JPH05160453A - Superconductive quantum interference device - Google Patents

Superconductive quantum interference device

Info

Publication number
JPH05160453A
JPH05160453A JP3321742A JP32174291A JPH05160453A JP H05160453 A JPH05160453 A JP H05160453A JP 3321742 A JP3321742 A JP 3321742A JP 32174291 A JP32174291 A JP 32174291A JP H05160453 A JPH05160453 A JP H05160453A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic flux
quantum interference
interference device
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3321742A
Other languages
Japanese (ja)
Inventor
Eriko Takeda
栄里子 武田
Nobuo Miyamoto
信雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3321742A priority Critical patent/JPH05160453A/en
Publication of JPH05160453A publication Critical patent/JPH05160453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a title device of high sensitivity with a small device area and a reduced parasitic component, a title device which can detect a difference in flux changes in an arbitrary space, and a title device improved in flux transmittance to any of superconducting coils for detecting magnetic flux different in inductance values. CONSTITUTION:Superconducting coils 12 for inputting magnetic flux with spiral parts produced in two or more wiring layers made of a superconductor thin film are arranged; superconducting coils 12 for inputting magnetic flux which generate magnetic fields almost in a substantially reverse direction to a superconducting ring 11 are arranged by sandwiching the superconducting ring 11; or a plurality of superconducting coils for inputting magnetic flux different in inductance are arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小な磁束を検出する
超電導量子干渉素子(Superconducting Quantum Inte
rference Device;以下SQUIDと略す)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting quantum interference device for detecting a minute magnetic flux.
rference Device; hereinafter abbreviated as SQUID).

【0002】[0002]

【従来の技術】SQUIDは超電導の性質を利用して、
微小な磁場を検出することができる素子である。微小磁
界検出用のSQUIDについては、アイ・イー・イー・
イー、トランザクション オン エレクトロン デバイ
シス 、イー ディー 27、No.10(1980
年)第1986頁から第1908頁(IEEE.Tran
s.Electron Devices、ED27、No.10(198
0)PP.1896〜1908)において論じられてい
る。SQUIDを用いた磁束計では、一般にジョセフソ
ン接合部を有する超電導リングで直接磁束を検出せず
に、超電導閉回路で形成される入力回路を介して磁束を
検出するという方法を用いる場合がある。図8にその磁
束計の構成の模式図を示す。
2. Description of the Related Art SQUID utilizes the property of superconductivity to
It is an element that can detect a minute magnetic field. For SQUIDs for detecting minute magnetic fields, see
E, Transaction on Electron Devices, ED 27, No. 10 (1980
Year) 1986 to 1908 (IEEE. Tran
s. Electron Devices, ED27, No. 10 (198
0) PP. 1896-1908). In the magnetometer using the SQUID, there is a case where a method of detecting a magnetic flux through an input circuit formed of a superconducting closed circuit is generally used without directly detecting the magnetic flux with a superconducting ring having a Josephson junction. FIG. 8 shows a schematic diagram of the configuration of the magnetometer.

【0003】図8の11はジョセフソン接合(以下、J
Jと略す)部を有する超電導リング(以下、超電導リン
グと称する)、82は磁束入力用の超電導コイル、83
は超電導配線、84は1次微分型の磁束検出用の超電導
コイル、85はJJ、86は下部電極、87は上部電
極、88は超電導リング11のスリットの重ね合わせ、
89は超電導リング11の開口部である。また図8にお
いては、磁束入力用の超電導コイル82の巻数は簡略化
してあり、本発明に関与しない層間絶縁層、抵抗、フィ
ードバックコイル等は省略してある。これは他の図にお
いても同様である。また、スリットの重ね合わせ88は
超電導リング11に生じる寄生インダクタンスを低減す
るためのものである。
Reference numeral 11 in FIG. 8 is a Josephson junction (hereinafter, J
A superconducting ring having a portion (abbreviated as J) (hereinafter referred to as a superconducting ring), 82 is a superconducting coil for inputting magnetic flux, and 83
Is a superconducting wire, 84 is a superconducting coil for detecting magnetic flux of the first differential type, 85 is JJ, 86 is a lower electrode, 87 is an upper electrode, 88 is a superposition of slits of the superconducting ring 11,
89 is an opening of the superconducting ring 11. Further, in FIG. 8, the number of turns of the superconducting coil 82 for magnetic flux input is simplified, and interlayer insulating layers, resistors, feedback coils and the like which are not related to the present invention are omitted. This also applies to other figures. The superposition of slits 88 is for reducing the parasitic inductance generated in the superconducting ring 11.

【0004】外部磁束は、磁束検出用の超電導コイル8
4で検出され、その結果、超電導閉回路内に遮蔽電流を
誘起する。その電流が超電導リング11と磁気結合をし
ている磁束入力用の超電導コイル82に流れ、超電導リ
ング11に磁束の変化を伝達する。磁束入力用の超電導
コイル82と超電導リング11の磁気結合度を高めるた
め、通常、両者を1つの基板上に積層形成するという方
法がとられる。この構造のSQUIDの磁束入力用の超
電導コイル82は主に渦巻型をしており、この渦巻部分
は超電導リング11の上又は下のどちらか一方に、絶縁
膜を介し、超電導体薄膜よりなる1層の配線層で作製さ
れている。
The external magnetic flux is the superconducting coil 8 for detecting the magnetic flux.
4 and consequently induces a shielding current in the superconducting closed circuit. The current flows into the superconducting coil 82 for magnetic flux input, which is magnetically coupled to the superconducting ring 11, and transmits the change in the magnetic flux to the superconducting ring 11. In order to increase the degree of magnetic coupling between the superconducting coil 82 for inputting the magnetic flux and the superconducting ring 11, usually, a method of laminating both of them on one substrate is adopted. The superconducting coil 82 for magnetic flux input of the SQUID of this structure is mainly of a spiral type, and this spiral part is formed of a superconducting thin film on either the upper side or the lower side of the superconducting ring 11 via an insulating film. It is made of wiring layers.

【0005】また、磁束計の磁束伝達率は磁束検出用の
超電導コイル84と磁束入力用の超電導コイル82及び
超電導リング11のインダクタンスの値に依存する。磁
束検出用の超電導コイル84と磁束入力用の超電導コイ
ル82の間の磁束伝達率は、両者を接続する超電導配線
83のインダクタンスを無視した場合には、磁束検出用
の超電導コイル84と磁束入力用の超電導コイル82の
インダクタンスが等しいときに最大になる。従って、磁
束検出用の超電導コイル84と磁束入力用の超電導コイ
ル82のインダクタンスがほぼ等しくなるように素子を
作製することが望ましい。磁束入力用の超電導コイル8
2のインダクタンスと磁束検出用の超電導コイル84の
インダクタンスをほぼ等しい値にするために、磁束入力
用の超電導コイル82の巻数を選ぶ等の方法がとられて
いる。
The magnetic flux transmissibility of the magnetometer depends on the inductance values of the superconducting coil 84 for detecting the magnetic flux, the superconducting coil 82 for inputting the magnetic flux, and the superconducting ring 11. The magnetic flux transmissibility between the superconducting coil 84 for detecting magnetic flux and the superconducting coil 82 for inputting magnetic flux is such that, when the inductance of the superconducting wiring 83 connecting them is ignored, the superconducting coil 84 for detecting magnetic flux and the superconducting coil for inputting magnetic flux are input. When the inductances of the superconducting coils 82 are equal, the maximum value is obtained. Therefore, it is desirable to manufacture the element so that the superconducting coil 84 for detecting the magnetic flux and the superconducting coil 82 for inputting the magnetic flux have substantially the same inductance. Superconducting coil 8 for magnetic flux input
In order to make the inductance of No. 2 and the inductance of the magnetic flux detecting superconducting coil 84 substantially equal, a method such as selecting the number of turns of the magnetic flux inputting superconducting coil 82 is used.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、磁束
検出用の超電導コイル84と磁束入力用の超電導コイル
82、及び磁束入力用の超電導コイル82と超電導リン
グ11の磁束伝達率を向上させるために、磁束入力用の
超電導コイル82の巻数が多くなり、それに伴い素子の
面積も大きくなり、寄生インダクタンス、寄生容量等の
寄生成分が増加し、素子の感度が低下するという問題が
あった。
In order to improve the magnetic flux transmissibility of the superconducting coil 84 for detecting the magnetic flux, the superconducting coil 82 for inputting the magnetic flux, and the superconducting coil 82 for inputting the magnetic flux and the superconducting ring 11, the above-mentioned conventional technique is used. In addition, there is a problem that the number of turns of the superconducting coil 82 for magnetic flux input is increased, the area of the element is increased accordingly, parasitic components such as parasitic inductance and parasitic capacitance are increased, and the sensitivity of the element is reduced.

【0007】また、素子の面積、すなわち、超電導リン
グ11の面積が大きくなるに従い、超伝導リング11に
立つ定在波による電圧ステップは、低電圧側に生じるよ
うになるため、出力電圧が減少し、感度が低下するとい
う問題があった。
Further, as the area of the element, that is, the area of the superconducting ring 11 increases, the voltage step due to the standing wave standing on the superconducting ring 11 occurs on the low voltage side, so that the output voltage decreases. However, there was a problem that the sensitivity was lowered.

