JPH05160112A - Plasma treatment equipment and method - Google Patents

Plasma treatment equipment and method

Info

Publication number
JPH05160112A
JPH05160112A JP3347841A JP34784191A JPH05160112A JP H05160112 A JPH05160112 A JP H05160112A JP 3347841 A JP3347841 A JP 3347841A JP 34784191 A JP34784191 A JP 34784191A JP H05160112 A JPH05160112 A JP H05160112A
Authority
JP
Japan
Prior art keywords
plasma
sample
section
temperature
plasma reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3347841A
Other languages
Japanese (ja)
Inventor
Ichiro Tajima
一郎 田嶋
Kenji Nakajima
健次 中嶋
Yutaka Yamamoto
豊 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3347841A priority Critical patent/JPH05160112A/en
Publication of JPH05160112A publication Critical patent/JPH05160112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the treatment of the surface of a semiconductor substrate under the temperature much lower than the ordinary temperature of 1000 deg.C for thermal oxidation treatment, that is, actually at the temperature lower than 30 deg.C by providing means for keeping a constant sample temperature and means for controlling the electric potential of the sample in a sample treatment section. CONSTITUTION:This equipment comprises a sample treatment section 4 for fixing a silicon wafer substrate 5 installed inside a plasma reaction section 2, and a liquid nitrogen introducing tube 6 for introducing the liquid nitrogen for adjusting the temperature of the sample treatment section 4. A power supply section 7 for applying an electric potential to the sample treatment section 4, and an air exhaust section 3 equipped with a pump for maintaining a high vacuum in a plasma generation section 1 and plasma reaction section 2 are also provided. And the plasma reaction section 2 is equipped with water molecule supply means 11 for supplying more than 100 molecules/cm<3> to the reaction section and means for keeping the degree of vacuum constant in the plasma reaction section 2. And the sample treatment section 4 is equipped with means for keeping the sample temperature constant and means for controlling the electric potential of sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマ処理装置及びプ
ラズマ処理方法、更に詳しくはECR(Electron Cyclo
tron Resonance:電子サイクロトロン共鳴)により発生
させた水素ガスプラズマ及び残存水分子を用いて30℃
以下の低温でプラズマ処理する装置、及びこの装置を使
用して試料例えば半導体基板などの表面をプラズマ処理
する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a plasma processing apparatus and a plasma processing method, and more particularly to an ECR (Electron Cyclo)
tron Resonance: 30 ° C using hydrogen gas plasma and residual water molecules generated by electron cyclotron resonance)
The present invention relates to the following apparatus for plasma processing at low temperature and a method for plasma processing a surface of a sample such as a semiconductor substrate using this apparatus.

【0002】[0002]

【従来の技術】半導体集積回路等の各種デバイスの作製
において、半導体基板の表面処理例えば半導体基板の表
面酸化膜の作製及びその加工は極めて重要なプロセスで
ある。半導体基板の表面酸化膜の作製は、従来一般に、
半導体基板表面を酸、アルカリ及びフッ酸で洗浄した後
熱拡散炉を用いて酸素雰囲気下で基板を加熱するいわゆ
る熱酸化法により行われている。
2. Description of the Related Art In the fabrication of various devices such as semiconductor integrated circuits, surface treatment of semiconductor substrates, for example, fabrication and processing of a surface oxide film of a semiconductor substrate is a very important process. The surface oxide film of a semiconductor substrate is generally produced by the conventional method.
This is performed by a so-called thermal oxidation method in which the surface of a semiconductor substrate is washed with acid, alkali and hydrofluoric acid and then the substrate is heated in an oxygen atmosphere using a thermal diffusion furnace.

【0003】前記技術を用いると半導体基板表面の酸化
速度が大きいので、熱処理温度及び熱処理時間を制御す
ることにより、容易且つ均一に数時間で数100nm程
度以上の酸化膜を作製することが可能である。しかしそ
の一方で、酸化膜の作製には基板を900℃以上に加熱
する必要があり、又熱拡散炉を一定の温度で安定化する
ためにも時間と技術を要する。更に、熱拡散炉内で半導
体基板を熱酸化処理する際にも、半導体基板の熱変化に
注意しながら慎重に充分に時間をかけて処理する必要が
ある。
Since the rate of oxidation on the surface of the semiconductor substrate is high when the above-mentioned technique is used, it is possible to easily and uniformly form an oxide film having a thickness of several hundred nm or more by controlling the heat treatment temperature and the heat treatment time. is there. On the other hand, however, it is necessary to heat the substrate to 900 ° C. or higher to form the oxide film, and it takes time and technique to stabilize the thermal diffusion furnace at a constant temperature. Further, when the semiconductor substrate is subjected to the thermal oxidation treatment in the thermal diffusion furnace, it is necessary to carefully and sufficiently take the treatment while paying attention to the thermal change of the semiconductor substrate.

