JPH05160044A - Method and device for plasma cvd - Google Patents

Method and device for plasma cvd

Info

Publication number
JPH05160044A
JPH05160044A JP32736991A JP32736991A JPH05160044A JP H05160044 A JPH05160044 A JP H05160044A JP 32736991 A JP32736991 A JP 32736991A JP 32736991 A JP32736991 A JP 32736991A JP H05160044 A JPH05160044 A JP H05160044A
Authority
JP
Japan
Prior art keywords
plasma
substrate
high frequency
pulse modulation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32736991A
Other languages
Japanese (ja)
Other versions
JP3019563B2 (en
Inventor
Masao Watanabe
征夫 渡辺
So Kuwabara
創 桑原
Tsukasa Hayashi
司 林
Hiroya Kirimura
浩哉 桐村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3327369A priority Critical patent/JP3019563B2/en
Publication of JPH05160044A publication Critical patent/JPH05160044A/en
Application granted granted Critical
Publication of JP3019563B2 publication Critical patent/JP3019563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To protect a film-forming part on a substrate from dust and to improve a film-forming rate by a method wherein the production of radical species to contribute to a film formation reaction is not obstructed and more over, the generation of the radical species, which cause the generation of the dust, is selectively inhibited. CONSTITUTION:A plasma CVD method and a plasma CVD device, which bring raw gas into a plasma state and make a substrate expose to this plasma to form a thin film on the substrate, are a plasma CVD method and a plasma CVD device, which made the turning to bring the raw gas into a plasma state perform by applying high-frequency power obtainable by making a first pulse modulation of 1KHz or lower and a second pulse modulation having a period shorter than that of the first pulse modulation superpose on triangular wave high-frequency power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料ガスをプラズマ化
し、このプラズマに基板を曝して該基板上に薄膜を形成
するプラズマCVD法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD method and apparatus for converting a source gas into plasma and exposing the substrate to the plasma to form a thin film on the substrate.

【0002】[0002]

【従来の技術】プラズマCVD法及び装置はアモルファ
スシリコン(a−Si)太陽電池、液晶表示装置等の各
種薄膜デバイスの形成に広く使用されている。このプラ
ズマCVDでは、成膜する基板上にダストが付着するこ
とを防止するため、プラズマCVD装置の成膜室への基
板搬送系の配置や成膜室における基板の配置を、ダスト
やパーティクル(以下「ダスト」という。)の発生が少
なくなるように工夫している。また、ダスト発生を抑制
するため、成膜条件を工夫したり、成膜室への基板の設
置時や装置の運転の合間に成膜室内電極や基板搬送系等
を清掃することも行われており、これらによって例えば
液晶表示装置基板上の成膜ではかなりの効果があがって
いる。
2. Description of the Related Art Plasma CVD methods and devices are widely used for forming various thin film devices such as amorphous silicon (a-Si) solar cells and liquid crystal display devices. In this plasma CVD, in order to prevent dust from adhering to the substrate on which the film is to be formed, the arrangement of the substrate transfer system to the film forming chamber of the plasma CVD apparatus and the position of the substrate in the film forming chamber are set to dust and particles (hereinafter It is designed to reduce the generation of "dust". In addition, in order to suppress dust generation, the film forming conditions are devised, and the electrodes in the film forming chamber, the substrate transfer system, and the like are cleaned during the installation of the substrate in the film forming chamber or the operation of the apparatus. However, these have considerably improved the film formation on the liquid crystal display device substrate, for example.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、プラズ
マCVDにより、例えば原料ガスにSiH4 を使ってガ
ラス等の基板上に(a−Si)膜を形成すると、たとえ
前述の如く、ダスト発生の少ない条件を設定しても、該
成膜中に基板にダストが付着する。これは、本発明者の
研究によると、たとえ、ダスト発生の少ない条件で成膜
しても、その成膜中に、なお、基板に近いプラズマ空間
領域にダストが蓄積されるからである。
However, if an (a-Si) film is formed on a substrate such as glass by plasma CVD using, for example, SiH 4 as a raw material gas, even if the dust generation is small, as described above. Even if is set, dust adheres to the substrate during the film formation. This is because according to the research conducted by the present inventor, even if a film is formed under the condition that the generation of dust is small, the dust is still accumulated in the plasma space region close to the substrate during the film formation.