【0008】また、上記従来技術による超電導量子干渉
素子を用いて構成した磁束計においては、特定の空間の
磁場勾配を求めることはできるが、任意の空間の磁場勾
配を求めることはできないという問題があった。
Further, in the magnetometer constructed by using the superconducting quantum interference device according to the above-mentioned conventional technique, the magnetic field gradient in a specific space can be obtained, but the magnetic field gradient in an arbitrary space cannot be obtained. there were.

【0009】さらにまた、上記従来技術は、磁束入力用
の超電導コイル82のインダクタンスとマッチングする
インダクタンスを有する特定の磁束検出用の超電導コイ
ル84しか磁束伝達率がよくないという問題があった。
Furthermore, the above-mentioned conventional technique has a problem that only a specific magnetic flux detecting superconducting coil 84 having an inductance matching the inductance of the magnetic flux inputting superconducting coil 82 has a good magnetic flux transmissibility.

【0010】本発明の第1の目的は、従来の素子の磁束
入力用の超電導コイルと同程度のインダクタンスを有し
ながら、素子面積が小さく、かつ、寄生成分を減少させ
た高感度な超電導量子干渉素子を提供することにある。
本発明の第2の目的は、任意の空間における磁束変化の
差を検出できる超電導量子干渉素子を提供することにあ
る。本発明の第3の目的は、インダクタンスの値の異な
る複数種類の磁束検出用の超電導コイルのいずれを接続
した場合にも上記従来技術よりは磁束伝達率を向上させ
ることのできる超電導量子干渉素子を提供することにあ
る。
A first object of the present invention is to provide a highly sensitive superconducting quantum device having a small element area and a reduced parasitic component while having an inductance similar to that of a conventional superconducting coil for inputting magnetic flux of an element. It is to provide an interference element.
A second object of the present invention is to provide a superconducting quantum interference device capable of detecting the difference in magnetic flux change in an arbitrary space. A third object of the present invention is to provide a superconducting quantum interference device capable of improving the magnetic flux transmissibility as compared with the above-mentioned prior art, even when any of a plurality of types of superconducting coils for magnetic flux detection having different inductance values is connected. To provide.

【0011】[0011]

【課題を解決するための手段】上記第1の目的は、
(1)基板上に設けられた、ジョセフソン接合部を有す
る超電導リングと、これに磁気的に結合し、かつ磁束検
出用の超電導コイルが接続されるための磁束入力用の超
電導コイルとを有する超電導量子干渉素子において、上
記磁束入力用の超電導コイルは、超電導体薄膜よりなる
複数の配線層に分けて配置されたことを特徴とする超電
導量子干渉素子、(2)上記1記載の超電導量子干渉素
子において、上記磁束入力用の超電導コイルを形成して
いる超電導体薄膜よりなる複数の配線層は、上記超電導
リングの上又は下の一方に絶縁膜を介して配置されたこ
とを特徴とする超電導量子干渉素子、(3)上記1又は
2記載の超電導量子干渉素子において、上記磁束入力用
の超電導コイルを形成している超電導体薄膜よりなる複
数の配線層のうちの少なくとも2層は渦巻形状であるこ
とを特徴とする超電導量子干渉素子、(4)上記1又は
2記載の超電導量子干渉素子において、上記超電導体薄
膜よりなる複数の配線層のうちの少なくとも2層の形成
する上記磁束入力用の超電導コイルは、上記超電導リン
グに対して磁束が結合して周回電流を生じるごとくに配
置されていることを特徴とする超電導量子干渉素子、
(5)上記1又は2記載の超電導量子干渉素子におい
て、上記超電導体薄膜よりなる複数の配線層のうちの少
なくとも2層の形成する上記磁束入力用の超電導コイル
は、上記超電導リングの開口部に鎖交する磁束を生じる
ごとくに配置されていることを特徴とする超電導量子干
渉素子、(6)上記1記載の超電導量子干渉素子におい
て、上記磁束入力用の超電導コイルを形成している超電
導体薄膜よりなる複数の配線層は、上記超電導リングの
上下に分けて絶縁膜を介して配置されたことを特徴とす
る超電導量子干渉素子、(7)上記6記載の超電導量子
干渉素子において、上記磁束入力用の超電導コイルを形
成している超電導体薄膜よりなる複数の配線層の上記超
電導リングの上下に配置されたそれぞれ少なくとも1層
は渦巻形状であることを特徴とする超電導量子干渉素子
によって達成される。
[Means for Solving the Problems] The first object is to:
(1) A superconducting ring having a Josephson junction provided on a substrate, and a superconducting coil for magnetic flux input for magnetically coupling to the superconducting coil for magnetic flux detection. In the superconducting quantum interference device, the superconducting quantum interference device for magnetic flux input is divided into a plurality of wiring layers made of a superconducting thin film, (2) the superconducting quantum interference device according to 1 above. In the element, the plurality of wiring layers made of a superconductor thin film forming the superconducting coil for inputting the magnetic flux are arranged above or below the superconducting ring via an insulating film. (3) In the superconducting quantum interference device described in (1) or (2) above, among the plurality of wiring layers made of a superconductor thin film forming the superconducting coil for inputting the magnetic flux. A superconducting quantum interference device characterized in that at least two layers have a spiral shape, (4) in the superconducting quantum interference device according to the above 1 or 2, at least two layers out of a plurality of wiring layers made of the superconductor thin film The superconducting coil for inputting the magnetic flux, the superconducting quantum interference device, wherein the magnetic flux is coupled to the superconducting ring to generate a circulating current,
(5) In the superconducting quantum interference device as described in 1 or 2, the superconducting coil for magnetic flux input formed in at least two layers of the plurality of wiring layers made of the superconductor thin film is provided in an opening of the superconducting ring. A superconducting quantum interference device, characterized in that the superconducting quantum interference device is arranged so as to generate interlinking magnetic fluxes; (6) In the superconducting quantum interference device according to 1 above, the superconducting thin film forming the superconducting coil for inputting the magnetic flux. A plurality of wiring layers consisting of the superconducting quantum interference device, wherein the wiring layers are arranged above and below the superconducting ring via insulating films, and (7) the superconducting quantum interference device according to the above 6, A plurality of wiring layers made of a superconducting thin film forming a superconducting coil for use in at least one layer above and below the superconducting ring, each of which has a spiral shape. Is achieved by a superconducting quantum interference device characterized.

【0012】上記第2の目的は、(8)基板上に設けら
れた、ジョセフソン接合部を有する超電導リングと、該
超電導リングを挾んで、これとは電気的に絶縁されるよ
うに配置され、該超電導リングに磁気的に結合し、かつ
磁束検出用の超電導コイルがそれぞれ接続されるため
の、2個の磁束入力用の超電導コイルとを有し、該磁束
入力用の超電導コイルが、該超電導リングに対して実質
的に略逆方向に磁界を発生する構造を有することを特徴
とする超電導量子干渉素子、(9)上記8記載の超電導
量子干渉素子において、上記2個の磁束入力用の超電導
コイルは、上記超電導リングに対して実質的に略同一の
磁束伝達率を有することを特徴とする超電導量子干渉素
子、(10)上記8又は9記載の超電導量子干渉素子に
おいて、上記磁束入力用の超電導コイルは、超電導体薄
膜よりなる複数の配線層に分けて配置されたことを特徴
とする超電導量子干渉素子、(11)上記10記載の超
電導量子干渉素子において、上記磁束入力用の超電導コ
イルを形成している超電導体薄膜よりなる複数の配線層
のうちの少なくとも2層は渦巻形状であることを特徴と
する超電導量子干渉素子、(12)上記10記載の超電
導量子干渉素子において、上記超電導体薄膜よりなる複
数の配線層のうちの少なくとも2層の形成する上記磁束
入力用の超電導コイルは、上記超電導リングに対して磁
束が結合して周回電流を生じるごとくに配置されている
ことを特徴とする超電導量子干渉素子、(13)上記1
0記載の超電導量子干渉素子において、上記超電導体薄
膜よりなる複数の配線層のうちの少なくとも2層の形成
する上記磁束入力用の超電導コイルは、上記超電導リン
グの開口部に鎖交する磁束を生じるごとくに配置されて
いることを特徴とする超電導量子干渉素子によって達成
される。
The second object is (8) a superconducting ring having a Josephson junction provided on a substrate, and a superconducting ring sandwiched between the superconducting ring and the superconducting ring. , Two superconducting coils for magnetic flux input, which are magnetically coupled to the superconducting ring and are connected to the superconducting coils for magnetic flux detection, respectively. A superconducting quantum interference device having a structure for generating a magnetic field substantially in a direction substantially opposite to a superconducting ring, (9) the superconducting quantum interference device according to the above 8, wherein the two magnetic flux inputs are used. The superconducting coil has substantially the same magnetic flux transmissibility as that of the superconducting ring. (10) The superconducting quantum interference device according to the above 8 or 9, wherein: A superconducting coil for use in a superconducting quantum interference device, wherein the superconducting quantum interference device is divided into a plurality of wiring layers made of a superconductor thin film. (11) The superconducting quantum interference device according to the above 10, At least two layers of a plurality of wiring layers formed of a superconductor thin film forming a coil are spiral-shaped, (12) the superconducting quantum interference device according to the above 10, The superconducting coil for inputting the magnetic flux, which is formed by at least two layers out of a plurality of wiring layers made of a superconducting thin film, is arranged as if a magnetic flux is coupled to the superconducting ring to generate a circulating current. Characteristic superconducting quantum interference device, (13) above 1
0. In the superconducting quantum interference device according to 0, the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film generates a magnetic flux interlinking with the opening of the superconducting ring. This is achieved by a superconducting quantum interference device characterized in that it is arranged in the same manner.