【0004】一方、半導体素子の高密度化が進むにつれ
てより薄い酸化膜例えば10nm以下の極薄酸化膜を作
製する必要性が生じ、半導体基板における10nm以下
の極薄酸化膜の作製技術を発展させることは新しい絶縁
膜或いはキャパシタ膜を対象とする重要な課題となって
きている。例えばキャパシタ膜については、酸化膜厚を
薄くすることによってその電荷容量を増大する効果があ
り、酸化膜の極薄化が求められている。
On the other hand, as the density of semiconductor elements increases, it becomes necessary to form a thinner oxide film, for example, an ultrathin oxide film having a thickness of 10 nm or less, and a technique for producing an ultrathin oxide film having a thickness of 10 nm or less on a semiconductor substrate is developed. This has become an important issue for new insulating films or capacitor films. For example, with respect to a capacitor film, there is an effect of increasing the charge capacity by reducing the oxide film thickness, and it is required to make the oxide film extremely thin.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来技術では熱処理温度及び熱処理時間の低減に限界があ
り、実質的に10nm以下の極薄酸化膜の作製は不可能
である。又、高温での熱酸化処理では半導体基板におけ
るドーピング層の乱れなどの不具合が起こる。このた
め、半導体素子の超微細化が進む中でできるだけ低温で
且つ容易に短時間で半導体基板に極薄酸化膜を作製する
ことができる方法が望まれている。
However, in the above-mentioned prior art, there is a limit to the reduction of the heat treatment temperature and the heat treatment time, and it is substantially impossible to form an ultrathin oxide film having a thickness of 10 nm or less. Further, thermal oxidation treatment at high temperature causes problems such as disorder of the doping layer in the semiconductor substrate. For this reason, there is a demand for a method capable of forming an ultrathin oxide film on a semiconductor substrate at a temperature as low as possible and easily in a short period of time as semiconductor elements become ultra-fine.

【0006】本発明は前記従来技術の問題点を解決する
ためのものであり、その目的とするところを例示すると
以下の如くである。 1)通常熱酸化処理が行われている温度1000℃程度
よりも更に低温で、具体的には30℃以下で半導体基板
表面の処理を行うこと。 2)熱酸化法で均一な酸化膜が得られる酸化膜厚以下の
厚さの酸化膜、具体的には10nm程度以下の均一な酸
化膜を得ること。 3)酸化時間の短縮、具体的には数分の酸化処理で極薄
酸化膜を得ること。 4)極薄酸化膜の作製を容易にし、且つ酸化膜厚の制御
を可能にすること。 5)酸化膜を形成する際の半導体基板の損傷を防ぐこ
と。
The present invention is intended to solve the above-mentioned problems of the prior art, and the purpose thereof is exemplified as follows. 1) The treatment of the surface of the semiconductor substrate is performed at a temperature lower than about 1000 ° C. at which the thermal oxidation treatment is usually performed, specifically at 30 ° C. or lower. 2) To obtain an oxide film having a thickness equal to or less than an oxide film thickness capable of obtaining a uniform oxide film by a thermal oxidation method, specifically, a uniform oxide film having a thickness of about 10 nm or less. 3) Shortening the oxidation time, specifically obtaining an ultra-thin oxide film by an oxidation treatment for several minutes. 4) To facilitate the production of an ultrathin oxide film and to control the oxide film thickness. 5) To prevent damage to the semiconductor substrate when forming the oxide film.

【0007】[0007]

【課題を解決するための手段】即ち、本発明のプラズマ
処理装置は、電子サイクロトロン共鳴により水素ガスプ
ラズマを発生させるプラズマ発生部、前記プラズマ発生
部からプラズマ流が導入されるプラズマ反応部、前記プ
ラズマ反応部内に設置された試料処理部、並びに前記プ
ラズマ発生部及びプラズマ反応部を高真空下に保つため
の排気部からなるプラズマ処理装置において、前記プラ
ズマ反応部は水分子を1010個/cm3 以上該反応部に
供給する水分子供給手段と前記プラズマ反応部の真空度
を一定に保持するための手段を備え、前記試料処理部は
一定温度に試料温度を保持するための手段及び試料電位
を制御するための手段を備えてなることを特徴とする。
Means for Solving the Problems That is, a plasma processing apparatus of the present invention comprises a plasma generating section for generating hydrogen gas plasma by electron cyclotron resonance, a plasma reaction section for introducing a plasma flow from the plasma generating section, and the plasma. In a plasma processing apparatus comprising a sample processing part installed in a reaction part and an exhaust part for keeping the plasma generation part and the plasma reaction part under high vacuum, the plasma reaction part has 10 10 water molecules / cm 3 As described above, a water molecule supply means for supplying to the reaction section and a means for keeping the vacuum degree of the plasma reaction section constant are provided, and the sample processing section has a means for keeping the sample temperature at a constant temperature and a sample potential. It is characterized by comprising means for controlling.

【0008】プラズマ発生部、プラズマ反応部、試料処
理部及び排気部は、この種のプラズマ処理装置において
通常使用されているものであってよい。又、水分子供給
手段は、プラズマ反応部に水分子を供給できるものであ
ればどのようなものであってもよい。なお、試料処理部
は例えば試料を載置又は固定する試料処理台を有し、こ
の試料処理台は非可動式のものでもよいし、又は可動式
例えば平行若しくは回転移動可能として試料へのプラズ
マの接触状態を変化させたり若しくは複数の試料を連続
して処理し得るものであってもよい。
The plasma generating part, the plasma reaction part, the sample processing part and the exhaust part may be the ones usually used in this type of plasma processing apparatus. Further, the water molecule supply means may be any means as long as it can supply water molecules to the plasma reaction part. The sample processing unit has, for example, a sample processing table on which a sample is placed or fixed, and the sample processing table may be a non-movable type, or a movable type, for example, a parallel type or a rotatably movable type so as to transfer plasma to the sample. The contact state may be changed or a plurality of samples may be continuously processed.