【0004】前記原料ガスSiH4 を例にとると、これ
がプラズマ化されることによりSiH3 ラジカル、Si
2 ラジカル、SiHラジカルが生成されるが、(a−
Si)膜の形成には主としてSiH3 ラジカルが寄与
し、SiH2 ラジカルやSiHラジカルといった低シラ
ン系ラジカルはSiH4 と反応して高次シランSixH
yが生成され、これがダストになると考えられる。
Taking the above-mentioned source gas SiH 4 as an example, when it is turned into plasma, SiH 3 radicals, SiH 3 radicals,
H 2 radicals and SiH radicals are generated, but (a-
SiH 3 radicals mainly contribute to the formation of (Si) film, and low silane-based radicals such as SiH 2 radicals and SiH radicals react with SiH 4 to form higher-order silane SixH.
It is considered that y is produced and this becomes dust.

【0005】そこで本発明は、原料ガスをプラズマ化
し、このプラズマに基板を曝して該基板上に薄膜を形成
するプラズマCVD法及び装置において、成膜反応に寄
与するラジカル種の生成を妨げず、しかもダスト発生の
原因となるラジカル種の発生を選択的に抑制して、ダス
トの基板上成膜部への付着、混入を抑制し、成膜速度を
向上させることを目的とする。
Therefore, in the present invention, in the plasma CVD method and apparatus in which the raw material gas is made into plasma and the substrate is exposed to this plasma to form a thin film on the substrate, the generation of radical species contributing to the film forming reaction is not hindered, Moreover, it is an object of the present invention to selectively suppress the generation of radical species that cause the generation of dust, suppress the adhesion and mixing of dust to the film formation portion on the substrate, and improve the film formation rate.

【0006】[0006]

【課題を解決するための手段】プラズマCVDの反応過
程を支配するプラズマ中には、前述のとおり多くのラジ
カルが存在し、イオンが存在する。プラズマ中における
エネルギー交換の主役は電子であり、電界により加速さ
れた電子が、イオンや中性粒子と衝突を繰り返し、多種
多様のイオン、ラジカルが生成される。従って、プラズ
マCVD法及び装置においては、イオン、ラジカルの制
御は電子(エネルギー)の制御により行うことができ、
これを制御することで、生成される各種ラジカルのう
ち、成膜反応に不必要なラジカルの発生をできるだけ抑
制し、成膜反応に必要なラジカルをできるだけ増加させ
得ると考えられる。
As described above, many radicals exist and ions exist in the plasma that governs the reaction process of plasma CVD. Electrons play a major role in energy exchange in plasma, and electrons accelerated by an electric field repeatedly collide with ions and neutral particles to generate various kinds of ions and radicals. Therefore, in the plasma CVD method and apparatus, control of ions and radicals can be performed by control of electrons (energy),
It is considered that by controlling this, generation of radicals unnecessary for the film formation reaction can be suppressed as much as possible among the various radicals generated, and radicals necessary for the film formation reaction can be increased as much as possible.

【0007】本発明者は、先ず、次の点に着目した。す
なわち、例えば原料ガスがSiH4 の場合、成膜反応に
利用すべきSiH3 ラジカルは、プラズマ発生のための
高周波入力オンにより、ダスト発生の原因となるSiH
2 ラジカルやSiHラジカルとともに増加するが、高周
波入力オフ後、SiH3 ラジカルは寿命が比較的長いの
に対し、SiH2ラジカルやSiHラジカルは寿命が短
く、従って、RF入力にmsecオーダのパルス変調に
よるオン−オフ時間を設ければ、SiH3 以外の、ダス
ト生成に関与する各種ラジカルを選択的に消滅させ得る
ことに着目した。
The inventor first focused on the following points. That is, for example, when the source gas is SiH 4 , the SiH 3 radicals that should be used for the film formation reaction are the SiH 3 radicals that cause dust generation when the high frequency input for plasma generation is turned on.
Although it increases with 2 radicals and SiH radicals, after the high frequency input is turned off, SiH 3 radicals have a relatively long life, whereas SiH 2 radicals and SiH radicals have a short life. It was noted that various radicals other than SiH 3 that are involved in dust generation can be selectively extinguished by providing an on-off time.