【0013】上記第3の目的は、(14)基板上に設け
られた、ジョセフソン接合部を有する超電導リングと、
これに磁気的に結合し、かつ磁束検出用の超電導コイル
と接続されるための磁束入力用の超電導コイルとを有す
る超電導量子干渉素子において、上記磁束入力用の超電
導コイルは、それぞれインダクタンスの異なる複数個が
配置されたことを特徴とする超電導量子干渉素子、(1
5)上記14記載の超電導量子干渉素子において、上記
磁束入力用の超電導コイルは、それぞれが超電導体薄膜
よりなる複数の配線層に分けて配置されたことを特徴と
する超電導量子干渉素子、(16)上記15記載の超電
導量子干渉素子において、上記磁束入力用の超電導コイ
ルを形成している超電導体薄膜よりなる複数の配線層の
うちの少なくとも2層は渦巻形状であることを特徴とす
る超電導量子干渉素子、(17)上記15記載の超電導
量子干渉素子において、上記超電導体薄膜よりなる複数
の配線層のうちの少なくとも2層の形成する上記磁束入
力用の超電導コイルは、上記超電導リングに対して磁束
が結合して周回電流を生じるごとくに配置されているこ
とを特徴とする超電導量子干渉素子、(18)上記15
記載の超電導量子干渉素子において、上記超電導体薄膜
よりなる複数の配線層のうちの少なくとも2層の形成す
る上記磁束入力用の超電導コイルは、上記超電導リング
の開口部に鎖交する磁束を生じるごとくに配置されてい
ることを特徴とする超電導量子干渉素子によって達成さ
れる。
The third object is (14) a superconducting ring having a Josephson junction provided on a substrate,
In a superconducting quantum interference device magnetically coupled to this, and having a superconducting coil for magnetic flux input to be connected to a superconducting coil for magnetic flux detection, the superconducting coil for magnetic flux input has a plurality of different inductances. A superconducting quantum interference device, characterized in that
5) In the superconducting quantum interference device as described in 14 above, the superconducting coil for inputting the magnetic flux is divided into a plurality of wiring layers each made of a superconductor thin film, and arranged. ) In the superconducting quantum interference device as described in 15 above, at least two layers out of a plurality of wiring layers made of a superconducting thin film forming the superconducting coil for inputting the magnetic flux have a spiral shape. (17) In the superconducting quantum interference device as described in (17) above, the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film is provided with respect to the superconducting ring. A superconducting quantum interference device, characterized in that it is arranged as if magnetic fluxes are combined to generate a circulating current, (18) above 15
In the superconducting quantum interference device described above, the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film is such that a magnetic flux interlinks with the opening of the superconducting ring. Is achieved by a superconducting quantum interference device.

【0014】[0014]

【作用】本発明のSQUIDは、超電導体薄膜よりなる
複数の配線層に分けて配置された磁束入力用の超電導コ
イルを設けることにより、素子面積の小型化をはかり、
それとともに素子に生じる寄生インダクタンスや寄生容
量等の寄生成分を低減することができる。このことは、
素子の高感度化に関して以下のように作用する。素子の
高感度化を妨げる原因の一つに、電流−電圧特性に生じ
る電圧ステップがあるが、この電圧ステップは、素子内
のインダクタンスと容量による共振(L−C共振)と超
電導リングに立つ定在波による共振などが原因となる。
L−C共振による電圧ステップの位置は、素子の容量や
インダクタンスが大きいほど低電圧側に生じる。そのた
め、素子の寄生インダクタンスや寄生容量を減少させる
ことにより、L−C共振による上記の電圧ステップの生
じる電圧をより高電圧側にし、素子の動作範囲から離す
ことができるため素子を高感度化することができる。一
方、超電導リングに立つ定在波の共振による電圧ステッ
プは、素子に立つ波長が長いほど、低周波側に生じる。
すなわち、素子面積が大きいほど、低電圧側に生じるこ
とになる。従って、素子の面積を小さくすれば、超電導
リングに立つ波長が短くなるため、電圧ステップの生じ
る電圧をより高電圧側にすることができ、やはり素子の
動作範囲から離すことができるため高感度化することが
できる。
The SQUID of the present invention is provided with a superconducting coil for magnetic flux input, which is divided into a plurality of wiring layers made of a superconducting thin film to reduce the element area.
At the same time, it is possible to reduce parasitic components such as parasitic inductance and parasitic capacitance generated in the element. This is
The following acts for increasing the sensitivity of the device. One of the factors that hinder the enhancement of the sensitivity of the element is the voltage step that occurs in the current-voltage characteristics. This voltage step is due to resonance (LC resonance) due to inductance and capacitance in the element and to the superconducting ring. The cause is resonance due to standing waves.
The position of the voltage step due to the LC resonance occurs on the lower voltage side as the capacitance and inductance of the element increase. Therefore, by reducing the parasitic inductance and the parasitic capacitance of the element, the voltage generated by the voltage step due to the LC resonance can be set to a higher voltage side and can be separated from the operating range of the element, so that the element has high sensitivity. be able to. On the other hand, the voltage step due to the resonance of the standing wave standing on the superconducting ring is generated on the lower frequency side as the wavelength standing on the element is longer.
That is, the larger the element area, the lower the voltage will occur. Therefore, if the area of the element is made smaller, the wavelength standing on the superconducting ring becomes shorter, so the voltage at which the voltage step is generated can be made higher and the sensitivity can be improved because it can be separated from the operating range of the element. can do.

【0015】また、超電導リングに対して、実質的に略
逆方向の磁界を発生させる2つの磁束入力用の超電導コ
イルを、超電導リングを挾んで、これとは電気的に絶縁
されるように設けることにより、夫々の磁束入力用の超
電導コイルに接続されている磁束検出用の超電導コイル
が検出した磁束変化の差に当る量を検出することができ
る。
Further, two magnetic flux input superconducting coils for generating magnetic fields in substantially opposite directions to the superconducting ring are provided so as to be electrically insulated from the superconducting ring by sandwiching the superconducting ring. This makes it possible to detect the amount corresponding to the difference in the magnetic flux changes detected by the magnetic flux detecting superconducting coils connected to the respective magnetic flux inputting superconducting coils.

【0016】また、インダクタンスの異なる複数個の磁
束入力用の超電導コイルを設けることにより、磁束検出
用の超電導コイルのインダクタンスが変わっても、それ
に応じて複数個の磁束入力用の超電導コイルの中で、最
適なインダクタンスを有する磁束入力用の超電導コイル
を使用することにより、磁束入力用の超電導コイルを1
個しか有さない従来の素子に比べ磁束伝達率を向上させ
ることができる。
Further, by providing a plurality of superconducting coils for inputting magnetic flux having different inductances, even if the inductance of the superconducting coil for detecting magnetic flux changes, among the plurality of superconducting coils for inputting magnetic flux, , By using the superconducting coil for magnetic flux input with the optimum inductance,
It is possible to improve the magnetic flux transmissibility as compared with the conventional element having only one piece.

【0017】[0017]

【実施例】(比較例)初めに比較例として従来の超電導
量子干渉素子について述べる。図8は、超電導リング1
1の上方に、超電導体薄膜よりなる1層の配線層に60
回巻の渦巻部分を作成した磁束入力用の超電導コイル8
2を配置した超電導量子干渉素子に超電導配線83を用
いて磁束検出用の超電導コイル84を接続した状態を示
す模式図である。この素子の作製方法は次の通りであ
る。基板は表面を熱酸化したSiウェハを用いた。この
表面にNb膜(厚み;200nm)を直流マグネトロン
スパッタ法により堆積し、フォトレジストをマスク材と
して、反応性イオンエッチング法により超電導リング1
1のパタンを形成した。
EXAMPLES (Comparative Example) First, a conventional superconducting quantum interference device will be described as a comparative example. FIG. 8 shows a superconducting ring 1.
1 above the wiring layer 60 in a single wiring layer made of a superconductor thin film.
Superconducting coil 8 for magnetic flux input in which spiral part of winding is created
It is a schematic diagram which shows the state which connected the superconducting coil 84 for magnetic flux detection to the superconducting quantum interference element which has arrange | positioned 2 using the superconducting wiring 83. The manufacturing method of this element is as follows. The substrate used was a Si wafer whose surface was thermally oxidized. A Nb film (thickness: 200 nm) is deposited on this surface by the DC magnetron sputtering method, and the superconducting ring 1 is formed by the reactive ion etching method using the photoresist as a mask material.
A pattern of 1 was formed.

