communication are reduced by making FC 1 to FCn different.

【0002】[0002]

【従来の技術】スペクトラム拡散通信方式は広い周波数
帯域に信号を拡散して伝送するもので、単位ヘルツあた
りの電力が小さいので、他の通信へ妨害を与えることが
少なく、雑音や伝送路特性の影響を受けにくい等の特徴
を有し、雑音の多い回線を利用する通信等に於いて、近
年多用されつつある。
2. Description of the Related Art A spread spectrum communication system spreads a signal in a wide frequency band and transmits it. Since the power per unit hertz is small, it does not interfere with other communication, and noise and transmission line characteristics are reduced. In recent years, it has been widely used in communications using a noisy line, which has features such that it is not easily affected.

【0003】この通信方式では、互いに相関関係の小さ
い異なった拡散符号p1 (t)〜pn(t)を用いるこ
とにより、同一周波数での多重化を行なうことができ、
例えば図5に於いて送信局T1 と受信局R1 は拡散符号
1 (t)を用いて通信を行ない、同一の周波数帯で送
信局T2 と受信局R2 は拡散符号p2(t)を用いて通
信を行なう。この場合、従来は拡散符号p1 (t)〜p
n(t)のクロックは同一(f=F0 )にされている。
In this communication system, different spreading codes p 1 (t) to pn (t) having a small correlation with each other can be used to perform multiplexing at the same frequency.
For example, in FIG. 5, the transmitting station T 1 and the receiving station R 1 communicate using the spreading code p 1 (t), and the transmitting station T 2 and the receiving station R 2 use the spreading code p 2 (t) in the same frequency band. ) Is used for communication. In this case, conventionally, the spread codes p 1 (t) to p
The clocks of n (t) are the same (f = F 0 ).

【0004】送信局T1 及び送信局T2 の送信信号X1
(t)、X2 (t)は次のように表わされる。
Transmission signal X 1 of the transmission stations T 1 and T 2
(T) and X 2 (t) are expressed as follows.

【0005】送信局T11 (t)=Ad1 (t)p1 (t)cos(Wc t)・・・(1) 送信局T22 (t)=Ad2 (t)p2 (t)cos(Wc t)・・・(2) 但しAcos(Wc t)は搬送波、d1 (t)、d2
(t)は送信データである。
[0005] The transmitting station T 1 X 1 (t) = Ad 1 (t) p 1 (t) cos (W c t) ··· (1) the transmitting station T 2 X 2 (t) = Ad 2 (t) p 2 (t) cos (W c t) ··· (2) where Acos (W c t) is the carrier, d 1 (t), d 2
(T) is transmission data.

【0006】このとき、受信局R1 での受信信号Y1
(t)は次のようになる。
[0006] At this time, the received signal Y 1 at the receiving station R 1
(T) is as follows.

【0007】受信局R11 (t)=Ad1 (t)p1 (t)cos(Wc t)+ Ad2 (t)p2 (t)cos(Wc t)+ n(t) ・・・(3) 但しn(t)は雑音である。[0007] receiving station R 1 Y 1 (t) = Ad 1 (t) p 1 (t) cos (W c t) + Ad 2 (t) p 2 (t) cos (W c t) + n (t ) (3) However, n (t) is noise.