【0009】本発明装置において、試料処理部及び/又
はその近傍のプラズマ状態を正確且つ迅速に診断し得る
ように、試料処理部及び/又はその近傍の所定位置に適
するプラズマ計測手段を適当数配置すると都合がよい。
プラズマ計測手段としては、例えばプラズマガス圧力、
プラズマ電子温度、プラズマ電子密度、試料温度等の計
測器からなり、具体的には例えば各種の測定プローブが
挙げられる。又、水分子計測手段としては例えば質量分
析器などが挙げられる。
In the apparatus of the present invention, an appropriate number of plasma measuring means are arranged at a predetermined position in the sample processing section and / or its vicinity so that the plasma state in the sample processing section and / or its vicinity can be accurately and quickly diagnosed. Then it is convenient.
Examples of the plasma measuring means include plasma gas pressure,
It is composed of measuring instruments for plasma electron temperature, plasma electron density, sample temperature and the like, and concretely, for example, various measuring probes can be mentioned. Further, the water molecule measuring means includes, for example, a mass spectrometer.

【0010】プラズマの状態は適当なプラズマ制御手段
によって適切に制御することが好ましい。このプラズマ
制御手段は、例えばプラズマガス圧力、プラズマ電子温
度、プラズマ電子密度、試料温度等を最適化するための
装置からなり、具体的には例えば処理ガスの圧力を調節
するためのガス圧力調節器が挙げられる。
The state of the plasma is preferably controlled appropriately by a suitable plasma control means. The plasma control means comprises a device for optimizing, for example, the plasma gas pressure, plasma electron temperature, plasma electron density, sample temperature, etc. Specifically, for example, a gas pressure regulator for adjusting the pressure of the processing gas. Is mentioned.

【0011】プラズマ計測手段によって計測したプラズ
マに関する情報は、例えばコンピューターなどの手段に
よって解析し、この結果に基づいて調節すべきプラズマ
状態となるようにガス圧力調節器などを作動させる。
The information about the plasma measured by the plasma measuring means is analyzed by means such as a computer, and the gas pressure regulator is operated so that the plasma state should be adjusted based on the result.

【0012】プラズマ反応部内の残存水分子を1010
/cm3 以上とするための水分子供給手段は特に限定さ
れないが、例えば適度に水分子を含んだ気体をプラズマ
反応部に供給するものであればよい。通常はプラズマ反
応部内を0.13Paまで排気することにより達成する
ことも可能である。なお、残存水分子の最適値や上限値
は目的とするプラズマ処理を行い得る範囲内で適宜決定
する。
The means for supplying water molecules to keep the number of residual water molecules in the plasma reaction section at 10 10 / cm 3 or more is not particularly limited. For example, a gas containing water molecules in an appropriate amount is supplied to the plasma reaction section. I wish I had it. Usually, it can be achieved by exhausting the inside of the plasma reaction part to 0.13 Pa. The optimum value and upper limit value of the residual water molecules are appropriately determined within the range in which the target plasma treatment can be performed.

【0013】又、プラズマ反応部内の真空度を0.13
Paないし13Paの範囲内の一定圧力例えば水素ガス
を導入することにより1.3Pa程度とすることで安定
なプラズマを発生させることができる。即ち、プラズマ
反応部内の真空度は0.13Pa未満でも13Paを越
えても安定なプラズマを発生させることができないの
で、前記範囲内の値とする。
Further, the degree of vacuum in the plasma reaction section is set to 0.13.
Stable plasma can be generated by introducing a constant pressure within the range of Pa to 13 Pa, for example, hydrogen gas to about 1.3 Pa. That is, even if the degree of vacuum in the plasma reaction part is less than 0.13 Pa or exceeds 13 Pa, stable plasma cannot be generated, so the value is within the above range.

【0014】プラズマ処理時間は数分とすることが好ま
しい。このためには、安定なプラズマ状態を10分以上
保持することが必要である。このための手段としては、
例えば前記プラズマ計測手段、プラズマ制御手段、コン
ピューターなどの手段を適宜組み合わせて用いる。
The plasma treatment time is preferably several minutes. For this purpose, it is necessary to maintain a stable plasma state for 10 minutes or more. As a means for this,
For example, the plasma measuring means, the plasma control means, the computer and the like are appropriately combined and used.

【0015】試料処理部において、−120℃ないし3
0℃の範囲内の一定温度に試料温度を保持するための手
段としては、例えば液体窒素を用いて試料処理部を冷却
し得る構造とするとよい。試料処理部の具体的な構造
は、前記試料温度を保持することができる範囲内で操作
性等を考慮して最適に選択する。
In the sample processing section, -120 ° C to 3
As a means for maintaining the sample temperature at a constant temperature within the range of 0 ° C., for example, a structure capable of cooling the sample processing section using liquid nitrogen may be used. The specific structure of the sample processing unit is optimally selected in consideration of operability and the like within a range in which the sample temperature can be maintained.