【0018】次に、層間絶縁膜を形成する工程に移る
が、これ以後、層間絶縁膜は全てSiO蒸着膜を用い、
リフトオフ法でパタンを形成した。層間絶縁膜(厚み;
300nm)を形成した後に、図8には示されていない
が、抵抗膜として、MoNx膜(厚み;100nm)を
直流マグネトロンスパッタ法により形成し、フォトレジ
ストをマスク材として、反応性イオンエッチング法によ
りパタンを形成した。次に、層間絶縁膜(厚み;180
nm)を形成した後に、下部電極86とスリットの重ね
合わせ88として、Nb−NbN積層膜(厚み;250
nm)を直流マグネトロンスパッタ法により形成し、フ
ォトレジストをマスク材として、反応性イオンエッチン
グ法によりパタンを形成した。そして、この上にトンネ
ル障壁層(JJ)形成用の窓(接合窓;5μm角)を設
けた層間絶縁膜(厚み;320nm)を形成した。
Next, the process proceeds to the step of forming an interlayer insulating film. After that, the SiO2 film is used as the interlayer insulating film.
A pattern was formed by the lift-off method. Interlayer insulation film (thickness;
Although not shown in FIG. 8, a MoNx film (thickness: 100 nm) is formed by a DC magnetron sputtering method as a resistance film after the formation of 300 nm) and by a reactive ion etching method using a photoresist as a mask material. A pattern was formed. Next, an interlayer insulating film (thickness: 180
nm), and then as a superposition 88 of the lower electrode 86 and the slit, an Nb-NbN laminated film (thickness: 250).
nm) was formed by a DC magnetron sputtering method, and a pattern was formed by a reactive ion etching method using a photoresist as a mask material. Then, an interlayer insulating film (thickness: 320 nm) provided with a window (junction window; 5 μm square) for forming a tunnel barrier layer (JJ) was formed thereon.

【0019】次に、フォトレジストで磁束入力用の超電
導コイル82の渦巻部分(60回巻)及び上部電極87
のパタンを形成した後に、高周波プラズマ酸化法で、接
合窓の下部電極表面にトンネル障壁層(JJ)85(N
bOx)を形成し、引き続き、Pb合金(厚み;450
nm)を蒸着した。そして、リフトオフ法により磁束入
力用の超電導コイル82の渦巻部分及び上部電極87の
パタンを形成した。
Next, the spiral portion (60 turns) of the superconducting coil 82 for inputting the magnetic flux and the upper electrode 87 are made of photoresist.
Of the tunnel barrier layer (JJ) 85 (N) is formed on the surface of the lower electrode of the junction window by the high frequency plasma oxidation method after the pattern is formed.
bOx) is formed, and then Pb alloy (thickness: 450;
nm) was deposited. Then, the spiral portion of the superconducting coil 82 for magnetic flux input and the pattern of the upper electrode 87 were formed by the lift-off method.

【0020】このようにして作製した素子の面積は約
(1.31cm)2であり、超電導リング11のインダ
クタンスを測定したところ104pHであった。超電導
リング11の開口部89の一辺の長さから求められるイ
ンダクタンスは39pHであるので、この素子には65
pHの寄生インダクタンスが生じていた。また、磁束入
力用の超電導コイル82のインダクタンスは約380n
Hであった。
The area of the thus-produced element was about (1.31 cm) 2 , and the inductance of the superconducting ring 11 was measured and found to be 104 pH. Since the inductance obtained from the length of one side of the opening 89 of the superconducting ring 11 is 39 pH, this element has 65
There was a pH parasitic inductance. The inductance of the superconducting coil 82 for inputting the magnetic flux is about 380n.
It was H.

【0021】(実施例1)本発明の超電導量子干渉素子
の第1の実施例を述べる。図1は、超電導リング11の
上方に絶縁膜を介して超電導体薄膜よりなる2層の配線
層に分けて渦巻部分を作製した磁束入力用の超電導コイ
ル12を配置した素子の模式図である。この素子では、
各層に35回巻の磁束入力用の超電導コイルを作製して
ある。また、素子の作製方法は、磁束入力用の超電導コ
イル12の渦巻部分を形成している2層の超電導体薄膜
よりなる配線層の間に層間絶縁膜を設けたことの他は、
比較例の素子と略同様である。この素子の磁束入力用の
超電導コイル12のインダクタンスは約390nHであ
り、比較例の素子の磁束入力用の超電導コイル82と略
等しいインダクタンスを有する。しかし、素子の面積は
約(0.81cm)2であり、比較例の素子に比べ素子
面積が約2.6分の1になった。また、寄生インダクタ
ンスも約2分の1になった。
(Embodiment 1) A first embodiment of the superconducting quantum interference device of the present invention will be described. FIG. 1 is a schematic diagram of an element in which a superconducting coil 12 for magnetic flux input is arranged above a superconducting ring 11 and is divided into two wiring layers made of a superconductor thin film via an insulating film to form a spiral portion. In this element,
A 35-turn superconducting coil for magnetic flux input is formed in each layer. In addition, the manufacturing method of the element is that an interlayer insulating film is provided between the wiring layers made of two superconducting thin films forming the spiral portion of the superconducting coil 12 for magnetic flux input,
It is substantially the same as the element of the comparative example. The inductance of the magnetic flux input superconducting coil 12 of this element is about 390 nH, which is substantially the same as the magnetic flux input superconducting coil 82 of the element of the comparative example. However, the area of the device was about (0.81 cm) 2 , and the device area was about 2.6 times smaller than that of the device of the comparative example. In addition, the parasitic inductance was also reduced to about half.

【0022】また、図2のように、超電導リング11の
上方に、超電導体薄膜よりなる3層の配線層に分けて渦
巻部分を作製した磁束入力用の超電導コイル22を配置
しても、また、図3のように、超電導リング11の上方
に、超電導体薄膜よりなる4層の配線層に分けて渦巻部
分を作製した磁束入力用の超電導コイル32を配置して
も同様の効果が得られる。これら各素子の超電導リング
の面積、寄生インダクタンス及び磁束入力用の超電導コ
イルのインダクタンスの値等を表1にまとめる。
Further, as shown in FIG. 2, a superconducting coil 22 for magnetic flux input, in which a spiral portion is formed by dividing the superconducting thin film into three wiring layers, is arranged above the superconducting ring 11, As shown in FIG. 3, the same effect can be obtained by disposing the superconducting coil 32 for magnetic flux input in which the spiral portion is formed by dividing the superconducting thin film into four wiring layers above the superconducting ring 11. .. Table 1 summarizes the area of the superconducting ring of each of these elements, the parasitic inductance, the value of the inductance of the superconducting coil for inputting the magnetic flux, and the like.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)本発明の他の実施例について
述べる。図4は、超電導リング11の下方に、超電導体
薄膜よりなる2層の配線層に分けて渦巻部分を作製した
磁束入力用の超電導コイル42を配置した素子の模式図
である。各層に35回巻の磁束入力用の超電導コイルを
作成している。また、素子の作製方法は実施例の素子と
同様である。この素子も実施例1の素子と同様に、比較
例の素子と略同じ値のインダクタンスを持つ磁束入力用
の超電導コイル42を配置しているが、比較例の素子に
比べ素子面積が約2.6分の1になり、寄生インダクタ
ンスも約2分の1に低減した。また、実施例1の素子と
同様に、超電導リングの下方に磁束入力用の超電導コイ
ルの渦巻部分を超電導体薄膜よりなる3層以上の配線層
に分けて作製しても同様の効果が得られる。これら各素
子の超電導リングの面積、寄生インダクタンス及び磁束
入力用の超電導コイルのインダクタンスの値等を表1に
まとめる。
(Embodiment 2) Another embodiment of the present invention will be described. FIG. 4 is a schematic diagram of an element in which a superconducting coil 42 for magnetic flux input is disposed below the superconducting ring 11 in which a spiral portion is formed by dividing into two wiring layers made of a superconductor thin film. A 35-turn superconducting coil for magnetic flux input is formed in each layer. The method of manufacturing the element is the same as that of the element of the example. Similar to the element of Example 1, this element also has a superconducting coil 42 for magnetic flux input having an inductance of substantially the same value as the element of the comparative example, but the element area is about 2. It has been reduced to one sixth and the parasitic inductance has been reduced to about one half. Similar to the element of Example 1, the same effect can be obtained even if the spiral portion of the superconducting coil for magnetic flux input is divided into three or more wiring layers made of a superconductor thin film below the superconducting ring. .. Table 1 summarizes the area of the superconducting ring of each of these elements, the parasitic inductance, the value of the inductance of the superconducting coil for inputting the magnetic flux, and the like.

【0025】(実施例3)本発明の他の実施例について
述べる。図5は、超電導リング11を挾んで、その上方
の超電導体薄膜よりなる1層の配線層と、その下方の超
電導体薄膜よりなる1層の配線層と、合計2層の超電導
体薄膜よりなる配線層に分けて渦巻部分を作製した磁束
入力用の超電導コイル52を配置した素子の模式図であ
る。各層では磁束入力用の超電導コイルを35回ずつ巻
いてある。素子の作製方法は実施例1の素子と略同様で
ある。この素子も実施例1及び実施例2の素子と同様
に、比較例の素子に比べ素子面積が約2.6分の1にな
り、寄生インダクタンスも約2分の1に低減した。ま
た、実施例3では、超電導リング11の開口部89を通
して上方及び下方の配線を接続してコイルを形成してい
るが、超電導リング11の外部で配線を接続しても良
い。また、超電導リング11を挾んで渦巻部分を作製す
る超電導体薄膜よりなる配線層の数は、上方及び下方で
異なっていても同様の効果が得られる。これら各素子の
超電導リングの面積、寄生インダクタンス及び磁束入力
用の超電導コイルのインダクタンスの値等を表1にまと
める。
(Embodiment 3) Another embodiment of the present invention will be described. FIG. 5 shows a total of two superconducting thin films including a superconducting thin film above the superconducting thin film 11 and a single wiring layer below the superconducting thin film 11 and a superconducting thin film below the superconducting thin film. It is a schematic diagram of the element which has arrange | positioned the superconducting coil 52 for magnetic flux input which divided the wiring layer and produced the spiral part. In each layer, a superconducting coil for inputting magnetic flux is wound 35 times. The manufacturing method of the element is substantially the same as that of the element of Example 1. Similar to the elements of Example 1 and Example 2, this element also had an element area of about 2.6 times smaller than the element of the comparative example, and the parasitic inductance was also reduced to about 1/2. Further, in the third embodiment, the upper and lower wirings are connected to form the coil through the opening 89 of the superconducting ring 11, but the wirings may be connected outside the superconducting ring 11. Also, the same effect can be obtained even if the number of wiring layers made of a superconductor thin film sandwiching the superconducting ring 11 to form a spiral portion is different between the upper and lower portions. Table 1 summarizes the area of the superconducting ring of each of these elements, the parasitic inductance, the value of the inductance of the superconducting coil for inputting the magnetic flux, and the like.