【0008】この場合受信側と送信側の拡散符号にτな
る位相差がある場合を考えると受信局R1 に於いては拡
散符号p1 (t+τ)を用いて逆拡散したことになりこ
の場合の相関値r(τ)は次のように表わされる。 r(τ)=p1 (t)p1 (t+τ)+p2 (t)p1 (t+τ) +n(t)p1 (t+τ) ・・・(4) 上式4右辺に於いて第1項は希望信号成分、即ち拡散符
号p1 (t)の自己相関r11(τ)を、第2項は干渉信
号成分、即ち拡散符号p1 (t)と拡散符号p2 (t)
の相互相関r12(τ)を、又、第3項は雑音成分を夫々
表わす。拡散信号として一般的なM系列符号を用いた場
合、自己相関rii(τ)は図6のように拡散符号の同期
が成立すればエネルギが集中し明確なピークが出現する
のに対し、拡散符号が異なる受信信号に対する相互相関
i x(τ)はいづれの位相でも絶対値は小さい。な
お、iはT1 〜nの何れかの送信局、xはR1〜nの何
れの受信局を表わす。
In this case, considering a case where there is a phase difference of τ between the spreading code on the receiving side and the transmitting side, it means that the receiving station R 1 uses the spreading code p 1 (t + τ) to despread. The correlation value r (τ) of is expressed as follows. r (τ) = p 1 (t) p 1 (t + τ) + p 2 (t) p 1 (t + τ) + n (t) p 1 (t + τ) (4) The first term in the right side of the above equation 4 the desired signal component, i.e. the spreading code p 1 autocorrelation r 11 of the (t) (τ), and the second term interference signal component, i.e. the spreading code p 1 (t) and the spread code p 2 (t)
The cross-correlation r 12 (tau), also the third term respectively represent the noise component. When a general M-sequence code is used as the spread signal, the autocorrelation r ii (τ) is such that energy is concentrated and a clear peak appears when synchronization of the spread code is established as shown in FIG. The absolute value of the cross-correlation r i x (τ) for received signals having different signs is small at any phase. In addition, i represents any one of the transmitting stations T 1 to n, and x represents any one of the receiving stations R 1 to n.

【0009】しかしながら、図7から理解し得るよう
に、相互相関ri x(τ)は拡散符号pi (t)とpx
(t)の位相τにより値が変化するが、ランダムアクセ
スを指向するスペクトラム拡散通信方式では、各局で独
立したクロックソース(信号源)CSを備えるのが一般
的であるから、クロックソース夫々の周波数安定度に対
応した速度△fで、τはゆっくりと変化する。例えば拡
散符号の周波数(チップ速度)は10MHz、クロック
ソースCSの安定度が10−6であったとき、△fは約
10Hzとなり、この速度で相互相関ri x(τ)の値
が変化する。このため遠近問題、例えば受信局Ri から
見て、他の送信局Tx の方が、自己の送信局R1よりか
なり遠いというような場合、或は伝送レベル変動等があ
ると、ある位相差τに於て、相互相関ri x(τ)の方
が、自己相関ri x(τ)の最大値より大きくなるとい
う現象が起こることがある。
However, as can be seen from FIG. 7, the cross-correlation r i x (τ) depends on the spreading codes p i (t) and px.
Although the value changes depending on the phase τ of (t), in a spread spectrum communication system that directs random access, it is common for each station to have an independent clock source (signal source) CS, so the frequency of each clock source is different. Τ changes slowly at a speed Δf corresponding to stability. For example, when the frequency of the spreading code (chip speed) is 10 MHz and the stability of the clock source CS is 10 −6, Δf is about 10 Hz, and the value of the cross correlation r i x (τ) changes at this speed. .. Therefore, if there is a near-far problem, for example, when the other transmitting station T x is far from the own transmitting station R 1 as viewed from the receiving station R i , or if there is a change in transmission level or the like, it has a certain degree. In the phase difference τ, a phenomenon may occur in which the cross correlation r i x (τ) becomes larger than the maximum value of the autocorrelation r i x (τ).

【0010】この為、干渉信号の全電力から考えるとス
ペクトラム拡散の処理利得により本来は自己の拡散符号
1 (t)と十分に同期維持が可能であるにもかかわら
ず、同期外れを起こすというような問題があった。
Therefore, in view of the total power of the interference signal, it is said that out-of-synchronization occurs although the original spread code p 1 (t) can be sufficiently kept in synchronization by the processing gain of spread spectrum. There was such a problem.

【0011】[0011]

【課題を解決するための手段】そこで本発明では、夫々
の受信局の同期追従系のループ帯域LW1 〜LWnの中
の最大のものをLWmとするとき、各送信局に於て使用
される前記各拡散符号p1 (t)〜pn(t)の各クロ
ック周波数FC1 〜FCnの間に、前記最大の帯域LW
mより大きな周波数差FDを与えることとする。
Means for Solving the Problems] Therefore, in the present invention, when the LWm what each synchronization tracking system maximum loop bandwidth LW 1 ~LWn in the receiving station, is used At a respective transmission station Between the clock frequencies FC 1 to FCn of the spreading codes p 1 (t) to pn (t), the maximum bandwidth LW
A frequency difference FD larger than m is given.