【0008】この上で、本発明者はさらに研究を重ね、
プラズマ中における電子温度が各種イオン、ラジカルの
生成に関係し、プラズマ中における電子温度は生成され
る各種ラジカル密度の空間分布と電界強度、特に、電界
強度の時間変化(dE/dt)により決定され、この傾
きを制御することによって、実効平均電子温度の制御、
換言すればラジカル生成の制御が可能となること、そし
て前記電界強度の時間変化の制御として、原料ガスのプ
ラズマ化にあたり、従来の正弦波による高周波入力に代
えて、ノコギリ波、三角波のような高周波入力を採用
し、これにμsecオーダの変調を加えれば、図4に示
すように、通常の正弦波入力と異なった、急峻に立ち上
がる電子温度遷移を得られることに着目した。
On this basis, the present inventor has conducted further research,
The electron temperature in plasma is related to the generation of various ions and radicals, and the electron temperature in plasma is determined by the spatial distribution of the density of various radicals generated and the electric field strength, in particular, the time change (dE / dt) of the electric field strength. , By controlling this slope, control of the effective average electron temperature,
In other words, it becomes possible to control the generation of radicals, and as a control of the time change of the electric field intensity, in the plasma conversion of the raw material gas, instead of the conventional high frequency input by a sine wave, a high frequency wave such as a sawtooth wave or a triangular wave It was noted that if an input is adopted and a modulation of the order of μsec is applied, a sharply rising electron temperature transition different from that of a normal sine wave input can be obtained, as shown in FIG.

【0009】以上のことから、ノコギリ波、三角波とい
った三角形波高周波を採用し、これにパルス変調を重畳
しオン−オフのタイムスケールを最適化することによ
り、ダスト生成に関与する不必要で寿命の短いラジカル
を選択的に抑制することが可能となると同時に、良質膜
形成のキーパラメータとなるラジカル種の生成を促進さ
せることが可能となると考えられ、本発明完成に至っ
た。
From the above, by adopting a triangular wave high frequency wave such as a sawtooth wave and a triangular wave, and superimposing pulse modulation on this, and optimizing the on-off time scale, it is possible to eliminate unnecessary and long lifespan related to dust generation. It is considered that short radicals can be selectively suppressed, and at the same time, generation of radical species, which is a key parameter for forming a good quality film, can be promoted, and the present invention has been completed.

【0010】すなわち、本発明は、前記目的を達成する
ため、原料ガスをプラズマ化し、このプラズマに基板を
曝して該基板上に薄膜を形成するプラズマCVD法にお
いて、前記原料ガスのプラズマ化を、三角形波高周波電
力に1KHz以下の第1のパルス変調及び該変調より短
い周期をもつ第2のパルス変調を重畳させた高周波電力
の印加により行うことを特徴とするプラズマCVD法、
及び原料ガスをプラズマ化し、このプラズマに基板を曝
して該基板上に薄膜を形成するプラズマCVD装置にお
いて、前記原料ガスのプラズマ化のための高周波電力印
加手段が、三角形波高周波電力に1KHz以下の第1の
パルス変調及び該変調より短い周期をもつ第2のパルス
変調を重畳させた高周波電力を印加するものであること
を特徴とするプラズマCVD装置を提供するものであ
る。
That is, in order to achieve the above-mentioned object, the present invention, in a plasma CVD method in which a raw material gas is made into plasma and a substrate is exposed to this plasma to form a thin film on the substrate, A plasma CVD method, characterized in that high frequency power is applied by superimposing a first pulse modulation of 1 KHz or less on the triangular wave high frequency power and a second pulse modulation having a shorter period than the modulation.
In a plasma CVD apparatus in which a raw material gas is made into plasma and a substrate is exposed to this plasma to form a thin film on the substrate, the high frequency power applying means for making the raw material gas into plasma has a triangular wave high frequency power of 1 KHz or less. The present invention provides a plasma CVD apparatus characterized by applying high-frequency power on which a first pulse modulation and a second pulse modulation having a shorter period than the first modulation are superimposed.