【0026】これらの実施例の素子では各層における磁
束入力用の超電導コイルの巻数は同数であるが、各層に
おける巻数が異なっていても同様の効果が得られること
は明白である。また、素子に生じる寄生容量の原因とし
ては、超電導リングのスリットの重ね合わせによる容量
や超電導リングと磁束入力用の超電導コイルの間の容量
等が原因であると考えられているが、本発明の素子は、
素子面積を小さくできるので寄生容量も低減した。
In the elements of these examples, the number of turns of the superconducting coil for magnetic flux input in each layer is the same, but it is clear that the same effect can be obtained even if the number of turns in each layer is different. Further, as the cause of the parasitic capacitance that occurs in the element, it is considered that the capacitance due to the superposition of the slits of the superconducting ring or the capacitance between the superconducting ring and the superconducting coil for magnetic flux input, etc. The element is
Since the element area can be reduced, the parasitic capacitance is also reduced.

【0027】また、これらの素子はNbやPb合金を用
いて作製したが、Pb合金で作製した部分をNbで作製
しても、また、酸化物超電導体を用いて作製しても同様
の効果が得られることは明白である。また、本発明の実
施例1、実施例2及び実施例3は、JJを2個有する素
子に関してであるが、JJを1個しか有さない素子に関
しても同様の効果が得られることは明白である。
Further, although these elements were manufactured by using Nb or Pb alloy, the same effect can be obtained by manufacturing the part made of Pb alloy by Nb or oxide superconductor. It is clear that Further, although the first, second and third embodiments of the present invention relate to an element having two JJs, it is clear that the same effect can be obtained even for an element having only one JJ. is there.

【0028】(実施例4)本発明の他の実施例について
述べる。図6は、超電導リング11の上方に絶縁膜を介
して超電導体薄膜よりなる1層の配線層に60回巻の渦
巻部分を作成した磁束入力用の超電導コイル621を設
け、下方に絶縁膜を介して超電導体薄膜よりなる1層の
配線層に60回巻の渦巻部分を作成した磁束入力用の超
電導コイル622を設けた超電導量子干渉素子に超電導
配線を用いて磁束検出用の超電導コイルを接続した状態
を示す模式図である。この素子は、超電導リング11と
磁束入力用の超電導コイル621の層間絶縁膜と超電導
リング11と磁束入力用の超電導コイル622の層間絶
縁膜の厚さを、略同一(誤差を±5%以内)になるよう
にし、かつ磁束入力用の超電導コイル621と磁束入力
用の超電導コイル622のインダクタンスが略同一(誤
差を±5%以内)になるようにした。すなわち、巻数や
線幅等の設計条件を同一にし、作製条件を略同一にし
た。
(Embodiment 4) Another embodiment of the present invention will be described. In FIG. 6, a superconducting coil 621 for magnetic flux input is provided above the superconducting ring 11 in which a spiral portion of 60 turns is formed in one wiring layer made of a superconductor thin film via an insulating film, and the insulating film is provided below. A superconducting quantum interference device provided with a superconducting coil 622 for magnetic flux input in which a spiral portion of 60 turns is formed in one wiring layer made of a superconducting thin film is connected to the superconducting coil for magnetic flux detection by using superconducting wiring. It is a schematic diagram which shows the state. In this device, the thicknesses of the superconducting ring 11 and the interlayer insulating film of the superconducting coil 621 for magnetic flux input and the interlayer insulating film of the superconducting ring 11 and the superconducting coil 622 for magnetic flux input are approximately the same (within ± 5% error). The superconducting coil 621 for inputting the magnetic flux and the superconducting coil 622 for inputting the magnetic flux have substantially the same inductance (within an error of ± 5%). That is, the design conditions such as the number of turns and the line width were the same, and the manufacturing conditions were substantially the same.

【0029】この素子の作製方法は、比較例の素子と略
同様である。ただし、超電導リング11の上方及び下方
に作製する、磁束入力用の超電導コイル621及び62
2と、超電導リング11との層間絶縁膜の厚さを等しく
するため、超電導リング11の下方の磁束入力用の超電
導コイル622と層間絶縁膜を形成したあと、レジスト
をスピンコートして、エッチバックを行い、平坦化を行
った。また、超電導リング11の大きさ及び磁束入力用
の超電導コイル621及び622の巻数や線幅、及び磁
束入力用の超電導コイル621及び622と超電導リン
グ11の間の層間絶縁膜の厚さ等の設計条件は、比較例
の素子と同一にした。
The manufacturing method of this element is almost the same as that of the element of the comparative example. However, superconducting coils 621 and 62 for magnetic flux input, which are formed above and below the superconducting ring 11.
2 and the superconducting ring 11 have the same thickness of the interlayer insulating film, the superconducting coil 622 for magnetic flux input and the interlayer insulating film below the superconducting ring 11 are formed, and then the resist is spin-coated to etch back. Then, the surface was flattened. Further, the size of the superconducting ring 11, the number of turns and the line width of the superconducting coils 621 and 622 for magnetic flux input, and the thickness of the interlayer insulating film between the superconducting coils 621 and 622 for magnetic flux input and the superconducting ring 11 are designed. The conditions were the same as those of the device of the comparative example.

【0030】本実施例の素子と図8に示した比較例の素
子の電流−電圧特性を測定したところ、両素子で略同一
(誤差が±5%以内)の結果が得られた。また、本実施
例の素子の、上方の磁束入力用の超電導コイル621に
交流を流すことによって、電圧−磁束特性を測定し、ま
た、下方のコイルに関しても、電圧−磁束特性を測定し
たところ、両コイルで、略同一(誤差が±5%以内)の
結果が得られた。また、同様に比較例の素子に関しても
磁束入力用の超電導コイル82に交流を流すことによっ
て、電圧−磁束特性を測定したところ、本実施例の素子
の両コイルと略同一(誤差が±5%以内)の結果が得ら
れた。
When the current-voltage characteristics of the device of this example and the device of the comparative example shown in FIG. 8 were measured, the results were substantially the same (within an error of ± 5%) for both devices. Further, in the element of the present example, by passing an alternating current through the upper superconducting coil 621 for magnetic flux input, the voltage-magnetic flux characteristic was measured, and also for the lower coil, the voltage-magnetic flux characteristic was measured, With both coils, almost the same results (within an error of ± 5%) were obtained. Similarly, with respect to the element of the comparative example, the voltage-magnetic flux characteristic was measured by applying an alternating current to the superconducting coil 82 for inputting the magnetic flux. The result of (within) was obtained.

【0031】比較例の素子の磁束入力用の超電導コイル
82に、超電導配線83を用いて1次微分型の磁束検出
用の超電導コイル84を接続した。また、本実施例の素
子には、比較例の素子に接続した1次微分型の磁束検出
用の超電導コイル84と略同一(誤差が±5%以内)の
コイル径を持つ、非微分型の磁束検出用の超電導コイル
641、及び642を、それぞれ、超電導配線631、
及び632を用いて、磁束入力用の超電導コイル62
1、及び622に接続した。磁束検出用の超電導コイル
と、磁束入力用の超電導コイルの間の超電導配線のイン
ダクタンスは、比較例の素子と本実施例の素子で等しく
なるように、配線長等を調整した。比較例の素子の一次
微分型の磁束検出用の超電導コイル84を形成する2つ
のリング部の間の距離と同じ距離だけ、本実施例の素子
の2つの非微分型の磁束検出用の超電導コイル641と
642の間を離して、各非微分型の磁束検出用の超電導
コイル641及び642の中心が同一軸上にくるように
配置し、かつ、両コイルが実質的に平行になるように配
置した。この状態の両素子で、電流の発生する磁場の検
出を試みたところ、略同じ結果(差が±5%以内)を得
ることができた。従って、本実施例の素子は2つの磁束
検出用の超電導コイルを任意の空間に置いたとき、各コ
イルが検出した磁束変化の差に等しい量を検出できた。
A superconducting coil 84 for magnetic flux input of the device of the comparative example was connected to a superconducting coil 84 for primary differential type magnetic flux detection by using a superconducting wiring 83. Further, the element of this example has a coil diameter substantially the same as the first-order differential type magnetic flux detection superconducting coil 84 connected to the element of the comparative example (within an error of ± 5%). The magnetic flux detection superconducting coils 641 and 642 are respectively connected to the superconducting wiring 631 and
And 632 are used to input the superconducting coil 62 for inputting the magnetic flux.
1 and 622. The wiring length and the like were adjusted so that the inductance of the superconducting wiring between the superconducting coil for detecting magnetic flux and the superconducting coil for inputting magnetic flux was equal in the element of the comparative example and the element of the present example. The two non-differential type magnetic flux detecting superconducting coils of the element of this embodiment are equal to the distance between the two ring portions forming the first-order differential type magnetic flux detecting superconducting coil 84 of the comparative example element. 641 and 642 are separated from each other, and the non-differential type magnetic flux detection superconducting coils 641 and 642 are arranged so that their centers are on the same axis, and both coils are substantially parallel to each other. did. When the detection of the magnetic field generated by the current was attempted with both the elements in this state, almost the same result (the difference was within ± 5%) could be obtained. Therefore, when the two magnetic flux detecting superconducting coils were placed in an arbitrary space, the device of this example could detect an amount equal to the difference in the magnetic flux changes detected by each coil.