【0016】又、試料に目的とするプラズマ処理を行う
ためには試料電位を制御するための手段が必要である。
試料電位を制御するための手段としては、プラズマ反応
部と絶縁された状態で、0ないし50Vの範囲内で且つ
前記プラズマ反応部のプラズマポテンシャル以上で直流
電位を制御することが可能な手段が好ましい。試料電位
を制御するための手段の具体的な構造は、前記目的を達
成し得る範囲内で適宜選択してよい。
Further, in order to subject the sample to the intended plasma treatment, a means for controlling the sample potential is required.
The means for controlling the sample potential is preferably a means capable of controlling the DC potential within the range of 0 to 50 V and above the plasma potential of the plasma reaction portion while being insulated from the plasma reaction portion. .. The specific structure of the means for controlling the sample potential may be appropriately selected within the range where the above object can be achieved.

【0017】本発明のプラズマ処理方法は、前記本発明
のプラズマ処理装置を使用して試料をプラズマ処理す
る。この際、試料処理部のプラズマ流が当たる面と反対
側の面に試料を設置するか又はプラズマ反応部内のプラ
ズマ発光部以外の位置に試料を設置してプラズマ処理す
る。即ち、前記の場所に試料を設置することのより、穏
やかな条件で試料をプラズマ処理することができる。
In the plasma processing method of the present invention, the sample is plasma-processed using the plasma processing apparatus of the present invention. At this time, the sample is placed on the surface of the sample processing unit opposite to the surface on which the plasma flow strikes, or the sample is placed at a position other than the plasma emission unit in the plasma reaction unit for plasma processing. That is, the sample can be plasma-treated under milder conditions than by installing the sample in the above-mentioned place.

【0018】処理すべき試料の材質、大きさ、形状、処
理部分の大きさ、形状等は本発明の装置及び方法を使用
してプラズマ処理を行うことができる範囲内においては
特に限定されないが、例えばシリコン基板などの板状の
ものが好ましい。
The material, size and shape of the sample to be treated, the size and shape of the treated portion, etc. are not particularly limited as long as plasma treatment can be performed using the apparatus and method of the present invention. For example, a plate-shaped one such as a silicon substrate is preferable.

【0019】[0019]

【作用】本発明の装置においては、プラズマ反応部が水
分子を1010個/cm3 以上該反応部に供給する水分子
供給手段と前記プラズマ反応部の真空度を一定に保持す
るための手段を備え、試料処理部が一定温度に試料温度
を保持するための手段及び試料電位を制御するための手
段を備えてなることにより、目的とするプラズマ処理が
可能となる。
In the apparatus of the present invention, the plasma reaction part supplies water molecules to the reaction part at least 10 10 molecules / cm 3 and means for maintaining the vacuum degree of the plasma reaction part constant. Since the sample processing section is provided with a means for holding the sample temperature at a constant temperature and a means for controlling the sample potential, the target plasma processing becomes possible.

【0020】又、本発明の方法においては、本発明のプ
ラズマ処理装置を使用して所定条件下で試料をプラズマ
処理するに際し、試料処理部のプラズマ流が当たる面と
反対側の面に試料を設置するか又はプラズマ反応部内の
プラズマ発光部以外の位置に試料を設置してプラズマ処
理することにより、穏やかな条件で試料をプラズマ処理
することが可能となる。
Further, in the method of the present invention, when the sample is plasma-treated under the predetermined conditions by using the plasma processing apparatus of the present invention, the sample is applied to the surface of the sample processing unit opposite to the surface on which the plasma flow strikes. The sample can be plasma-treated under mild conditions by installing the sample or placing the sample in a position other than the plasma emission part in the plasma reaction part and performing the plasma-treatment.

【0021】[0021]

【実施例】以下の実施例及び比較例により、本発明を更
に詳細に説明する。なお、説明の便宜上下記実施例は全
てシリコンウエハ基板の酸化処理に関するものである
が、本発明は他の材料からなる基板の酸化処理にも適用
し得るものであることは勿論である。
The present invention will be described in more detail with reference to the following examples and comparative examples. Note that, for convenience of explanation, the following examples all relate to the oxidation treatment of the silicon wafer substrate, but it goes without saying that the present invention can also be applied to the oxidation treatment of the substrate made of another material.

【0022】実施例 図1に、本発明のプラズマ処理装置の一実施例を示す。
この装置は、マイクロ波発生器10から供給されたマイ
クロ波と空芯磁場コイル8により発生した磁場による電
子サイクロトロン共鳴を利用してプラズマを発生させる
プラズマ発生部1、プラズマ発生部1からプラズマ流が
導入されるプラズマ反応部2、プラズマ反応部2に接続
されプラズマ反応部2内に水分子を供給する水分子供給
部11、プラズマ反応部2内に水素ガスを導入するため
の水素ガス導入管9、プラズマ反応部2内に設置された
シリコンウエハ基板5を固定するための試料処理部4、
試料処理部4の温度を調整する液体窒素を導入するため
の液体窒素導入管6、試料処理部4に電位を印加するた
めの電源部7及び前記プラズマ発生部1及びプラズマ反
応部2を高真空に保つためのポンプを備えた排気部3か
らなり、更に所望により所定箇所にプラズマガス圧力測
定用プローブ、プラズマ電子温度測定用プローブ、プラ
ズマ電子密度測定用プローブ、試料基板温度計等の計測
器及びコンピューター等の解析機器、並びに水分子計測
用の質量分析器(これらは図示せず)を備えている。
Embodiment FIG. 1 shows an embodiment of the plasma processing apparatus of the present invention.
This apparatus uses a microwave supplied from a microwave generator 10 and a magnetic field generated by an air-core magnetic field coil 8 to generate plasma by using electron cyclotron resonance, and a plasma flow from the plasma generator 1 Plasma reaction part 2 to be introduced, water molecule supply part 11 connected to plasma reaction part 2 for supplying water molecules into plasma reaction part 2, and hydrogen gas introducing pipe 9 for introducing hydrogen gas into plasma reaction part 2. A sample processing unit 4 for fixing a silicon wafer substrate 5 installed in the plasma reaction unit 2,
A liquid nitrogen introduction tube 6 for introducing liquid nitrogen for adjusting the temperature of the sample processing unit 4, a power supply unit 7 for applying a potential to the sample processing unit 4, the plasma generation unit 1 and the plasma reaction unit 2 are set to a high vacuum. And a measuring device such as a plasma gas pressure measuring probe, a plasma electron temperature measuring probe, a plasma electron density measuring probe, a sample substrate thermometer, and the like. It is equipped with analytical equipment such as a computer and a mass spectrometer for measuring water molecules (these are not shown).

【0023】図2は図1に示す本発明装置のプラズマ反
応部2内に水分子供給部11から水分子を導入し、その
後圧力を0.13Paまで排気したときの質量分析結果
を示す図である。プラズマ反応部2内には主に質量18
のピークに見られる如く残存水分子が観察され、その量
は1010個/cm3 程度に達する。次に、このプラズマ
反応部2内に水素ガス導入管9から水素ガスを圧力が
1.3Paになるまで導入した。更に、プラズマ発生部
1に875ガウスの磁場と2.45GHzのマイクロ波
を付与していわゆる電子サイクロトロン共鳴プラズマを
発生させた。試料処理部4には、図1に示す如くプラズ
マ流が当たる面と反対側の面に予めシリコンウエハ基板
5を取り付けた。又、試料処理部4はプラズマ反応部2
とは絶縁されており、電源部7によって直流電位が印加
できる構造になっている。
FIG. 2 is a diagram showing the results of mass spectrometry when water molecules are introduced from the water molecule supply unit 11 into the plasma reaction unit 2 of the apparatus of the present invention shown in FIG. 1 and then the pressure is evacuated to 0.13 Pa. is there. A mass of 18 is mainly present in the plasma reaction unit 2.
The residual water molecules are observed as shown in the peak of 1. and the amount reaches about 10 10 / cm 3 . Next, hydrogen gas was introduced into the plasma reaction section 2 through the hydrogen gas introduction pipe 9 until the pressure reached 1.3 Pa. Further, a so-called electron cyclotron resonance plasma was generated by applying a magnetic field of 875 Gauss and a microwave of 2.45 GHz to the plasma generating unit 1. As shown in FIG. 1, a silicon wafer substrate 5 was previously attached to the sample processing unit 4 on the surface opposite to the surface on which the plasma flow hits. Further, the sample processing unit 4 is the plasma reaction unit 2
Are insulated from each other, and have a structure in which a DC potential can be applied by the power supply section 7.

【0024】図3に、図1及び図2で示すプラズマ処理
条件下でシリコンウエハ基板5を3分間処理する時、シ
リコンウエハ基板5に電位を印加した場合のシリコンウ
エハ基板5の損傷についての結果を示す。なお、シリコ
ンウエハ基板5の損傷は電子チャンネリングパターンの
強度変化から求めている。この時のプラズマ反応部2の
プラズマポテンシャルは20V程度であり、これ以上の
電位をシリコンウエハ基板5に印加することにより損傷
を抑えることができる。しかし60V以上の電位をシリ
コンウエハ基板5に印加すると電子衝突などによる影響
でシリコンウエハ基板5の温度上昇があり、低温プラズ
マ酸化という本発明の目的を達成できない。したがっ
て、シリコンウエハ基板5を損傷させることなくプラズ
マ酸化を行うためにはシリコンウエハ基板5に印加する
電位を20Vから50Vの範囲としてプラズマ酸化を行
うことが望ましい。
FIG. 3 shows the results of damage to the silicon wafer substrate 5 when a potential is applied to the silicon wafer substrate 5 when the silicon wafer substrate 5 is processed for 3 minutes under the plasma processing conditions shown in FIGS. 1 and 2. Indicates. The damage of the silicon wafer substrate 5 is obtained from the intensity change of the electron channeling pattern. At this time, the plasma potential of the plasma reaction part 2 is about 20 V, and damage can be suppressed by applying a potential higher than this to the silicon wafer substrate 5. However, when a potential of 60 V or higher is applied to the silicon wafer substrate 5, the temperature of the silicon wafer substrate 5 rises due to the influence of electron collision and the like, and the object of the present invention, that is, low temperature plasma oxidation cannot be achieved. Therefore, in order to perform plasma oxidation without damaging the silicon wafer substrate 5, it is desirable to perform plasma oxidation with the potential applied to the silicon wafer substrate 5 in the range of 20V to 50V.