【0011】前記「三角形波高周波電力」にいう「三角
形波高周波」とは、所謂「ノコギリ波」、「三角波」と
いった三角形状の高周波を意味している。前記変調条件
は、原料ガス流量、成膜室真空度、基板温度、原料ガス
種等の多くのパラメーターにより、随時変化させる必要
があるが、変調条件(パルスのオン、オフ時間)及び電
界の変化率を最適条件として形成した膜は、良好な物理
的特定(バンドギャップ、キャリア移動度等)を有す
る。一般的には、前記第1のパルス変調は1KHz以下
の条件とすることが考えられる。周期が1KHzより短
いと、不必要なラジカル種発生を抑制し難い。一方、必
要なラジカル種を減少させないため、例えば400Hz
以上とすることが考えられる。よって好ましい周波数は
400Hz〜1KHzと考えられる。また、必要なラジ
カル種を選択的に増加させ、不必要なラジカル種の発
生、残存を選択的に抑制するうえで、前記第2のパルス
変調におけるオンタイムt1を0.5μsec<t1<
100μsecの範囲で、オフタイムt2を3μsec
<t2<100μsecの範囲で選択決定することが代
表的な例として考えられる。
The "triangular wave high frequency" referred to in the above "triangle wave high frequency power" means a triangular high frequency wave such as a so-called "sawtooth wave" or "triangular wave". The modulation conditions need to be changed as needed depending on many parameters such as the flow rate of the source gas, the degree of vacuum in the film forming chamber, the substrate temperature, and the type of the source gas. The modulation conditions (pulse on / off time) and changes in the electric field. The film formed under the optimum conditions has a good physical specification (band gap, carrier mobility, etc.). Generally, it is considered that the first pulse modulation is performed under the condition of 1 KHz or less. If the cycle is shorter than 1 KHz, it is difficult to suppress the generation of unnecessary radical species. On the other hand, in order not to reduce the necessary radical species, for example 400Hz
It is possible to do the above. Therefore, the preferable frequency is considered to be 400 Hz to 1 KHz. Further, in order to selectively increase the necessary radical species and selectively suppress the generation and residual of unnecessary radical species, the on-time t1 in the second pulse modulation is 0.5 μsec <t1 <
Off time t2 is 3 μsec in the range of 100 μsec
A typical example is to select and determine in the range of <t2 <100 μsec.

【0012】[0012]

【作用】本発明のプラズマCVD法及び装置によると、
三角形波高周波電力に1KHz以下の第1のパルス変調
及び該変調より短い周期をもつ第2のパルス変調を重畳
させた高周波電力が原料ガスに印加されることで、成膜
反応に必要なラジカル種が選択的に発生、増加する一
方、成膜反応に不必要なラジカル種の発生が抑制された
状態で、基板上に所望の薄膜が形成される。成膜中、成
膜反応に不必要なラジカル種の発生が抑制されることで
ダストの発生率は著しく低下し、且つ、成膜反応に必要
なラジカル種は選択的に発生、増加することで所望の成
膜速度が得られる。
According to the plasma CVD method and apparatus of the present invention,
A high frequency power obtained by superimposing a triangular pulsed high frequency power with a first pulse modulation of 1 KHz or less and a second pulse modulation having a shorter period than the modulation is applied to a source gas to generate a radical species necessary for a film formation reaction. Is selectively generated and increased, the desired thin film is formed on the substrate in a state where the generation of radical species unnecessary for the film formation reaction is suppressed. By suppressing the generation of radical species unnecessary for the film formation reaction during film formation, the dust generation rate is significantly reduced, and the radical species necessary for the film formation reaction is selectively generated and increased. A desired film formation rate can be obtained.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明方法の実施に使用するプラズマCV
D装置の一例の概略断面を示している。このプラズマC
VD装置は容量結合型のプラズマCVD装置で、成膜室
1にカソード電極2と接地電極3が対向配置され、カソ
ード電極2にはマッチングボックス8を介して高周波電
源4が接続され、接地電極3には基板9が配置され、該
基板はヒータ5にて成膜温度に制御される。また、成膜
室1には所定真空度を得るための排気系6、原料ガスを
供給する原料ガス供給装置7が接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a plasma CV used for carrying out the method of the present invention.
The schematic cross section of an example of D apparatus is shown. This plasma C
The VD apparatus is a capacitively coupled plasma CVD apparatus, in which a cathode electrode 2 and a ground electrode 3 are arranged opposite to each other in a film forming chamber 1, a high frequency power source 4 is connected to the cathode electrode 2 through a matching box 8, and a ground electrode 3 is connected. A substrate 9 is disposed on the substrate, and the substrate 5 is controlled by the heater 5 at the film forming temperature. Further, an exhaust system 6 for obtaining a predetermined degree of vacuum and a source gas supply device 7 for supplying a source gas are connected to the film forming chamber 1.