【0032】また、この実施例では、上方及び下方の磁
束入力用の超電導コイル621及び622は超電導体薄
膜よりなる1層の配線層で渦巻部分を作製したが、実施
例1又は実施例2のように、磁束入力用の超電導コイル
の渦巻部分を超電導体薄膜よりなる2層、3層又は4層
の配線層に分けて作製したところ、同様の効果が得られ
た。
In this embodiment, the upper and lower magnetic flux input superconducting coils 621 and 622 are made of a single wiring layer made of a superconductor thin film to form the spiral portion. As described above, when the spiral portion of the superconducting coil for inputting the magnetic flux was divided into two, three, or four wiring layers made of a superconductor thin film, the same effect was obtained.

【0033】また、本実施例では磁束入力用の超電導コ
イル621及び622のインダクタンスや、超電導リン
グ11との間の層間絶縁膜を等しくすることで、上方に
配置した磁束入力用の超電導コイル621と超電導リン
グ11との間の磁束伝達率と、下方に配置した磁束入力
用の超電導コイル622と超電導リング11との間の磁
束伝達率を等しくしたが、磁束伝達率が等しくなれば、
上方及び下方のコイルのインダクタンスや層間絶縁膜の
値を適宜変えても良い。
Further, in this embodiment, by making the inductances of the superconducting coils 621 and 622 for magnetic flux input and the interlayer insulating film between the superconducting ring 11 and the superconducting ring 11 equal, the superconducting coils 621 for magnetic flux input arranged above are made equal to each other. The magnetic flux transmissibility with the superconducting ring 11 and the magnetic flux transmissivity between the superconducting coil 622 for magnetic flux input and the superconducting ring 11 arranged below are made equal, but if the magnetic flux transmissivities become equal,
The inductance of the upper and lower coils and the value of the interlayer insulating film may be changed appropriately.

【0034】また、上方及び下方の磁束伝達率が異なる
場合や、厳密に測定したい場合は、標準となる素子を作
製し、それとの比較により補正を加えれば良い。また、
これらの素子はNbやPb合金を用いて作製したが、P
b合金で作製した部分をNbで作製しても、また、酸化
物超電導体を用いて作製しても同様の効果が得られるこ
とは明白である。また、本発明の実施例は、ジョセフソ
ン接合を2個有する素子に関してであるが、ジョセフソ
ン接合を1個しか有さない素子に関しても同様の効果が
得られることは明白である。
If the upper and lower magnetic flux transmissivities are different or if strict measurement is desired, a standard element may be prepared and correction may be made by comparison with the standard element. Also,
Although these elements were manufactured using Nb or Pb alloy,
It is clear that the same effect can be obtained even if the part made of the b alloy is made of Nb or the oxide superconductor. Further, although the embodiment of the present invention relates to a device having two Josephson junctions, it is obvious that the same effect can be obtained also for a device having only one Josephson junction.

【0035】(実施例5)本発明による他の実施例を述
べる。図7は、超電導リング11の上方に60回巻の磁
束入力用の超電導コイル721を、さらにその上方に4
0回巻の磁束入力用の超電導コイル722を、さらにそ
の上方に20回巻の磁束入力用の超電導コイル723を
作製した素子の模式図である。また、素子の作製方法は
比較例の素子と略同様である。これらの磁束入力用の超
電導コイルは全て独立しており、それらのインダクタン
スはそれぞれ約380nH(60回巻)、約170nH
(40回巻)、約42nH(20回巻)である。従っ
て、磁束検出用の超電導コイルのインダクタンスにあわ
せて、使用する磁束入力用の超電導コイルを選ぶことが
できるため、比較例の素子に比べ磁束伝達率を向上させ
ることができる。その一例として、超電導リングのイン
ダクタンスが104pH、超電導リングと磁束入力用の
超電導コイルの磁束伝達率が0.8で、磁束検出用の超
電導コイルのインダクタンスが400nH、200n
H、100nHの時の、図7の素子と比較例の素子にお
ける、磁束検出用の超電導コイルから超電導リングまで
の磁束伝達率の計算結果を表2にまとめる。ただし、磁
束検出用の超電導コイルと磁束入力用の超電導コイルを
接続する超電導配線のインダクタンスは無視した。
(Fifth Embodiment) Another embodiment according to the present invention will be described. In FIG. 7, a superconducting coil 721 for magnetic flux input of 60 turns is provided above the superconducting ring 11 and further above the superconducting coil 721.
It is a schematic diagram of the element which produced the superconducting coil 722 for magnetic flux input of 0 winding, and further produced the superconducting coil 723 for magnetic flux input of 20 winding above it. The method of manufacturing the element is substantially the same as that of the element of the comparative example. All of these superconducting coils for magnetic flux input are independent, and their inductances are about 380 nH (60 turns) and about 170 nH, respectively.
(40 windings) and about 42 nH (20 windings). Therefore, since the magnetic flux input superconducting coil to be used can be selected according to the inductance of the magnetic flux detecting superconducting coil, the magnetic flux transmissibility can be improved as compared with the element of the comparative example. As an example, the superconducting ring has an inductance of 104 pH, the superconducting ring and the superconducting coil for magnetic flux input have a magnetic flux transmissibility of 0.8, and the superconducting coil for detecting magnetic flux has an inductance of 400 nH and 200 n.
Table 2 summarizes the calculation results of the magnetic flux transmissibility from the superconducting coil for magnetic flux detection to the superconducting ring in the element of FIG. 7 and the element of the comparative example at H and 100 nH. However, the inductance of the superconducting wiring connecting the superconducting coil for detecting magnetic flux and the superconducting coil for inputting magnetic flux was ignored.

【0036】[0036]

【表2】 [Table 2]

【0037】本実施例では、超電導体薄膜よりなる1層
の配線層に渦巻部分を作製した磁束入力用の超電導コイ
ルを設けたが、実施例1等のように、2層、3層又は4
層の配線層に渦巻部分を分けて作成した磁束入力用の超
電導コイルを設けたところ同様の効果が得られた。ま
た、本実施例では、超電導リング11の上方に絶縁膜を
介して磁束入力用の超電導コイルを配置しているが、超
電導リング11の上方のみならず下方に絶縁膜を介して
配置しても良い。またこれらの素子はNbやPb合金を
用いて作製したが、Pb合金で作製した部分をNbで作
製しても、また、酸化物超電導体を用いて作製しても同
様の効果が得られることは明白である。また、本実施例
は、ジョセフソン接合を2個有する素子に関してである
が、ジョセフソン接合を1個しか有さない素子に関して
も同様の効果が得られることは明白である。
In this embodiment, a superconducting coil for magnetic flux input having a spiral portion is provided in one wiring layer made of a superconductor thin film. However, as in the first embodiment, two layers, three layers or four layers are provided.
The same effect was obtained when a superconducting coil for magnetic flux input, which was created by dividing the spiral part in the wiring layer, was provided. Further, in the present embodiment, the superconducting coil for magnetic flux input is arranged above the superconducting ring 11 via the insulating film, but it may be arranged not only above the superconducting ring 11 but also below the superconducting ring 11. good. Further, although these elements were manufactured by using Nb or Pb alloy, the same effect can be obtained even if the part manufactured by Pb alloy is manufactured by Nb or by using the oxide superconductor. Is obvious. Further, although the present embodiment relates to an element having two Josephson junctions, it is obvious that the same effect can be obtained also for an element having only one Josephson junction.

【0038】[0038]

【発明の効果】以上詳述した如く、本発明の超電導量子
干渉素子は、超電導体薄膜よりなる2層以上の配線層に
分けて渦巻部分を作製した超電導コイルを設けることに
より、従来の素子に比べて、素子の小型化、寄生成分の
低減をはかることにより素子を高感度化することができ
た。
As described above in detail, the superconducting quantum interference device of the present invention is provided with a superconducting coil in which a spiral portion is formed by dividing the wiring layer into two or more wiring layers made of a superconducting thin film. In comparison, the device can be made highly sensitive by downsizing the device and reducing parasitic components.

【0039】また、本発明の超電導量子干渉素子は、超
電導リングに対して実質的に略逆方向の磁界を発生する
磁束入力用の超電導コイルを、超電導リングを挾んでこ
れと電気的に絶縁するように配置することにより、それ
ぞれの磁束入力用の超電導コイルに接続された磁束検出
用の超電導コイルが検出した磁束変化の差を検出するこ
とができた。
Also, in the superconducting quantum interference device of the present invention, the superconducting coil for inputting the magnetic flux which generates a magnetic field substantially in the opposite direction to the superconducting ring is electrically insulated from the superconducting ring by sandwiching the superconducting ring. By arranging in this way, it was possible to detect the difference in the magnetic flux changes detected by the superconducting coils for magnetic flux detection connected to the respective superconducting coils for magnetic flux input.

【0040】また、本発明の超電導量子干渉素子は、イ
ンダクタンスの異なる複数個の磁束入力用の超電導コイ
ルを配置することにより、磁束検出用の超電導コイルの
インダクタンスに応じて、磁束入力用の超電導コイルを
選ぶことができるため、従来の素子に比べ、磁束検出用
の超電導コイルと超電導リングの間の磁束伝達率を向上
させることができた。
In the superconducting quantum interference device of the present invention, by disposing a plurality of superconducting coils for inputting magnetic flux having different inductances, the superconducting coil for inputting magnetic flux can be arranged according to the inductance of the superconducting coil for detecting magnetic flux. Therefore, the magnetic flux transmissibility between the superconducting coil for magnetic flux detection and the superconducting ring could be improved as compared with the conventional element.

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導リングの上方に、絶縁膜を介して、超電
導体薄膜よりなる2層の配線層に分けて渦巻部分を作製
した磁束入力用の超電導コイルを配置した本発明の超電
導量子干渉素子に、磁束検出用の超電導コイルを接続し
た状態を示す構造模式図である。
FIG. 1 is a superconducting quantum interference device of the present invention in which a superconducting coil for magnetic flux input is arranged above a superconducting ring by dividing an insulating film into two wiring layers made of a superconducting thin film to form a spiral portion. FIG. 3 is a structural schematic diagram showing a state in which a superconducting coil for magnetic flux detection is connected to the.

【図2】超電導リングの上方に、絶縁膜を介して、超電
導体薄膜よりなる3層の配線層に分けて渦巻部分を作製
した磁束入力用の超電導コイルを配置した本発明の超電
導量子干渉素子の構造模式図である。
FIG. 2 is a superconducting quantum interference device of the present invention in which a superconducting coil for magnetic flux input is arranged above a superconducting ring by dividing an insulating film into three wiring layers made of a superconductor thin film to form a spiral portion. FIG.

【図3】超電導リングの上方に、絶縁膜を介して、超電
導体薄膜よりなる4層の配線層に分けて渦巻部分を作製
した磁束入力用の超電導コイルを配置した本発明の超電
導量子干渉素子の構造模式図である。
FIG. 3 is a superconducting quantum interference device of the present invention in which a superconducting coil for magnetic flux input is arranged above a superconducting ring by dividing an insulating film into four wiring layers made of a superconducting thin film to form a spiral portion. FIG.

【図4】超電導リングの下方に、絶縁膜を介して、超電
導体薄膜よりなる2層の配線層に分けて渦巻部分を作製
した磁束入力用の超電導コイルを配置した本発明の超電
導量子干渉素子の構造模式図である。
FIG. 4 is a superconducting quantum interference device of the present invention in which a superconducting coil for magnetic flux input is disposed below a superconducting ring and a spiral portion is formed by dividing the wiring layer into two wiring layers made of a superconducting thin film via an insulating film. FIG.

【図5】超電導リングを挾んでこれとは電気的に絶縁さ
れるように、その上方に1層及び下方に1層、合計2層
の超電導体薄膜よりなる配線層に分けて渦巻部分を作製
した磁束入力用の超電導コイルを配置した本発明の超電
導量子干渉素子の構造模式図である。
FIG. 5: A swirl portion is formed by dividing a superconducting ring into two wiring layers, one layer above and one layer below so as to be electrically insulated from the superconducting ring. FIG. 3 is a structural schematic view of a superconducting quantum interference device of the present invention in which a superconducting coil for magnetic flux input is arranged.

【図6】超電導リングに対して、実質的に略逆方向の磁
束を発生する2個の磁束入力用の超電導コイルを、超電
導リングを挾んで、その上方及び下方に超電導リングと
は電気的に絶縁されるように配置した本発明の超電導量
子干渉素子に、磁束検出用の超電導コイルを接続した状
態を示す構造模式図である。
FIG. 6 shows two superconducting coils for inputting magnetic flux, which generate magnetic flux in substantially opposite directions with respect to the superconducting ring, and the superconducting ring is electrically connected above and below the superconducting ring. It is a structural schematic diagram which shows the state which connected the superconducting quantum interference element of this invention arrange | positioned so that it might be insulated, and the superconducting coil for magnetic flux detection.

【図7】インダクタンスの異なる複数個の磁束入力用の
超電導コイルを配置した本発明の超電導量子干渉素子の
構造模式図である。
FIG. 7 is a structural schematic diagram of a superconducting quantum interference device of the present invention in which a plurality of superconducting coils for inputting magnetic flux having different inductances are arranged.

【図8】従来の超電導量子干渉素子の構造模式図であ
る。
FIG. 8 is a structural schematic diagram of a conventional superconducting quantum interference device.

【符号の説明】[Explanation of symbols]

11 超電導リング 12、22、32、42、52、621、622、72
1、722、723、82 磁束入力用の超電導コイル 631、632、83 超電導配線 641、642、84 磁束検出用の超電導コイル 85 ジョセフソン接合(JJ) 86 下部電極 87 上部電極 88 スリットの重ね合わせ 89 開口部
11 superconducting ring 12, 22, 32, 42, 52, 621, 622, 72
1, 722, 723, 82 Superconducting coil for inputting magnetic flux 631, 632, 83 Superconducting wiring 641, 642, 84 Superconducting coil for detecting magnetic flux 85 Josephson junction (JJ) 86 Lower electrode 87 Upper electrode 88 Superposition of slits 89 Aperture