【0012】即ち、従来はこの課題を解決するために、
相互相関ri x(τ)の小さな拡散符号pi (t)を使
用したり、クロック周波数の更なる安定化、その他の対
策に腐心してきた。しかしこれら解決手法では、符号選
択幅が限定され、また回路の複雑化、コストの上昇等が
否めない。
That is, conventionally, in order to solve this problem,
I have been trying to use a spreading code p i (t) with a small cross-correlation r i x (τ), further stabilizing the clock frequency, and other measures. However, in these solutions, the code selection width is limited, and the circuit is complicated and the cost is inevitable.

【0013】そこで、本発明のように各クロック周波数
FC1 〜FCnを設定すると、各受信局R1 〜Rnに於
ける干渉信号の位相差τは、同期追従系ループ帯域最大
値LWm、即ち追従可能な最大速度より早い速度で変化
する。
Therefore, when the clock frequencies FC 1 to FCn are set as in the present invention, the phase difference τ of the interference signals at the receiving stations R 1 to Rn becomes the maximum value LWm of the synchronous tracking system loop band, that is, the tracking. It changes faster than the maximum possible speed.

【0014】この為、各受信局R1 〜Rnの同期追従系
はこの変化について行かない、言い換えれば、各局に於
ける相互相関ri x(τ)のピーク値は平均化され、干
渉信号が白色雑音に近いものとなる。従ってそのレベル
が自己相関rii(τ)を越えることが無くなり同期外れ
が起こらなくなる。
Therefore, the synchronous tracking system of each of the receiving stations R 1 to Rn does not follow this change. In other words, the peak value of the cross-correlation r i x (τ) at each station is averaged and the interference signal is It is close to white noise. Therefore, the level never exceeds the autocorrelation r ii (τ), and the loss of synchronization does not occur.

【0015】[0015]

【実施例】以下本発明の詳細な図示実施例に基いて説明
する。図1は本発明に係るシステムの一実施例を示す構
成図である。同図に於て送信局T1 と受信局R1 は拡散
信号p1 (t)を用いて通信を行ない、同一周波数帯で
送信局T2 と受信局R2 は他の拡散符号p2 (t)を用
いて通信を行なう場合を図示するが、説明に於てはその
他送受信局が夫々拡散符号p3(t)〜pn(t)で通
信を行なう場合にまで拡大に論ずる。尚、夫々の拡散符
号をp1 (t)、そのクロックソースをCS1 で表わ
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of a system according to the present invention. In the figure, the transmitting station T 1 and the receiving station R 1 communicate using the spread signal p 1 (t), and the transmitting station T 2 and the receiving station R 2 in the same frequency band use another spreading code p 2 ( Although the case where communication is performed using t) is illustrated, in the description, expansion will be discussed up to the case where other transmitting / receiving stations perform communication using spreading codes p3 (t) to pn (t), respectively. Each spread code is represented by p 1 (t) and its clock source is represented by CS 1 .

【0016】送信局T1 及びT2 のクロックソースCS
1 は夫々F1 、F2 の周波数のクロック信号を発生し、
夫々の受信局R1 〜R2 の同期追従系のループ帯域LW
1 〜LW2 の中の最大のものをLWmとすると、前記各
送信局T1 〜Tnに於て使用される前記各拡散符号p1
(t)〜pn(t)の各クロック周波数FC1 〜FCn
の間に、前記最大の帯域LWmより大きな周波数FDが
与えられている。例えば送信局T1 とT2 のクロック周
波数F1 とF2 の間に、 |F1 ーF2 |=FD 但し、FD>LW
m なる関係が与えられている。周波数差FDは最大帯域L
Wmより僅かに高い値で足りる。
Clock sources CS of transmitting stations T 1 and T 2
1 generates clock signals of frequencies F 1 and F 2 , respectively,
Loop bandwidth LW of the synchronous tracking system of each receiving station R 1 -R 2
Letting LWm be the maximum one among 1 to LW 2 , each spreading code p 1 used in each transmitting station T 1 to Tn.
Clock frequencies FC 1 to FCn of (t) to pn (t)
, A frequency FD larger than the maximum band LWm is given. For example, between the clock frequencies F 1 and F 2 of the transmitting stations T 1 and T 2 , | F 1 −F 2 | = FD, where FD> LW
The relationship m is given. Frequency difference FD is maximum band L
A value slightly higher than Wm is sufficient.