【0014】高周波電源4は、高周波発生手段及び波形
生成手段を含み、任意の高周波パルス変調が可能で、原
料ガスへの高周波印加に際しての電界強度の時間変化率
を変化させることが可能な高周波信号発生器41及び高
周波増幅器(RFパワーアンプ)42を有しており、こ
こでは、垂直に立ち上がるノコギリ波の13.56MH
z高周波に400Hz〜1KHzの第1のパルス変調及
び該変調より短い周期をもつ第2のパルス変調を重畳さ
せた高周波電力を出力できるように構成してある。第2
のパルス変調では、本発明に従い、オン時間t1を0.
5μsec<t1<100μsecの範囲から、オフ時
間t2を3μsec<t2<100μsecの範囲から
選択決定できる。
The high frequency power source 4 includes a high frequency generating means and a waveform generating means, is capable of performing arbitrary high frequency pulse modulation, and is capable of changing the time change rate of the electric field strength when the high frequency is applied to the source gas. It has a generator 41 and a high frequency amplifier (RF power amplifier) 42, and here, 13.56 MH of a sawtooth wave which rises vertically.
It is configured so that a high frequency power in which a first pulse modulation of 400 Hz to 1 KHz and a second pulse modulation having a shorter period than the modulation are superimposed on the z high frequency power can be output. Second
According to the present invention, the on-time t1 is 0.
The off time t2 can be selected and determined from the range of 5 μsec <t1 <100 μsec from the range of 3 μsec <t2 <100 μsec.

【0015】第1パルス変調による高周波入力のオン、
オフ状態は図2の(A)に示すようになり、第2パルス
変調による高周波入力のオン、オフ状態は図2の(B)
下段に示すようになる。以上説明した装置によると、本
発明方法は次のように実施される。先ず、接地電極3上
の基板9がヒータ5にて成膜温度に制御され、成膜室1
内が排気系6にて所定の成膜真空度に維持されつつ該成
膜室に原料ガス供給装置7から原料ガスが導入され、カ
ソード電極2には、図2(B)下段に示すように、電源
4から高周波電圧が印加されて原料ガスがプラズマ化さ
れ、該プラズマに基板9表面が曝されることで該表面上
に所望の薄膜が堆積形成される。
Turning on the high frequency input by the first pulse modulation,
The off state is as shown in FIG. 2 (A), and the on / off state of the high frequency input by the second pulse modulation is shown in FIG. 2 (B).
As shown in the lower row. According to the apparatus described above, the method of the present invention is carried out as follows. First, the substrate 9 on the ground electrode 3 is controlled to the film forming temperature by the heater 5, and the film forming chamber 1
A source gas is introduced from a source gas supply device 7 into the film forming chamber while the inside is maintained at a predetermined film forming vacuum degree by an exhaust system 6, and a cathode electrode 2 is supplied to a cathode electrode 2 as shown in the lower part of FIG. A high frequency voltage is applied from the power source 4 to turn the source gas into plasma, and the surface of the substrate 9 is exposed to the plasma, whereby a desired thin film is deposited and formed on the surface.

【0016】前記成膜中、原料ガスには、第1及び第2
パルス変調されたノコギリ波高周波電力が印加されるの
で、成膜反応に必要なラジカル種が選択的に発生、増加
する一方、成膜反応に不必要なラジカル種の発生が抑制
された状態で、基板上に所望の薄膜が形成される。成膜
中、成膜反応に不必要なラジカル種の発生が抑制される
ことでダストの発生率は低下し、且つ、成膜反応に必要
なラジカル種は選択的に発生、増加することで成膜速度
が向上し、また、電子温度や密度の制御により良質な成
膜を行える。
During the film formation, the first and second raw material gases are used.
Since the pulse-modulated sawtooth wave high frequency power is applied, the radical species required for the film formation reaction are selectively generated and increased, while the generation of unnecessary radical species for the film formation reaction is suppressed, A desired thin film is formed on the substrate. During film formation, the generation rate of dust is reduced by suppressing the generation of radical species unnecessary for film formation reaction, and the radical species necessary for film formation reaction is selectively generated and increased. The film speed is improved, and high-quality film formation can be performed by controlling the electron temperature and density.

【0017】なお、第1パルス変調のみを行うときは、
図2の(A)に示すように、ダスト発生率は高いが、第
2パルス変調も重畳するときは、図2の(B)に示すよ
うに、ダスト発生率は著しく低下する。また、前記実施
例によると、原料ガス流量やプラズマ発生のための投入
パワーを増加させても、ダスト発生率の上昇を引き起こ
さないので、それだけ成膜速度を向上させることができ
る。
When only the first pulse modulation is performed,
As shown in FIG. 2A, the dust generation rate is high, but when the second pulse modulation is also superimposed, the dust generation rate is significantly reduced as shown in FIG. 2B. Further, according to the above-mentioned embodiment, even if the flow rate of the raw material gas and the input power for plasma generation are increased, the dust generation rate is not increased, so that the film formation rate can be improved accordingly.