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】基板上に設けられた、ジョセフソン接合部
を有する超電導リングと、これに磁気的に結合し、かつ
磁束検出用の超電導コイルが接続されるための磁束入力
用の超電導コイルとを有する超電導量子干渉素子におい
て、上記磁束入力用の超電導コイルは、超電導体薄膜よ
りなる複数の配線層に分けて配置されたことを特徴とす
る超電導量子干渉素子。
1. A superconducting ring having a Josephson junction, which is provided on a substrate, and a superconducting coil for magnetic flux input for magnetically coupling to the superconducting coil for magnetic flux detection. In the superconducting quantum interference device having the above, the superconducting coil for magnetic flux input is divided into a plurality of wiring layers made of a superconductor thin film and arranged.
【請求項2】請求項1記載の超電導量子干渉素子におい
て、上記磁束入力用の超電導コイルを形成している超電
導体薄膜よりなる複数の配線層は、上記超電導リングの
上又は下の一方に絶縁膜を介して配置されたことを特徴
とする超電導量子干渉素子。
2. The superconducting quantum interference device according to claim 1, wherein a plurality of wiring layers made of a superconducting thin film forming the superconducting coil for inputting the magnetic flux are insulated above or below the superconducting ring. A superconducting quantum interference device, which is arranged through a film.
【請求項3】請求項1又は2記載の超電導量子干渉素子
において、上記磁束入力用の超電導コイルを形成してい
る超電導体薄膜よりなる複数の配線層のうちの少なくと
も2層は渦巻形状であることを特徴とする超電導量子干
渉素子。
3. The superconducting quantum interference device according to claim 1, wherein at least two layers out of a plurality of wiring layers made of a superconducting thin film forming the superconducting coil for inputting the magnetic flux have a spiral shape. A superconducting quantum interference device characterized by the above.
【請求項4】請求項1又は2記載の超電導量子干渉素子
において、上記超電導体薄膜よりなる複数の配線層のう
ちの少なくとも2層の形成する上記磁束入力用の超電導
コイルは、上記超電導リングに対して磁束が結合して周
回電流を生じるごとくに配置されていることを特徴とす
る超電導量子干渉素子。
4. The superconducting quantum interference device according to claim 1, wherein the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film is formed on the superconducting ring. A superconducting quantum interference device characterized in that it is arranged as if magnetic fluxes were coupled to generate a circulating current.
【請求項5】請求項1又は2記載の超電導量子干渉素子
において、上記超電導体薄膜よりなる複数の配線層のう
ちの少なくとも2層の形成する上記磁束入力用の超電導
コイルは、上記超電導リングの開口部に鎖交する磁束を
生じるごとくに配置されていることを特徴とする超電導
量子干渉素子。
5. The superconducting quantum interference device according to claim 1 or 2, wherein the superconducting coil for inputting the magnetic flux is formed of at least two layers of a plurality of wiring layers made of the superconducting thin film. A superconducting quantum interference device characterized in that the superconducting quantum interference device is arranged so as to generate a magnetic flux interlinking with the opening.
【請求項6】請求項1記載の超電導量子干渉素子におい
て、上記磁束入力用の超電導コイルを形成している超電
導体薄膜よりなる複数の配線層は、上記超電導リングの
上下に分けて絶縁膜を介して配置されたことを特徴とす
る超電導量子干渉素子。
6. The superconducting quantum interference device according to claim 1, wherein a plurality of wiring layers made of a superconducting thin film forming the superconducting coil for inputting the magnetic flux are divided into insulating films above and below the superconducting ring. A superconducting quantum interference device characterized in that it is arranged via
【請求項7】請求項6記載の超電導量子干渉素子におい
て、上記磁束入力用の超電導コイルを形成している超電
導体薄膜よりなる複数の配線層の上記超電導リングの上
下に配置されたそれぞれ少なくとも1層は渦巻形状であ
ることを特徴とする超電導量子干渉素子。
7. The superconducting quantum interference device according to claim 6, wherein at least one wiring layer is provided above and below the superconducting ring of a plurality of wiring layers made of a superconducting thin film forming the superconducting coil for inputting the magnetic flux. A superconducting quantum interference device characterized in that the layers have a spiral shape.
【請求項8】基板上に設けられた、ジョセフソン接合部
を有する超電導リングと、該超電導リングを挾んで、こ
れとは電気的に絶縁されるように配置され、該超電導リ
ングに磁気的に結合し、かつ磁束検出用の超電導コイル
がそれぞれ接続されるための、2個の磁束入力用の超電
導コイルとを有し、該磁束入力用の超電導コイルが、該
超電導リングに対して実質的に略逆方向に磁界を発生す
る構造を有することを特徴とする超電導量子干渉素子。
8. A superconducting ring having a Josephson junction provided on a substrate, and a superconducting ring sandwiched between the superconducting ring and the superconducting ring arranged so as to be electrically insulated from each other. And two superconducting coils for magnetic flux input for connecting and respectively connecting the superconducting coils for magnetic flux detection, wherein the superconducting coil for magnetic flux input is substantially connected to the superconducting ring. A superconducting quantum interference device having a structure for generating a magnetic field in substantially opposite directions.
【請求項9】請求項8記載の超電導量子干渉素子におい
て、上記2個の磁束入力用の超電導コイルは、上記超電
導リングに対して実質的に略同一の磁束伝達率を有する
ことを特徴とする超電導量子干渉素子。
9. The superconducting quantum interference device according to claim 8, wherein the two superconducting coils for inputting magnetic flux have substantially the same magnetic flux transmissibility with respect to the superconducting ring. Superconducting quantum interference device.
【請求項10】請求項8又は9記載の超電導量子干渉素
子において、上記磁束入力用の超電導コイルは、超電導
体薄膜よりなる複数の配線層に分けて配置されたことを
特徴とする超電導量子干渉素子。
10. The superconducting quantum interference device according to claim 8 or 9, wherein the magnetic flux inputting superconducting coil is divided into a plurality of wiring layers made of a superconductor thin film. element.
【請求項11】請求項10記載の超電導量子干渉素子に
おいて、上記磁束入力用の超電導コイルを形成している
超電導体薄膜よりなる複数の配線層のうちの少なくとも
2層は渦巻形状であることを特徴とする超電導量子干渉
素子。
11. A superconducting quantum interference device according to claim 10, wherein at least two layers out of a plurality of wiring layers made of a superconducting thin film forming the superconducting coil for inputting the magnetic flux have a spiral shape. Characteristic superconducting quantum interference device.
【請求項12】請求項10記載の超電導量子干渉素子に
おいて、上記超電導体薄膜よりなる複数の配線層のうち
の少なくとも2層の形成する上記磁束入力用の超電導コ
イルは、上記超電導リングに対して磁束が結合して周回
電流を生じるごとくに配置されていることを特徴とする
超電導量子干渉素子。
12. The superconducting quantum interference device according to claim 10, wherein the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film is provided with respect to the superconducting ring. A superconducting quantum interference device characterized in that it is arranged as if magnetic fluxes combine to generate a circulating current.
【請求項13】請求項10記載の超電導量子干渉素子に
おいて、上記超電導体薄膜よりなる複数の配線層のうち
の少なくとも2層の形成する上記磁束入力用の超電導コ
イルは、上記超電導リングの開口部に鎖交する磁束を生
じるごとくに配置されていることを特徴とする超電導量
子干渉素子。
13. The superconducting quantum interference device according to claim 10, wherein the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film has an opening in the superconducting ring. A superconducting quantum interference device characterized in that the superconducting quantum interference device is arranged as if a magnetic flux interlinking with each other were generated.
【請求項14】基板上に設けられた、ジョセフソン接合
部を有する超電導リングと、これに磁気的に結合し、か
つ磁束検出用の超電導コイルと接続されるための磁束入
力用の超電導コイルとを有する超電導量子干渉素子にお
いて、上記磁束入力用の超電導コイルは、それぞれイン
ダクタンスの異なる複数個が配置されたことを特徴とす
る超電導量子干渉素子。
14. A superconducting ring having a Josephson junction provided on a substrate, and a superconducting coil for magnetic flux input, which is magnetically coupled to the superconducting ring and is connected to a superconducting coil for magnetic flux detection. In the superconducting quantum interference device having the above, a plurality of superconducting coils for inputting the magnetic flux are arranged, each having a different inductance.
【請求項15】請求項14記載の超電導量子干渉素子に
おいて、上記磁束入力用の超電導コイルは、それぞれが
超電導体薄膜よりなる複数の配線層に分けて配置された
ことを特徴とする超電導量子干渉素子。
15. The superconducting quantum interference device according to claim 14, wherein the magnetic flux inputting superconducting coil is divided into a plurality of wiring layers each made of a superconductor thin film. element.
【請求項16】請求項15記載の超電導量子干渉素子に
おいて、上記磁束入力用の超電導コイルを形成している
超電導体薄膜よりなる複数の配線層のうちの少なくとも
2層は渦巻形状であることを特徴とする超電導量子干渉
素子。
16. The superconducting quantum interference device according to claim 15, wherein at least two layers out of a plurality of wiring layers made of a superconductor thin film forming the superconducting coil for inputting the magnetic flux have a spiral shape. Characteristic superconducting quantum interference device.
【請求項17】請求項15記載の超電導量子干渉素子に
おいて、上記超電導体薄膜よりなる複数の配線層のうち
の少なくとも2層の形成する上記磁束入力用の超電導コ
イルは、上記超電導リングに対して磁束が結合して周回
電流を生じるごとくに配置されていることを特徴とする
超電導量子干渉素子。
17. The superconducting quantum interference device according to claim 15, wherein the magnetic flux inputting superconducting coil formed by at least two layers of the plurality of wiring layers made of the superconducting thin film is provided with respect to the superconducting ring. A superconducting quantum interference device characterized in that it is arranged as if magnetic fluxes combine to generate a circulating current.
【請求項18】請求項15記載の超電導量子干渉素子に
おいて、上記超電導体薄膜よりなる複数の配線層のうち
の少なくとも2層の形成する上記磁束入力用の超電導コ
イルは、上記超電導リングの開口部に鎖交する磁束を生
じるごとくに配置されていることを特徴とする超電導量
子干渉素子。
18. The superconducting quantum interference device according to claim 15, wherein the superconducting coil for magnetic flux input formed by at least two layers of the plurality of wiring layers made of the superconducting thin film has an opening in the superconducting ring. A superconducting quantum interference device characterized in that the superconducting quantum interference device is arranged as if a magnetic flux interlinking with each other were generated.
JP3321742A 1991-12-05 1991-12-05 Superconductive quantum interference device Pending JPH05160453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3321742A JPH05160453A (en) 1991-12-05 1991-12-05 Superconductive quantum interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3321742A JPH05160453A (en) 1991-12-05 1991-12-05 Superconductive quantum interference device

Publications (1)

Publication Number Publication Date
JPH05160453A true JPH05160453A (en) 1993-06-25

Family

ID=18135943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3321742A Pending JPH05160453A (en) 1991-12-05 1991-12-05 Superconductive quantum interference device

Country Status (1)

Country Link
JP (1) JPH05160453A (en)

Similar Documents

Publication Publication Date Title
US6169397B1 (en) Damped superconducting coil system having a multiturn, planar geometry superconducting coil and shunt resistors electrically connecting successive coil turns
US5656937A (en) Low-noise symmetric dc SQUID system having two pairs of washer coils and a pair of Josephson junctions connected in series
US4386361A (en) Thin film SQUID with low inductance
EP0545948B1 (en) High symmetry dc squid system
JP5771137B2 (en) High temperature superconducting magnetic sensor
JP4647984B2 (en) Nuclear magnetic resonance probe coil
JP2749048B2 (en) Superconducting quantum interferometer
Ketchen et al. Sub‐μm linewidth input coils for low T c integrated thin‐film dc superconducting quantum interference devices
JP2621623B2 (en) Squid
JP2001110639A (en) Planar magnetic element
JP3373260B2 (en) High sensitivity magnetic field detector
Zhang Evolution of HTS rf SQUIDs
JPH05160453A (en) Superconductive quantum interference device
Koshelets et al. DC SQUID preamplifier for DC-SQUID magnetometer
JP2001102235A (en) Flat magnetic element and its manufacturing method
JP2001091611A (en) High magnetic field resolution fluxmeter
JP3114392B2 (en) Thin-film magnetic induction element
JP2740460B2 (en) Superconducting circuit
JP3232733B2 (en) Superconducting quantum interference device
JPH0611555A (en) Superconducting quantum interference element and digitally driven flux meter using the same
JPH0983027A (en) Superconducting circuit
JP2760481B2 (en) Superconducting output buffer circuit element
JPS63309876A (en) Multi-type dcsquid magnetometer
JP3020172B1 (en) Superconducting magnetic field generator and superconducting detector
JPH05175560A (en) Superconducting quantum interference element