【0025】図4は図3で説明したプラズマ処理条件の
うち、シリコンウエハ基板5の電位を50Vにしてプラ
ズマによるシリコンウエハ基板の損傷がない条件で処理
が行えるようにして、更に試料処理部4に液体窒素導入
管6から液体窒素を導入することによりシリコンウエハ
基板5の基板温度を低温具体的には−100℃にした場
合のプラズマ酸化膜の作製に関してプラズマ処理時間の
効果を見たものである。このような条件で低温プラズマ
酸化処理する場合は、10分以下の処理時間で膜厚10
nm以下のプラズマ酸化膜を作製できることが確認され
た。
In FIG. 4, among the plasma processing conditions described with reference to FIG. 3, the potential of the silicon wafer substrate 5 is set to 50 V so that the processing can be performed under the condition that the silicon wafer substrate is not damaged by plasma. The effect of the plasma processing time on the production of the plasma oxide film when the substrate temperature of the silicon wafer substrate 5 was set to a low temperature, specifically -100 ° C. by introducing liquid nitrogen from the liquid nitrogen introducing pipe 6 into is there. When the low-temperature plasma oxidation treatment is performed under such conditions, the film thickness of 10 minutes or less is required.
It was confirmed that a plasma oxide film having a thickness of nm or less can be produced.

【0026】図5は図4に示す条件でプラズマ処理時間
を3分にした場合のプラズマ酸化膜の作製について基板
温度の効果を見たものである。基板温度を低温に制御す
ることにより、10nm以下の膜厚でプラズマ酸化膜を
制御することができることが判る。
FIG. 5 shows the effect of the substrate temperature on the production of the plasma oxide film when the plasma treatment time is set to 3 minutes under the conditions shown in FIG. It is understood that the plasma oxide film can be controlled with a film thickness of 10 nm or less by controlling the substrate temperature to a low temperature.

【0027】比較例1 水素ガスの代わりにアルゴンガスを用いたこと以外は図
5において説明した実施例と同様にして、シリコンウエ
ハ基板5をプラズマ処理した。結果を図5に実施例と一
緒に示す。
Comparative Example 1 A silicon wafer substrate 5 was plasma-treated in the same manner as in the example described in FIG. 5, except that argon gas was used instead of hydrogen gas. The results are shown in FIG. 5 together with the examples.

【0028】比較例2 水素ガスの代わりに酸素ガスを用いたこと以外は図5に
おいて説明した実施例と同様にして、シリコンウエハ基
板5をプラズマ処理した。結果を図5に実施例と一緒に
示す。
Comparative Example 2 The silicon wafer substrate 5 was plasma-treated in the same manner as the example described in FIG. 5 except that oxygen gas was used instead of hydrogen gas. The results are shown in FIG. 5 together with the examples.

【0029】図5において実施例と比較例1及び2とを
比べると、水素ガスを用いずにアルゴンガスを用いた場
合には、2nm程度の酸化膜は形成されるのの時間をか
けてもそれ以上酸化膜の形成は進まない。又、酸素ガス
を用いた場合には、酸化速度が過大で酸化膜厚を制御す
ることができない。一方、水素ガスを用いた場合には、
基板温度が室温付近まで制御可能な状態で徐々に酸化膜
を形成することができる。なお、室温付近で形成される
酸化膜厚が減少し始め、35℃以上では0になるのは、
一度形成された酸化膜がこの温度で離脱し始める現象に
よるものである。以上の比較例より、水素ガスを用いて
且つプラズマ反応部2内の残存水分子を解離・活性化さ
せた状態でシリコンウエハ基板5を酸化することによ
り、初めて極薄酸化膜の作製及び膜厚の制御が可能にな
ることが判る。
Comparing the example with the comparative examples 1 and 2 in FIG. 5, when argon gas is used instead of hydrogen gas, even if it takes a long time to form an oxide film of about 2 nm. The formation of the oxide film does not proceed any further. When oxygen gas is used, the oxidation rate is too high to control the oxide film thickness. On the other hand, when hydrogen gas is used,
The oxide film can be gradually formed in a state where the substrate temperature can be controlled to near room temperature. It should be noted that the oxide film thickness formed near room temperature starts to decrease and becomes 0 at 35 ° C. or higher because
This is due to the phenomenon that the oxide film once formed starts to separate at this temperature. From the above comparative example, the production of the ultrathin oxide film and the film thickness can be performed for the first time by oxidizing the silicon wafer substrate 5 using hydrogen gas while dissociating and activating the residual water molecules in the plasma reaction part 2. It turns out that control of is possible.

【0030】[0030]

【発明の効果】前述の如く、本発明のプラズマ処理装置
において、プラズマ反応部は水分子を1010個/cm3
以上該反応部に供給する水分子供給手段と前記プラズマ
反応部の真空度を一定に保持するための手段を備え、試
料処理部は一定温度に試料温度を保持するための手段及
び試料電位を制御するための手段を備えてなるため、各
種試料のプラズマ酸化処理例えば半導体デバイスの製造
において、従来に比べて低温具体的には30℃以下でシ
リコンウエハ基板表面に均一で且つ大面積の膜厚10n
m程度以下の極薄酸化膜を生産効率よく作製することが
できる。又、酸化処理時間も数分程度で済み、極めて短
時間であり、生産効率が良い。
As described above, in the plasma processing apparatus of the present invention, the plasma reaction portion contains 10 10 water molecules / cm 3.
The sample processing section is provided with a water molecule supply means for supplying to the reaction section and a means for keeping the degree of vacuum of the plasma reaction section constant, and the sample processing section controls the sample potential and a means for keeping the sample temperature at a constant temperature. Therefore, in the plasma oxidation treatment of various samples, for example, in the manufacture of semiconductor devices, a film thickness of 10 n, which is uniform and has a large area on the surface of a silicon wafer substrate at a temperature of 30 ° C. or less, is used.
An extremely thin oxide film having a thickness of about m or less can be produced with high production efficiency. Further, the oxidation treatment time is about several minutes, which is extremely short, and the production efficiency is good.

【0031】又、本発明のプラズマ処理方法は本発明の
プラズマ処理装置を使用して所定条件下で試料をプラズ
マ処理するに際し、試料処理部のプラズマ流が当たる面
と反対側の面に試料を設置するか又はプラズマ反応部内
のプラズマ発光部以外の位置に試料を設置してプラズマ
処理するため、穏やかな条件でプラズマ酸化処理を行う
ことができるので極薄酸化膜の作製が容易であり、且つ
酸化膜厚の制御も可能である。又、酸化膜を形成する際
の半導体基板の損傷を防ぐことができる。
The plasma processing method of the present invention uses the plasma processing apparatus of the present invention to perform plasma processing on a sample under predetermined conditions, so that the surface of the sample processing unit opposite to the surface on which the plasma flow strikes the sample. Since the sample is installed or placed in a position other than the plasma emission part in the plasma reaction part for plasma treatment, the plasma oxidation process can be performed under mild conditions, so that an ultrathin oxide film can be easily produced, and It is also possible to control the oxide film thickness. Further, it is possible to prevent damage to the semiconductor substrate when forming the oxide film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ処理装置の一実施例の概略説
明図である。
FIG. 1 is a schematic explanatory view of an embodiment of a plasma processing apparatus of the present invention.

【図2】図1に示す本発明装置のプラズマ反応部内を圧
力0.13Paまで排気したときの質量分析結果を示す
図である。
FIG. 2 is a diagram showing a mass spectrometry result when the inside of the plasma reaction part of the apparatus of the present invention shown in FIG. 1 is evacuated to a pressure of 0.13 Pa.

【図3】図1及び図2で示すプラズマ処理条件下でシリ
コンウエハ基板を処理する時、シリコンウエハ基板電位
とシリコンウエハ基板の損傷程度との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the silicon wafer substrate potential and the degree of damage to the silicon wafer substrate when the silicon wafer substrate is processed under the plasma processing conditions shown in FIGS. 1 and 2.

【図4】シリコンウエハ基板の基板電位50V、基板温
度−100℃の場合のプラズマ処理時間と酸化膜厚の関
係を示す図である。
FIG. 4 is a diagram showing a relationship between a plasma processing time and an oxide film thickness when a substrate potential of a silicon wafer substrate is 50 V and a substrate temperature is −100 ° C.

【図5】各種ガスを使用し図4に示す条件でプラズマ処
理時間を3分にした場合の、基板温度とプラズマ酸化膜
厚との関係を示す図である。
5 is a diagram showing a relationship between a substrate temperature and a plasma oxide film thickness when various gases are used and a plasma treatment time is set to 3 minutes under the conditions shown in FIG.

【符号の説明】[Explanation of symbols]

1 プラズマ発生部 2 プラズマ反応部 3 排気部 4 試料処理部 5 シリコンウエハ基板 6 液体窒素導入管 7 電源部 8 空芯磁場コイル 9 水素ガス導入管 10 マイクロ波発生器 11 水分子供給部 1 Plasma Generation Section 2 Plasma Reaction Section 3 Exhaust Section 4 Sample Processing Section 5 Silicon Wafer Substrate 6 Liquid Nitrogen Introduction Tube 7 Power Supply Section 8 Air-Core Magnetic Field Coil 9 Hydrogen Gas Introduction Tube 10 Microwave Generator 11 Water Molecule Supply Section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子サイクロトロン共鳴により水素ガス
プラズマを発生させるプラズマ発生部、前記プラズマ発
生部からプラズマ流が導入されるプラズマ反応部、前記
プラズマ反応部内に設置された試料処理部、並びに前記
プラズマ発生部及びプラズマ反応部を高真空下に保つた
めの排気部からなるプラズマ処理装置において、前記プ
ラズマ反応部は水分子を1010個/cm3 以上該反応部
に供給する水分子供給手段と前記プラズマ反応部の真空
度を一定に保持するための手段を備え、前記試料処理部
は一定温度に試料温度を保持するための手段及び試料電
位を制御するための手段を備えてなることを特徴とする
プラズマ処理装置。
1. A plasma generation part for generating hydrogen gas plasma by electron cyclotron resonance, a plasma reaction part into which a plasma flow is introduced from the plasma generation part, a sample processing part installed in the plasma reaction part, and the plasma generation. In the plasma processing apparatus, which comprises an exhaust unit for maintaining the reaction unit and the plasma reaction unit under a high vacuum, the plasma reaction unit supplies water molecules to the reaction unit in an amount of 10 10 / cm 3 or more, and the plasma. It is characterized in that it is provided with means for keeping the degree of vacuum of the reaction part constant, and the sample processing part is provided with means for holding the sample temperature at a constant temperature and means for controlling the sample potential. Plasma processing equipment.
【請求項2】 試料電位を制御するための手段が、プラ
ズマ反応部と絶縁された状態で、0ないし50Vの範囲
内で且つ前記プラズマ反応部のプラズマポテンシャル以
上で直流電位を制御することが可能な手段であることを
特徴とする請求項1記載のプラズマ処理装置。
2. The means for controlling the sample potential is capable of controlling the DC potential within the range of 0 to 50 V and above the plasma potential of the plasma reaction part while being insulated from the plasma reaction part. The plasma processing apparatus according to claim 1, which is a different means.
【請求項3】 電子サイクロトロン共鳴により水素ガス
プラズマを発生させるプラズマ発生部、前記プラズマ発
生部からプラズマ流が導入されるプラズマ反応部、前記
プラズマ反応部内に設置された試料処理部、並びに前記
プラズマ発生部及びプラズマ反応部を高真空下に保つた
めの排気部からなるプラズマ処理装置において、前記プ
ラズマ反応部はその内部の残存水分子を1010個/cm
3 以上とし且つその内部の真空度を0.13Paないし
13Paの範囲内の一定圧力で10分以上保持するため
の手段を備え、前記試料処理部は−120℃ないし30
℃の範囲内の一定温度に試料温度を保持するための手段
及び試料電位を制御するための手段を備えてなるプラズ
マ処理装置を使用して試料をプラズマ処理するに際し、
試料処理部のプラズマ流が当たる面と反対側の面に試料
を設置するか又はプラズマ反応部内のプラズマ発光部以
外の位置に試料を設置してプラズマ処理することを特徴
とするプラズマ処理方法。
3. A plasma generation part for generating hydrogen gas plasma by electron cyclotron resonance, a plasma reaction part into which a plasma flow is introduced from the plasma generation part, a sample processing part installed in the plasma reaction part, and the plasma generation. In the plasma processing apparatus, which comprises an exhaust part for maintaining the vacuum part and the plasma reaction part under a high vacuum, the plasma reaction part has residual water molecules of 10 10 molecules / cm.
The sample processing section is provided with a means for maintaining the degree of vacuum at 3 or more and the internal vacuum degree at a constant pressure within the range of 0.13 Pa to 13 Pa for 10 minutes or more.
When plasma-treating a sample using a plasma processing apparatus comprising means for holding the sample temperature at a constant temperature within the range of ° C and means for controlling the sample potential,
A plasma processing method, wherein the sample is placed on the surface of the sample processing unit opposite to the surface on which the plasma flow strikes, or the sample is placed at a position other than the plasma emission unit in the plasma reaction unit for plasma processing.
JP3347841A 1991-12-03 1991-12-03 Plasma treatment equipment and method Pending JPH05160112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347841A JPH05160112A (en) 1991-12-03 1991-12-03 Plasma treatment equipment and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347841A JPH05160112A (en) 1991-12-03 1991-12-03 Plasma treatment equipment and method

Publications (1)

Publication Number Publication Date
JPH05160112A true JPH05160112A (en) 1993-06-25

Family

ID=18392972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347841A Pending JPH05160112A (en) 1991-12-03 1991-12-03 Plasma treatment equipment and method

Country Status (1)

Country Link
JP (1) JPH05160112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222860A (en) * 2010-04-13 2011-11-04 Fujifilm Corp Plasma oxidation method and plasma oxidation apparatus
JP2012516577A (en) * 2009-01-28 2012-07-19 アプライド マテリアルズ インコーポレイテッド Method for forming a conformal oxide layer on a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516577A (en) * 2009-01-28 2012-07-19 アプライド マテリアルズ インコーポレイテッド Method for forming a conformal oxide layer on a semiconductor device
JP2016028411A (en) * 2009-01-28 2016-02-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for forming conformal oxide layer on semiconductor device
JP2011222860A (en) * 2010-04-13 2011-11-04 Fujifilm Corp Plasma oxidation method and plasma oxidation apparatus

Similar Documents

Publication Publication Date Title
JP4607865B2 (en) Method and system for substrate temperature control
Carl et al. Oxidation of silicon in an electron cyclotron resonance oxygen plasma: Kinetics, physicochemical, and electrical properties
US20060291132A1 (en) Electrostatic chuck, wafer processing apparatus and plasma processing method
TWI402912B (en) Manufacturing method of insulating film and manufacturing method of semiconductor device
JP2005129666A (en) Treatment method and apparatus
WO2003096400A1 (en) Plasma processing equipment and plasma processing method
US8003484B2 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
JP5390379B2 (en) Pretreatment method in chamber, plasma treatment method, and storage medium in plasma nitriding treatment
US20070065593A1 (en) Multi-source method and system for forming an oxide layer
CN106952798B (en) Engraving method
WO2016151684A1 (en) Method for manufacturing semiconductor device, recording medium and substrate processing apparatus
JPH08115901A (en) Plasma processing method and plasma processor
JP2010087185A (en) Forming method for silicon oxide film, computer-readable storage medium, and plasma oxidation processing equipment
US11610766B2 (en) Target object processing method and plasma processing apparatus
US20060228871A1 (en) Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
JPH05160112A (en) Plasma treatment equipment and method
JP3144969B2 (en) Plasma etching method
US11011386B2 (en) Etching method and plasma treatment device
US20120234491A1 (en) Plasma processing method and plasma processing apparatus
JP2015056499A (en) Substrate processing method and substrate processing apparatus
JPH0776777A (en) Method and device for forming silicon oxide film
JP2004128210A (en) Plasma doping method and equipment
JP2000164563A (en) Plasma processing device
US20230069553A1 (en) Etching method and plasma etching apparatus
JP2502582B2 (en) Plasma CVD equipment