【0018】以上説明した方法及び装置に基づき、次の
具体的条件でガラス基板上にアモルファスシリコン(a
−Si)膜及びa−SiNx膜を形成したところ、該膜
上に実用上問題となるダストの付着は見られず、成膜時
間も正弦波高周波をパルス変調無しで印加し、他の条件
を同一とした成膜時より短縮された。 基板サイズ :100mm角 カソードサイズ :300mm角 基板−カソード間距離 :50mm 高周波 :ノコギリ波(当初に垂直に立
ち上がる波形) 13.56MHz 第1パルス変調周波数 :1KHz 第2パルス変調 :オン時間 10μsec オフ時間 10μsec a)a−Si:H成膜 SiH4 流量 :50sccm H2 流量 :250sccm 成膜ガス圧 :1×10-1Torr 基板温度 :250℃ 高周波出力 :200W 〔結果〕 成膜速度 :約50nm/min パーティクル密度:30個/100mm角(粒径0.3
μm以上) 光学的バンドギャップ:1.8eV程度 b)a−SiNx成膜 SiH4 流量 :50sccm NH3 流量 :150sccm N2 流量 :50sccm 成膜ガス圧 :1×10-1Torr 基板温度 :350℃ 高周波出力 :500W 〔結果〕 成膜速度 :約100nm/min パーティクル密度:25個/100mm角(粒径0.3
μm以上) 光学的バンドギャップ:4.8〜5.0eV なお、本発明は前記実施例に限定されるものではなく、
他にも種々の態様で実施できる。例えば、高周波電源4
は、図3に示すように構成してもよく、或いは、さらに
他の構成としてもよい。
Based on the method and apparatus described above, amorphous silicon (a) is formed on a glass substrate under the following specific conditions.
-Si) film and a-SiNx film were formed, dust adhesion, which is a problem in practical use, was not observed on the film, and a sinusoidal high frequency was applied without pulse modulation for the film formation time. It was shorter than the same film formation. Substrate size: 100 mm square Cathode size: 300 mm square Substrate-cathode distance: 50 mm High frequency: Sawtooth wave (waveform that rises vertically at the beginning) 13.56 MHz First pulse modulation frequency: 1 KHz Second pulse modulation: On time 10 μsec Off time 10 μsec a) a-Si: H film formation SiH 4 flow rate: 50 sccm H 2 flow rate: 250 sccm Film formation gas pressure: 1 × 10 −1 Torr Substrate temperature: 250 ° C. High frequency output: 200 W [Result] Film formation rate: Approximately 50 nm / min Particle density: 30 particles / 100 mm square (particle size 0.3
Optical band gap: about 1.8 eV b) a-SiNx film formation SiH 4 flow rate: 50 sccm NH 3 flow rate: 150 sccm N 2 flow rate: 50 sccm Film formation gas pressure: 1 × 10 −1 Torr Substrate temperature: 350 ° C. High frequency output: 500 W [Result] Film formation speed: Approximately 100 nm / min Particle density: 25 particles / 100 mm square (particle size 0.3
Optical bandgap: 4.8 to 5.0 eV The present invention is not limited to the above-mentioned examples,
Besides, it can be implemented in various modes. For example, high frequency power source 4
May be configured as shown in FIG. 3, or may have another configuration.

【0019】図3に示すもの40は、高周波信号発生手
段と波形生成手段を含む信号発生器43からの第1パル
ス変調された高周波出力を、アナログスイッチAS、R
Fパワーアンプ44及びマッチングボックス45を介し
て供給するように構成する一方、アナログスイッチAS
を、位相同期回路46にてパルス信号の同期をとりつつ
パルス信号発生器47にて操作することで第2パルス変
調を行うようにしたものである。
The one 40 shown in FIG. 3 outputs the first pulse-modulated high frequency output from the signal generator 43 including the high frequency signal generating means and the waveform generating means to the analog switches AS and R.
The analog switch AS is configured to be supplied via the F power amplifier 44 and the matching box 45.
The second pulse modulation is performed by operating the pulse signal generator 47 while synchronizing the pulse signals with the phase synchronization circuit 46.