【0017】各送信局T1 の概略構成を図2に示す。図
に於てPNGi は拡散符号発生器で、クロックソースC
1 から供給される周波数f=F1 のクロック信号に従
って、拡散符号Pi (t)を発生し、CGは搬送波発振
器で、搬送波Acos(Wct)を発生する。MD1
MD2 は変調器で、変調器MD1 は送信データdi
(t)で搬送波を変調し、変調器MD2 はこれを拡散符
号pi (t)で拡散(変調)する。これによりX1 =A
i (t)pi (t)cos(Wc t)の送信信号が生
成される。なおEXーORは排他論理和回路である。
FIG. 2 shows a schematic configuration of each transmitting station T 1 . In the figure, PNG i is a spread code generator, and clock source C
In accordance with the clock signal of a frequency f = F 1 supplied from the S 1, the spread code P i (t) is generated, CG in carrier oscillator, for generating a carrier wave Acos (W c t). MD 1 ,
MD 2 is a modulator, and modulator MD 1 is transmission data d i
The carrier wave is modulated at (t), and the modulator MD 2 spreads (modulates) it with the spread code p i (t). This gives X 1 = A
A transmission signal of d i (t) p i (t) cos (W c t) is generated. EX-OR is an exclusive OR circuit.

【0018】図3に各受信局R1 の概略構成を示す。こ
の構成に於ける受信局の主たる動作は従来のものと同じ
であり、例えばDlxon R.C."Spread Spectrun Systems"
JohnWiley 1976等に詳述されており既に知られているか
らここでは簡単に説明する。
FIG. 3 shows a schematic configuration of each receiving station R 1 . The main operation of the receiving station in this configuration is the same as the conventional one, for example Dlxon RC "Spread Spectrun Systems"
Since it is described in detail in John Wiley 1976 and is already known, a brief description will be given here.

【0019】各受信局Ri には受信すべき信号Adi
(t)pi (t)cos(Wc t)、他の送信局からの
信号である干渉信号I(t)及び雑音信号n(t)が供
給される。11は帯域通過フィルタ(BPF)で、上記
供給される信号の中から帯域外の成分を除去する。12
は同期追従系で、受信信号Adi (t)pi (t)co
s(Wc t)の拡散符号pi (t)に同期した拡散信号
^pi (t)を発生する。なお^の信号は本来pの上に
置かれる。ここでは表現できないので、pの前に置く。
なお追従している状態に於て、^pi (t)=pi (t
+τ)である。
The signals Ad i to be received on each receiving station R i
(T) p i (t) cos (W c t), the interference signal is a signal from another transmitting station I (t) and the noise signal n (t) is supplied. A band-pass filter (BPF) 11 removes out-of-band components from the supplied signal. 12
Is a synchronous tracking system, and the received signal Ad i (t) p i (t) co
s (W c t) to generate a spreading code p i (t) in synchronization with the spread signal ^ p i (t) of the. The signal of ^ is originally placed on p. It cannot be expressed here, so put it before p.
In the following state, ^ p i (t) = p i (t
+ Τ).

【0020】同期追従系12で生成された拡散符号^p
i (t)は受信信号に乗算され、Adi (t)r
11(t)cos(Wc t)が取り出される。干渉信号I
(t)は逆拡散され、大部分が帯域通過フィルタ(BP
F)13で阻止される。これを通過した信号には(A/
2)cos(Wc t)が乗算された後、低域フィルタ
(LPF)14で高周波数成分が除去されてキャリヤ成
分が打消され、データ成分di(t)が取り出される。
Spreading code ^ p generated by the synchronization tracking system 12
i (t) is multiplied by the received signal and Ad i (t) r
11 (t) cos (W c t) is extracted. Interference signal I
(T) is despread, and most of it is a bandpass filter (BP).
F) Blocked at 13. The signal that passes this is (A /
2) cos (W c t) after have been multiplied, the high frequency components in the low-pass filter (LPF) 14 is removed by the carrier component is canceled, the data component d i (t) is extracted.

【0021】同期追従系12の概略を図4に示す。同期
追従系12は拡散符号発生部21、スライディング相関
器31及び遅延ロックループ41を備えている。拡散符
号発生部21に於て、拡散符号発生器pNG1 は、電圧
制御発振器VCOから供給されたクロック信号F1 に従
い、拡散信号^pi (t)を発生する。
The outline of the synchronization tracking system 12 is shown in FIG. The synchronization tracking system 12 includes a spreading code generator 21, a sliding correlator 31, and a delay lock loop 41. In the spread code generator 21, the spread code generator pNG 1 generates a spread signal ^ p i (t) according to the clock signal F 1 supplied from the voltage controlled oscillator VCO.

【0022】スライディング相関器31は初期同期引き
込みを行ない、同期が取れない間、判定回路32(Thre
shold )の出力は低レベルに保たれる。スイッチ回路S
Wはこの低レベル信号が供給されている間、所定電圧V
cを電圧制御発振器VCOに供給する。所定電圧Vcが
供給されている間、電圧制御発振器VCOは、本来のク
ロックレートより所定値△Fxだけ異なるクロック信号
1 +△Fxを発生する。
The sliding correlator 31 performs initial synchronization pull-in, and the determination circuit 32 (Thre
shold) output is kept low. Switch circuit S
W is a predetermined voltage V while this low level signal is supplied.
c is supplied to the voltage controlled oscillator VCO. While the predetermined voltage Vc is being supplied, the voltage controlled oscillator VCO generates a clock signal F 1 + ΔFx which differs from the original clock rate by a predetermined value ΔFx.

【0023】これにより送信側拡散信号pi (t)に対
し、受信側拡散信号^pi (t)は、速度△Fxで位相
τが変化する。低域フィルタ331 の遮断周波数はこの
△Fxが通過し得るようこれよりやや高めに設定され
る。
As a result, the phase τ of the reception side spread signal ^ p i (t) changes at the speed ΔFx with respect to the transmission side spread signal p i (t). The cutoff frequency of the low-pass filter 33 1 is set slightly higher than this so that this ΔFx can pass.

【0024】位相τが一致していないとき、入力信号A
i (t)pi (t)cos(Wct)と拡散符号^pi
(t)は相関が取れず、低域フィルタ331 の出力は
低レベルのままであるが、クロックFC1 が△Fxだけ
ずれているから、周期T=1/△Fxで両者間の位相τ
は接近、離反を繰返す。
When the phases τ do not match, the input signal A
d i (t) p i ( t) cos (W c t) and the spread code ^ p i
(T) has no correlation, and the output of the low-pass filter 33 1 remains at a low level, but the clock FC 1 is deviated by ΔFx. Therefore, the phase τ between the two at the cycle T = 1 / ΔFx.
Repeats approaching and leaving.

【0025】この過程で位相差が所定値より小さくな
り、振幅検出器33の出力がしきい値を越えたとき、判
定回路32は高レベル信号をスイッチ回路SWに供給
し、これに応動してスイッチ回路SWは遅延ロックグル
ープ41の出力信号を電圧制御発振器VCOに供給す
る。
In this process, when the phase difference becomes smaller than the predetermined value and the output of the amplitude detector 33 exceeds the threshold value, the decision circuit 32 supplies a high level signal to the switch circuit SW, and in response thereto, The switch circuit SW supplies the output signal of the delay lock group 41 to the voltage controlled oscillator VCO.

【0026】遅延ロックグループ41は、スライディン
グ相関器31によってある範囲に近づけられた受信側拡
散符号^pi (t)の位相を、送信側の拡散信号pi
(t)に完全に一致させ、拡散符号^pi (t)よりT
だけ位相が進んだ拡散符号^p i (t−T)が乗算器4
2に、拡散符号^pi (t)よりTだけ位相が遅れた拡
散信号^pi (t+T)が乗算器45に供給される。
The delay lock group 41 includes a sliding lock.
The reception side expansion which is brought close to a range by the correlator 31
Scatter ^ pi The phase of (t) is set to the spread signal p on the transmission side.i 
(T) is completely matched, and the spreading code ^ pi T from (t)
Spread code with advanced phase by only ^ p i (T−T) is the multiplier 4
2, spreading code ^ pi Expansion with the phase delayed by T from (t)
Scattered signal ^ pi (T + T) is supplied to the multiplier 45.

【0027】各乗算器42、45の出力は帯域フィルタ
43、46を介して振幅検出回路44、47に供給さ
れ、その出力は合成回路48で合成される。ループフィ
ルタ49でその中の所定値以下の周波数成分が取り出さ
れるが、ループフィルタ49の遮断周波数はクロックの
周波数安定度に係る偏移量△fをカバーし得る程度の値
とされ、その出力はスイッチ回路SWを介して電圧制御
発振器VCOに供給される。
The outputs of the multipliers 42 and 45 are supplied to amplitude detection circuits 44 and 47 via bandpass filters 43 and 46, and their outputs are combined by a combining circuit 48. The loop filter 49 takes out frequency components of a predetermined value or less, but the cutoff frequency of the loop filter 49 is set to a value that can cover the deviation amount Δf related to the frequency stability of the clock, and its output is It is supplied to the voltage controlled oscillator VCO via the switch circuit SW.

【0028】乗算器42側は受信側拡散信号^pi
(t)が送信側に対してやや遅れた状態のとき相関が取
れて振幅検出器44の出力が高くなり、一方乗算器45
側は受信側拡散信号^pi (t)が送信側に対してやや
進んだ状態のとき相関が取れて振幅検出器44の出力が
高くなる。合成回路48の出力、即ちループフィルタ4
9の出力は、これらの出力を合成したものとなり、この
出力の上下は、発生する受信側拡散信号^pi (t)の
位相ずれが少なくなるように、電圧制御発振回路VCO
に作用する。
On the multiplier 42 side, the reception side spread signal ^ p i
When (t) is slightly behind the transmitting side, the correlation is obtained and the output of the amplitude detector 44 becomes high, while the multiplier 45
On the side, when the spread signal on the receiving side ^ p i (t) is slightly advanced with respect to the transmitting side, the correlation is obtained and the output of the amplitude detector 44 becomes high. Output of combining circuit 48, that is, loop filter 4
The output of 9 is a combination of these outputs, and the upper and lower sides of this output are controlled by the voltage controlled oscillator circuit VCO so that the phase shift of the generated reception side spread signal ^ p i (t) is reduced.
Act on.

【0029】両者の位相差が無くなるとループフィルタ
49の出力はそこで安定し、位相が一致した状態が保た
れる。
When the phase difference between the two is eliminated, the output of the loop filter 49 is stabilized there, and the state where the phases match each other is maintained.

【0030】この同期追従系12のループ帯域LW1
主としてループフィルタ49の遮断周波数で定まる。
The loop band LW 1 of the synchronization tracking system 12 is mainly determined by the cutoff frequency of the loop filter 49.

【0031】本発明に於て、各受信局R1 同期追従系1
2のループ帯域LW1 の中の最大のものをLWmとする
とき、各送信局T1〜Tnの各クロック周波数FC1
FCnの間に、前記最大の帯域LWmより大きな周波数
差FDが与えられる。
In the present invention, each receiving station R 1 synchronization tracking system 1
When the maximum of the two loop bands LW 1 is LWm, the clock frequencies FC 1 to Tn of the transmitting stations T 1 to Tn are
A frequency difference FD larger than the maximum band LWm is given during FCn.

【0032】初期引き込みのとき、或は同期が保持され
た状態にあるとき、遠近問題等により自己の送信局T1
の信号Xi (t)より他の送信局Txの信号Xx(t)
の方が大きくなったとすると、この場合、自局のクロッ
クFC1 と他局のFCxの間には、少なくともFD以上
の周波数差が与えられているから、この他局拡散符号p
x(t)との相互相関rix(τ)もこの周波数波FD
以上の速度で変化する。
At the time of initial pull-in, or when the synchronization is maintained, the transmitting station T 1 of its own station due to a near-far problem or the like.
Signal X i (t) of another transmitting station Tx
In this case, since a frequency difference of at least FD or more is given between the clock FC 1 of the local station and the FCx of the other station in this case, this other station spreading code p
The cross-correlation r i x (τ) with x (t) is also the frequency wave FD
It changes at the above speed.

【0033】本発明に於て、同期追従系12のループ帯
域LW1 はこの周波数差FDより低く、これにより同期
追従系12は、たとえ他局信号Xx(t)の方が大きく
なったとしても、それとの相互相関ri x(τ)が自己
の追従可能な速度以上の速度で変化して行くため、これ
に追従しない。言い換えれば、各局に於ける相互相関r
i x(τ)のピーク値は平均化され、干渉信号I(t)
が白色雑音に近いものとなる。従って、そのレベルが自
己相関rii(τ)を越えることは無く、同期外れは起こ
らない。
In the present invention, the loop band LW 1 of the synchronization follow-up system 12 is lower than this frequency difference FD, so that the synchronization follow-up system 12 becomes larger even if the other station signal Xx (t) becomes larger. , The cross-correlation r i x (τ) with it changes at a speed equal to or higher than the speed at which it can follow itself, so it does not follow this. In other words, the cross-correlation r at each station
The peak value of i x (τ) is averaged, and the interference signal I (t)
Is close to white noise. Therefore, the level does not exceed the autocorrelation r ii (τ), and out-of-sync does not occur.

【0034】[0034]

【発明の効果】以上説明したように、本発明では夫々の
受信局の同期追従系のループ帯域LW1 〜LWnの中の
最大のものをLWmとするとき、各送信局の各拡散信号
i (t)〜pn(t)の各クロック周波数F1 〜Fn
の間に、該最大の帯域LWmより大きな周波数差FDを
与えるようにした。
As described above, according to the present invention, when the maximum one of the loop bands LW 1 to LWn of the synchronous tracking system of each receiving station is LWm, each spread signal p i of each transmitting station is set. Clock frequencies F 1 to Fn of (t) to pn (t)
The frequency difference FD larger than the maximum band LWm is given during the period.

【0035】これにより、各局に於ける相互相関ri
(τ)のピーク値は平均化され、干渉信号I(t)が白
色雑音に近いものとなる。従って、そのレベルが自己相
関rii(τ)を越えることが無く、同期外れは起こらな
くなる。
As a result, the cross-correlation r i x at each station
The peak value of (τ) is averaged, and the interference signal I (t) becomes close to white noise. Therefore, the level does not exceed the autocorrelation r ii (τ), and the loss of synchronization does not occur.

【0036】この為、従来に比べ拡散符号pi (t)の
選択の自由度が上がる。またクロックソースの周波数の
設定を変えるだけで足りるので、コスト上昇、回路複雑
化も全然生じない。
Therefore, the degree of freedom in selecting the spread code p i (t) is increased as compared with the conventional case. Further, since it is sufficient to change the setting of the frequency of the clock source, there is no increase in cost and circuit complexity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例を示す系統図。FIG. 1 is a system diagram showing an embodiment.

【図2】実施例の送信局構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a transmitting station according to the embodiment.

【図3】実施例の受信局構成を示すブロック図。FIG. 3 is a block diagram showing the configuration of a receiving station according to the embodiment.

【図4】実施例の同期追従系の構成を示すブロック図。FIG. 4 is a block diagram showing a configuration of a synchronous tracking system according to the embodiment.

【図5】従来例を示す系統図。FIG. 5 is a system diagram showing a conventional example.

【図6】自己相関r11(τ)の一例を示す線図。FIG. 6 is a diagram showing an example of autocorrelation r 11 (τ).

【図7】相互相関r1 x(τ)の一例を示す線図。FIG. 7 is a diagram showing an example of cross-correlation r 1 x (τ).

【符号の説明】[Explanation of symbols]

T 送信局 R 受信局 p(t) 拡散符号 11 同期追従系 T transmitter station R receiver station p (t) spreading code 11 synchronous tracking system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 互いに相関値の小さい異なる拡散信号を
用い夫々の送信局、受信局の間で通信を行なうスペクト
ラム拡散通信方式に於て、 夫々の受信局の同期追従系のループ帯域LW1 〜LWn
の中の最大のものをLWmとするとき、 前記各送信局に於て使用される前記各拡散符号の各クロ
ック周波数FC1 〜FCn の間に、前記最大の帯域LW
m より大きな周波数差FDが与えられていることを特徴
とするスペクトラム拡散通信方式。
1. In a spread spectrum communication system in which different transmitting signals having small correlation values are used to perform communication between respective transmitting stations and receiving stations, a loop band LW 1 ~ LWn
Of the maximum bandwidth LWm, the maximum bandwidth LW is set between the clock frequencies FC 1 to FCn of the spreading codes used in the transmitting stations.
A spread spectrum communication system characterized in that a frequency difference FD larger than m is given.
JP3348190A 1991-12-04 1991-12-04 Spread spectrum communication system Pending JPH05160805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3348190A JPH05160805A (en) 1991-12-04 1991-12-04 Spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3348190A JPH05160805A (en) 1991-12-04 1991-12-04 Spread spectrum communication system

Publications (1)

Publication Number Publication Date
JPH05160805A true JPH05160805A (en) 1993-06-25

Family

ID=18395354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3348190A Pending JPH05160805A (en) 1991-12-04 1991-12-04 Spread spectrum communication system

Country Status (1)

Country Link
JP (1) JPH05160805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865264A (en) * 1994-08-17 1996-03-08 Nippon Motorola Ltd Method and equipment for communication for cdma system using spread spectrum modulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865264A (en) * 1994-08-17 1996-03-08 Nippon Motorola Ltd Method and equipment for communication for cdma system using spread spectrum modulation

Similar Documents

Publication Publication Date Title
EP0960485B1 (en) Apparatus and method for code tracking in an IS-95 spread spectrum communication system
KR100197843B1 (en) Spread spectrum communication system
JP3229393B2 (en) Spread spectrum communication system
US6549559B2 (en) Apparatus and method for locking onto a psuedo-noise code in an IS-95 spread spectrum communications system
CA2052314C (en) Spread spectrum communications system
US5062122A (en) Delay-locked loop circuit in spread spectrum receiver
US7881400B2 (en) Pulse modulation type transmitter apparatus and pulse modulation type receiver apparatus
US4926440A (en) Spread-spectrum communication apparatus
US4423517A (en) Code sequence synchronization system for spread spectrum communication receiver
JP2002335188A (en) Apparatus and method for radio transmission and for radio reception
JP3666018B2 (en) Transmission device, reception device, transmission method, and reception method
JPH05160805A (en) Spread spectrum communication system
JP2748075B2 (en) Spread spectrum communication system
JPH0213979B2 (en)
JP3029219B2 (en) Spread spectrum signal receiver
JPH0629948A (en) Synchronization tracking circuit
JPH0213978B2 (en)
JP3686817B2 (en) Code division multiple access communication method
JPH06197091A (en) Spread spectrum communication system
JPH0468832A (en) Synchronous catching circuit for spread spectrum communication
JPH04245731A (en) Spread spectrum correlation system
JPH10308721A (en) Commercial power line carried spread spectrum communication equipment
JPH07154296A (en) Spread spectrum communication system and spread spectrum receiver
JPH10313268A (en) Power-line carrier spectrum spread communication device
JPH0437338A (en) Spread spectrum modulation demodulation system