【0020】[0020]

【発明の効果】以上説明したように本発明プラズマCV
D法及び装置には次のような利点がある。 原料ガスへの高周波印加に際してその電界強度の時
間変化率を変化させて電子温度を制御でき、また、高周
波印加に際して第1及び第2のパルス変調が重畳される
ので、成膜反応に寄与するラジカル種の生成を妨げず、
しかもダスト発生の原因となるラジカル種の発生を選択
的に抑制して、ダストの基板上成膜部への付着、混入を
抑制し、良質の膜を形成でき、成膜速度を向上させるこ
とができる。 ガス流量や、原料ガスプラズマ化のための投入パワ
ーを増加させても、ダストの発生率の増加を引き起こさ
ないので、それだけ成膜速度を向上させることができ
る。 装置の大幅な改造を必要としないため、装置コス
ト、成膜コストが安価に抑制される。 ダストの発生が抑制されるため、装置のメインテナ
ンス性の向上が得られる。
As described above, the plasma CV of the present invention is as described above.
The D method and apparatus have the following advantages. When a high frequency is applied to the source gas, the electron temperature can be controlled by changing the rate of change of the electric field strength over time, and since the first and second pulse modulations are superposed when a high frequency is applied, radicals that contribute to the film formation reaction. Does not interfere with seed production,
Moreover, by selectively suppressing the generation of radical species that cause dust generation, it is possible to suppress the adhesion and mixing of dust to the film formation portion on the substrate, form a good quality film, and improve the film formation rate. it can. Even if the gas flow rate or the input power for plasma conversion to the source gas is increased, the dust generation rate does not increase, so that the film formation rate can be improved accordingly. Since no major remodeling of the device is required, the device cost and the film forming cost can be suppressed at low cost. Since the generation of dust is suppressed, the maintainability of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法の実施に使用するプラズマC
VD装置の一例の概略断面図である。
FIG. 1 is a plasma C used for carrying out the method according to the invention.
It is a schematic sectional drawing of an example of a VD apparatus.

【図2】高周波電力のパルス変調の様子を示す図であ
る。
FIG. 2 is a diagram showing a state of pulse modulation of high frequency power.

【図3】高周波電源の他の例のブロック回路図である。FIG. 3 is a block circuit diagram of another example of a high frequency power supply.

【図4】高周波入力オン後の電子温度の時間的変化を示
すグラフである。
FIG. 4 is a graph showing a temporal change in electron temperature after a high frequency input is turned on.

【符号の説明】[Explanation of symbols]

1 成膜室 2 カソード電極 3 接地電極 4 高周波電源 41 高周波信号発生器 42 RFパワーアンプ 5 ヒータ 6 排気系 7 原料ガス供給装置 8 マッチングボックス 40 高周波電源 43 信号発生器 44 RFパワーアンプ 45 マッチングボックス 46 位相同期回路 47 パルス信号発生器 AS アナログスイッチ 1 Film Forming Chamber 2 Cathode Electrode 3 Grounding Electrode 4 High Frequency Power Supply 41 High Frequency Signal Generator 42 RF Power Amplifier 5 Heater 6 Exhaust System 7 Raw Material Gas Supply Device 8 Matching Box 40 High Frequency Power Supply 43 Signal Generator 44 RF Power Amplifier 45 Matching Box 46 Phase synchronization circuit 47 Pulse signal generator AS Analog switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桐村 浩哉 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroya Kirimura 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスをプラズマ化し、このプラズマ
に基板を曝して該基板上に薄膜を形成するプラズマCV
D法において、前記原料ガスのプラズマ化を、三角形波
高周波電力に1KHz以下の第1のパルス変調及び該変
調より短い周期をもつ第2のパルス変調を重畳させた高
周波電力の印加により行うことを特徴とするプラズマC
VD法。
1. A plasma CV for forming a thin film on a substrate by exposing a substrate to the plasma by converting a source gas into a plasma.
In the D method, plasma conversion of the source gas is performed by applying high frequency power obtained by superimposing a triangular pulsed high frequency power on a first pulse modulation of 1 KHz or less and a second pulse modulation having a shorter period than the modulation. Characteristic plasma C
VD method.
【請求項2】 前記第2のパルス変調におけるオンタイ
ムt1が0.5μsec<t1<100μsecの範囲
にあり、オフタイムt2が3μsec<t2<100μ
secの範囲にある請求項1記載のプラズマCVD法。
2. The on-time t1 in the second pulse modulation is in the range of 0.5 μsec <t1 <100 μsec, and the off-time t2 is 3 μsec <t2 <100 μ.
The plasma CVD method according to claim 1, which is in the range of sec.
【請求項3】 原料ガスをプラズマ化し、このプラズマ
に基板を曝して該基板上に薄膜を形成するプラズマCV
D装置において、前記原料ガスのプラズマ化のための高
周波電力印加手段が、三角形波高周波電力に1KHz以
下の第1のパルス変調及び該変調より短い周期をもつ第
2のパルス変調を重畳させた高周波電力を印加するもの
であることを特徴とするプラズマCVD装置。
3. A plasma CV for converting a source gas into plasma and exposing the substrate to the plasma to form a thin film on the substrate.
In the apparatus D, a high frequency power applying means for converting the raw material gas into plasma is a high frequency power obtained by superimposing a triangular pulsed high frequency power on a first pulse modulation of 1 KHz or less and a second pulse modulation having a shorter period than the modulation. A plasma CVD apparatus characterized in that electric power is applied.
JP3327369A 1991-12-11 1991-12-11 Plasma CVD method and apparatus Expired - Fee Related JP3019563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327369A JP3019563B2 (en) 1991-12-11 1991-12-11 Plasma CVD method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327369A JP3019563B2 (en) 1991-12-11 1991-12-11 Plasma CVD method and apparatus

Publications (2)

Publication Number Publication Date
JPH05160044A true JPH05160044A (en) 1993-06-25
JP3019563B2 JP3019563B2 (en) 2000-03-13

Family

ID=18198373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327369A Expired - Fee Related JP3019563B2 (en) 1991-12-11 1991-12-11 Plasma CVD method and apparatus

Country Status (1)

Country Link
JP (1) JP3019563B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437895A (en) * 1993-09-21 1995-08-01 Anelva Corporation Plasma CVD process for forming amorphous silicon thin film
KR100824171B1 (en) * 2005-11-01 2008-04-21 어플라이드 머티리얼스, 인코포레이티드 System and method for modulation of power and power related functions of pecvd discharge sources to achieve new film properties
KR100965844B1 (en) * 2007-11-27 2010-06-28 (주)유피아이 Reverse pulse rectification type power supply for plating and current control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437895A (en) * 1993-09-21 1995-08-01 Anelva Corporation Plasma CVD process for forming amorphous silicon thin film
KR100824171B1 (en) * 2005-11-01 2008-04-21 어플라이드 머티리얼스, 인코포레이티드 System and method for modulation of power and power related functions of pecvd discharge sources to achieve new film properties
KR100965844B1 (en) * 2007-11-27 2010-06-28 (주)유피아이 Reverse pulse rectification type power supply for plating and current control method thereof

Also Published As

Publication number Publication date
JP3019563B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US6675816B2 (en) Plasma CVD apparatus and dry cleaning method of the same
JP4013271B2 (en) Article surface treatment method and apparatus
JPH0551753A (en) Method and device for plasma cvd
JP2764575B2 (en) Radical control method
JP2646941B2 (en) Thin film formation method
JP2000068227A (en) Method for processing surface and device thereof
JPH06318552A (en) Plasma processing and its apparatus
JP3227949B2 (en) Plasma processing method and apparatus
JPH05160044A (en) Method and device for plasma cvd
JP2000328248A (en) Method for cleaning thin film forming apparatus and thin film forming apparatus
JPH0794130A (en) Control method and control device for radical
JPH0747823B2 (en) Plasma CVD method and apparatus
JPH05160045A (en) Plasma cvd method and device
JP3615919B2 (en) Plasma CVD equipment
JP3078707B2 (en) Cleaning method for low pressure CVD equipment
JP2536367B2 (en) Method for forming silicon oxide film
JPH05156452A (en) Plasma cvd method and device therefor
JPH07183236A (en) Method and device for plasma cvd
JP2748781B2 (en) Method of forming silicon film
JP2697501B2 (en) Thin film formation method
JPH06291061A (en) Method for forming amorphous silicon film
KR920002169B1 (en) Plasma discharge deposition process and a suitable apparatus therefor
JPH06291060A (en) Thin-film formation method
JPH05156453A (en) Plasma cvd method and device therefor
JPH0776780A (en) Plasma cvd method and its devide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees