JPH05159944A - High frequency booster transformer - Google Patents

High frequency booster transformer

Info

Publication number
JPH05159944A
JPH05159944A JP35006391A JP35006391A JPH05159944A JP H05159944 A JPH05159944 A JP H05159944A JP 35006391 A JP35006391 A JP 35006391A JP 35006391 A JP35006391 A JP 35006391A JP H05159944 A JPH05159944 A JP H05159944A
Authority
JP
Japan
Prior art keywords
winding
leg
secondary winding
turns
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35006391A
Other languages
Japanese (ja)
Other versions
JPH0831379B2 (en
Inventor
Shigeaki Watanabe
薫明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP35006391A priority Critical patent/JPH0831379B2/en
Priority to US07/983,682 priority patent/US5359313A/en
Priority to DE4241689A priority patent/DE4241689C2/en
Publication of JPH05159944A publication Critical patent/JPH05159944A/en
Publication of JPH0831379B2 publication Critical patent/JPH0831379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To enhance an efficiency by winding a primary winding and a secondary winding in multilayers at adjacent positions in a central axis direction of a central leg in such a manner that the widths of windings are substantially equal and a ratio of number of turns of one layer of the secondary winding to the total number of turns and a ratio of a radius of the central leg to the winding widths of both the windings become special values. CONSTITUTION:A high frequency booster transformer has a primary winding L1 and a secondary winding L2 wound around a central leg 13 of a substantially columnar shape of a core 10 having an E-shaped section. The windings L1 and L2 are so wound in multilayers at adjacent positions in a central axis C direction of the leg in such a manner that the winding widths in a direction perpendicular to the axis C of the leg 13 are substantially the same in size, number of turns per one layer of the winding L2 of a high voltage side is 1/10 or less of the total number of turns of the winding L2 and Rm/W falls in a range of 0.6-1.7, where Rm is a radius of the leg 13, and both the widths of the windings L1, L2 are W. Thus, the transformer having a small copper loss and a low profile can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶の背面を照明する
冷陰極管等を点灯するためのインバータに用いるのに好
適な小型で薄形の高周波昇圧トランスの構成に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact and thin high-frequency step-up transformer suitable for use in an inverter for lighting a cold cathode tube for illuminating the back surface of liquid crystal.

【0002】[0002]

【従来の技術】従来のインバータ用高周波昇圧トランス
は図1のように構成されている。複数の鍔1を有する中
空のボビン2には、低圧側一次巻線L1 と高圧側二次巻
線L2 が鍔1で分離して巻回されている。高電圧が発生
する二次巻線L2 は、さらに鍔1で複数段に分割して巻
かれることにより、重なり合う線間の電位差を低くして
絶縁破壊を防止するようにしてある。ボビン2の中空部
3には二つのE形コア4、5のそれぞれの中央脚6、7
が挿入され、コア4とコア5が互いに突き合わせて固定
されている。
2. Description of the Related Art A conventional high frequency boosting transformer for an inverter is constructed as shown in FIG. A low-voltage side primary winding L 1 and a high-voltage side secondary winding L 2 are separately wound by the collar 1 on a hollow bobbin 2 having a plurality of collars 1. The secondary winding L 2 in which a high voltage is generated is further divided into a plurality of stages by the collar 1 and wound so as to reduce the potential difference between the overlapping lines to prevent dielectric breakdown. In the hollow portion 3 of the bobbin 2, the central legs 6, 7 of the two E-shaped cores 4, 5 are respectively provided.
Is inserted, and the core 4 and the core 5 are fixed to each other.

【0003】[0003]

【発明が解決しようとする課題】この種の昇圧トランス
は、狭い隙間に取付けられるようにするために薄形に構
成する必要がある。このため、ボビン2の断面形状が偏
平な長方形となり、巻数が同じでも巻線長が長くなって
導体抵抗が増え効率が低下する欠点があった。従来の角
形トランスは薄形化の上で5mm程度が限界であり、こ
れ以上厚みを圧縮して幅を広げると銅損が著しく増加す
る問題があった。また、二次巻線L2 を分割巻きしなけ
ればならないので、巻線作業が複雑になり、全体の体積
が増加する欠点もあった。
A step-up transformer of this type needs to be thin so that it can be mounted in a narrow gap. For this reason, the bobbin 2 has a flat rectangular cross section, and even if the number of turns is the same, the winding length becomes long, the conductor resistance increases, and the efficiency decreases. The conventional rectangular transformer has a limit of about 5 mm in terms of thinning, and there is a problem that copper loss is significantly increased when the thickness is further compressed to widen the width. In addition, since the secondary winding L 2 has to be divided and wound, the winding work is complicated and the total volume is increased.

【0004】[0004]

【発明の目的】本発明は、銅損が小さく高効率で低背型
の高周波昇圧トランスを提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high efficiency, low profile, high frequency boosting transformer having a small copper loss.

【0005】[0005]

【課題を解決するための手段】本発明は、E形コアの略
円柱形の中央脚の周りに低圧側一次巻線と高圧側二次巻
線を巻回した高周波昇圧トランスにおいて、一次巻線と
二次巻線は、中央脚の中心軸方向に互いに隣合う位置に
それぞれ多層に巻回され、それぞれの巻幅がほぼ同一寸
法であるとともに、二次巻線の一層あたりの巻数が二次
巻線の全巻数の1/10以下であり、中央脚の半径をRm
とし、一次巻線と二次巻線の巻幅を共にWとしたとき、
Rm/Wが0.6〜1.7の範囲にある構成を特徴とす
る。
SUMMARY OF THE INVENTION The present invention is a high frequency boosting transformer in which a low voltage side primary winding and a high voltage side secondary winding are wound around a substantially cylindrical central leg of an E-shaped core. The secondary winding and the secondary winding are wound in multiple layers at positions adjacent to each other in the central axis direction of the central leg, and the winding widths of the secondary winding and the secondary winding are almost the same. It is 1/10 or less of the total number of turns of the winding, and the radius of the center leg is Rm
When both the winding widths of the primary winding and the secondary winding are W,
A feature is that the Rm / W is in the range of 0.6 to 1.7.

【0006】[0006]

【実施例】図2及び図3を参照して、本発明の一実施例
について説明する。断面がE形のコア10は、平板部11と
その両端に一体に形成された外脚12、及び平板部11の中
央に一体形成された円柱形の中央脚13を有している。20
は、図4に示すように3枚の鍔21と二つの巻溝24、25と
中空な巻軸22とを備えたプラスチック製のボビンであ
り、巻軸22の中空部23にはコア10の中央脚13が挿入され
ている。巻溝24には低圧側一次巻線L1 を、中央脚13の
中心軸C方向に隣合った巻溝25には高圧側二次巻線L2
を、それぞれ多層に巻き重ねてある。コア10の上には、
断面がI形の平板状コア30が突き合わせて固定されてい
る。図示は省略してあるが、コア30と中央脚13との間、
あるいはコア30と中央脚13及び外脚12の間に、プラスチ
ックフィルムを挿入したり隙間を設けたりすることによ
り、磁気飽和が起きにくい構造としてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. The core 10 having an E-shaped cross section has a flat plate portion 11, outer legs 12 integrally formed at both ends thereof, and a cylindrical central leg 13 integrally formed at the center of the flat plate portion 11. 20
Is a plastic bobbin provided with three flanges 21, two winding grooves 24 and 25, and a hollow winding shaft 22, as shown in FIG. The central leg 13 is inserted. The low-voltage side primary winding L 1 is placed in the winding groove 24, and the high-voltage side secondary winding L 2 is placed in the winding groove 25 adjacent in the central axis C direction of the central leg 13.
Are respectively wound in multiple layers. Above the core 10,
A flat core 30 having an I-shaped cross section is abutted and fixed. Although illustration is omitted, between the core 30 and the central leg 13,
Alternatively, by inserting a plastic film or providing a gap between the core 30 and the central leg 13 and the outer leg 12, magnetic saturation is less likely to occur.

【0007】図5に示すように、線材8を矢印方向に多
層に巻き重ねていくと、どの層も巻き始めの部分と次層
目の巻き終わりの部分が隣合うことになる。しかし、二
次巻線L2 の両端にかかる電圧が2kVある場合でも、
二次巻線L2 を例えば20層に巻回すれば、両者間にかか
る電圧は2000÷10であり200Vとなるので、鍔
で複数段に分割して巻いた従来例と同様、重なり合う線
材間の電位差が低くなり絶縁破壊が防止される。インバ
ータ用の高周波昇圧トランスの中には二次巻線L2 の電
圧が小さいもので1000V以下のものもあるが、絶縁
破壊を確実に防止するためには、二次巻線L2 の1層当
たりの巻数を二次巻線L2 の全巻数の1/10以下とする
のが望ましい。
As shown in FIG. 5, when the wire rod 8 is wound in multiple layers in the direction of the arrow, in each layer, the winding start portion and the winding end portion of the next layer are adjacent to each other. However, even if the voltage across the secondary winding L 2 is 2 kV,
For example, if the secondary winding L 2 is wound in 20 layers, the voltage applied between the two is 2000/10, which is 200 V. Therefore, as in the conventional example in which the secondary winding L 2 is divided into a plurality of stages with a collar, the overlapping wire materials are overlapped. The potential difference between the two becomes low and dielectric breakdown is prevented. Some high frequency boosting transformers for inverters have a small voltage of the secondary winding L 2 of 1,000 V or less, but in order to reliably prevent dielectric breakdown, one layer of the secondary winding L 2 is used. It is desirable that the number of turns per hit is 1/10 or less of the total number of turns of the secondary winding L 2 .

【0008】次に、インダクタンス素子において所要の
インダクタンスL0と飽和電流I0 が得られる条件を考
えてみる。今、コイルの巻数をN、磁気抵抗をRとする
と、インダクタンスはN2 /Rで与えられるから、 R≦N2 /L0 ─────────(1) また、均一な断面積を有する磁気回路の断面積をS、飽
和磁束密度をBmとすると、飽和電流はBmSR/Nで
与えられるから R≧I0 N/BmS─────────(2) すなわち、インダクタンスL0 の点からは磁気抵抗Rが
小さいことが必要であり、飽和電流I0 の点では磁気抵
抗Rが大きいことが必要となる。
Next, let us consider conditions under which the required inductance L 0 and saturation current I 0 can be obtained in the inductance element. Now, assuming that the number of turns of the coil is N and the magnetic resistance is R, the inductance is given by N 2 / R, so R ≦ N 2 / L 0 ────────── (1) In addition, Supposing that the cross-sectional area of the magnetic circuit having an area is S and the saturation magnetic flux density is Bm, the saturation current is given by BmSR / N, so R ≧ I 0 N / BmS ────────── (2) That is, The magnetic resistance R needs to be small in terms of the inductance L 0 , and the magnetic resistance R needs to be large in terms of the saturation current I 0 .

【0009】横軸に巻数N、縦軸に磁気抵抗Rをとり、
(1)式と(2)式の関係をプロットすると図6のよう
になる。図において、斜線を施した領域が(1)式と
(2)式の不等式を満たす範囲を示している。図6に示
すように、要求特性を満たす最小の巻数はN0 、最小の
磁気抵抗はR0 となる。平均の磁路長をl、コアの透磁
率をμとすると、磁気抵抗Rは一般にR=l/μSで与
えられるから、断面積Sを一定とすれば、磁気抵抗Rは
磁性体の体積に比例すると考えられる。したがって、N
0 、R0 は要求特性を満たし、しかもインダクタンス素
子の体積を最小とする解と考えられる。すなわち N0 =L0 0 /BmS ─────(3) R0 =L0 0 2 /(BmS)2 ───(4) が巻数と磁気抵抗の最適解である。
The number of turns N is plotted on the horizontal axis and the magnetic resistance R is plotted on the vertical axis.
FIG. 6 is a plot of the relationship between the equations (1) and (2). In the figure, the shaded area indicates the range that satisfies the inequalities of the equations (1) and (2). As shown in FIG. 6, the minimum number of turns that satisfies the required characteristics is N 0 , and the minimum magnetic resistance is R 0 . When the average magnetic path length is l and the magnetic permeability of the core is μ, the magnetic resistance R is generally given by R = 1 / μS. Therefore, if the cross-sectional area S is constant, the magnetic resistance R corresponds to the volume of the magnetic body. It is considered to be proportional. Therefore, N
It is considered that 0 and R 0 are solutions that satisfy the required characteristics and minimize the volume of the inductance element. That is, N 0 = L 0 I 0 / BmS ────── (3) R 0 = L 0 I 0 2 / (BmS) 2 ─── (4) is the optimum solution of the number of turns and the magnetic resistance.

【0010】次に、図1のような角形トランスと図3の
ような丸形トランスについて、両トランスの仕様を以下
のように定め、それぞれの特性の比較を行ってみる。 一次インダクタンス 200μH以上 一次巻線飽和電流 1A以上 一次、二次巻線比 1:50 一次巻線直径 0.25mmΦ 二次巻線直径 0.07mmΦ 巻線の絶縁耐圧 100VP-P 以下
Next, regarding the rectangular transformer as shown in FIG. 1 and the round transformer as shown in FIG. 3, the specifications of both transformers are defined as follows, and the respective characteristics are compared. Primary inductance 200μH or more Primary winding saturation current 1A or more Primary / secondary winding ratio 1:50 Primary winding diameter 0.25mmΦ Secondary winding diameter 0.07mmΦ Winding insulation voltage 100V PP or less

【0011】磁性体の比透磁率μr を3000、飽和磁
束密度Bmを0.3T、磁気回路の最小断面積Sを15
mm2 として(3)、(4)式よりN0 、R0 を求める
と N0 =L0 0 /BmS =200×10-6×1/(0.3×15×10-6) =45(ターン) R0 =L0 0 2 /(BmS)2 =200×10-6×12 /(0.3×15×10-62 =9.88(AT/Wb) したがって、一次巻線は45ターンになり、巻線比が
1:50であるから、二次巻線は2250ターンとな
る。以上の条件で角形と丸形のトランスを設計したとこ
ろ、それぞれ次のような結果となった。
The relative permeability μ r of the magnetic material is 3000, the saturation magnetic flux density Bm is 0.3 T, and the minimum cross-sectional area S of the magnetic circuit is 15.
When N 0 and R 0 are calculated from the equations (3) and (4) as mm 2 , N 0 = L 0 I 0 / BmS = 200 × 10 -6 × 1 / (0.3 × 15 × 10 -6 ) = 45 (turns) R 0 = L 0 I 0 2 / (BmS) 2 = 200 × 10 −6 × 1 2 /(0.3×15×10 −6 ) 2 = 9.88 (AT / Wb) Therefore, Since the primary winding has 45 turns and the winding ratio is 1:50, the secondary winding has 2250 turns. When the rectangular and round transformers were designed under the above conditions, the following results were obtained.

【0012】角形トランスと丸形トランスの比較Comparison of square transformer and round transformer

【表1】 [Table 1]

【0013】表1から明らかなように、同じ磁性材料で
同一の性能を実現する場合、銅損及び体積の点で丸形ト
ランス形状が有利である。特に、インバータトランスと
して使用する場合は一次巻線に数10kHzの大振幅共
振電流が流れるため一次巻線の銅損低減はトランスの変
換効率の改善に大きく寄与できる要因となる。
As is clear from Table 1, when the same performance is realized with the same magnetic material, the round transformer shape is advantageous in terms of copper loss and volume. In particular, when used as an inverter transformer, a large amplitude resonance current of several tens of kHz flows in the primary winding, and therefore reduction of copper loss in the primary winding is a factor that can greatly contribute to improvement in conversion efficiency of the transformer.

【0014】図7は、コア10とコア30、及び一次巻線L
1 、二次巻線L2 のみの側面断面を示す図である。図3
のようなトランスにおいて、中央脚13の中心軸Cに直交
する平面上における中央脚13と一次巻線L1 及び二次巻
線L2 の断面積の和が最小になる条件、すなわち図7に
示す中央脚13の半径Rmと一次巻線及び二次巻線の巻幅
Wの和が最小になる条件を、次に求めてみる。今、中央
脚13の半径をRm、一次巻線と二次巻線の巻数比を1:
n、コア10の平板部11とコア30の厚さをt、一次巻線L
1 の高さ寸法をh1、二次巻線L2 の高さ寸法をh2
し、一次巻線と二次巻線の線材の直径をそれぞれd1
2 とすると、一次巻線L1 の1層当たりの巻数はh1
/d1 、二次巻線L2 の1層当たりの巻数はh2 /d2
となる。したがって、それぞれの巻き重ねられる層数は
一次側がN0 1 /h1 、二次側がnN0 2 /h2
なるが、二次巻線L2 と一次巻線L1 の高さh2 、h1
の比を h2 /h1 =nd2 2 /d1 2 ────(5) に設定することにより、一次巻線L1 及び二次巻線L2
の巻線幅は等しくなる。この巻線幅Wを一次巻線L1
諸元で表せば W=N0 1 2 /h1 ───────(6) となる。
FIG. 7 shows a core 10 and a core 30, and a primary winding L.
1 is a diagram showing a side cross section of only a primary winding L 2 ; Figure 3
In such a transformer, the condition that the sum of the sectional areas of the central leg 13 and the primary winding L 1 and the secondary winding L 2 on the plane orthogonal to the central axis C of the central leg 13 is minimized, that is, in FIG. Next, the condition for minimizing the sum of the radius Rm of the center leg 13 and the winding width W of the primary winding and the secondary winding will be obtained. Now, the radius of the central leg 13 is Rm, and the turn ratio between the primary winding and the secondary winding is 1:
n, the thickness of the flat plate portion 11 of the core 10 and the core 30 is t, and the primary winding L
1 of the height h 1, the secondary winding L 2 of the height and h 2, the primary winding and each d 1 diameter of the wire of the secondary winding,
Assuming d 2 , the number of turns per layer of the primary winding L 1 is h 1
/ D 1 and the number of turns per layer of the secondary winding L 2 is h 2 / d 2
Becomes Therefore, the number of layers to be wound on each side is N 0 d 1 / h 1 on the primary side and nN 0 d 2 / h 2 on the secondary side, but the height h of the secondary winding L 2 and the primary winding L 1 is 2 , h 1
By setting the ratio of h 2 / h 1 = nd 2 2 / d 1 2 ───── (5), the primary winding L 1 and the secondary winding L 2
The winding widths of are equal. If this winding width W is expressed by the specifications of the primary winding L 1 , then W = N 0 d 1 2 / h 1 ───────── (6)

【0015】コアの中央脚13の側面を延長した面が平板
部11と交差した面、すなわち直径が中央脚13と同一で高
さが平板部11の厚みtと同じ円筒状の部分を、以下、繋
ぎ部と呼ぶことにする。小型で低背型のトランスは、磁
気回路の最小断面積Sがコアのこの繋ぎ部で制限される
のが一般的である。この場合コアの繋ぎ部の面積が中央
脚13の断面積以下となることから 2πRmt≦πRm2 ∴ Rm≧2t ─────────(7) となり、このときの繋ぎ部の面積Sは S=2πRmt ─────────(8) となる。
The surface of the core extending from the side surface of the central leg 13 intersects with the flat plate portion 11, that is, a cylindrical portion having the same diameter as the central leg 13 and the same height as the thickness t of the flat plate portion 11, , I will call it a connecting part. In small and low profile transformers, the minimum cross-sectional area S of the magnetic circuit is generally limited by this joint of the core. In this case, since the area of the connecting portion of the core is equal to or smaller than the cross-sectional area of the center leg 13, 2πRmt ≦ πRm 2 ∴Rm ≧ 2t ──────────────────────────────────── (7) Is S = 2πRmt ────────── (8).

【0016】中央脚13と巻線部分を含めた総断面積ΣS
は、一次巻線と二次巻線の間隔を無視すれば ΣS=π(Rm+W)2 ───────(9) であるから、これを最小にするには、(9)式の括弧内
をPとおいて P=Rm+W ───────────(10) が最小となればよい。これに(6)式のWを代入すると P=Rm+d1 2 /h1 ×N0 したがって、(3)式より P=Rm+d1 2 /h1 ×(L0 0 /BmS) (8)式のSを代入して P=Rm+(d1 2 0 0 /2πBmh1 t)×1/Rm ここでK=d1 2 0 0 /2πBmh1 tとおくと P=Rm+K/Rm ────────(11) Pを最小にする中央脚13の半径Rmの値Rm0 はdP/
dRm=0より dP/dRm=1−K/Rm2 ────(12) したがって Rm0 =K1/2 ──────────(13) となる。(11)式と(12)式からPの最小値は P=K1/2 +K/K1/2 =2K1/2 ──(14) すなわち、Rm=K1/2 、 W=K1/2 のとき、つま
りRm=WのときPが最小となる。
Total cross-sectional area ΣS including the central leg 13 and the winding portion
Is ΣS = π (Rm + W) 2 ─────────────────────────────────────────────────────────── (9) that the minimum of this be given by equation (9). Put P in parentheses, and P = Rm + W ─────────── (10) should be the minimum. Substituting W in equation (6) into this equation, P = Rm + d 1 2 / h 1 × N 0 Therefore, from equation (3), P = Rm + d 1 2 / h 1 × (L 0 I 0 / BmS) Equation (8) Substituting S for P = Rm + (d 1 2 L 0 I 0 / 2πBmh 1 t) × 1 / Rm where K = d 1 2 L 0 I 0 / 2πBmh 1 t, P = Rm + K / Rm ─ (11) The value Rm 0 of the radius Rm of the central leg 13 that minimizes P is dP /
From dRm = 0, dP / dRm = 1-K / Rm 2 (12) Therefore, Rm 0 = K 1/2 ──────────── (13). From equations (11) and (12), the minimum value of P is P = K 1/2 + K / K 1/2 = 2K 1/2 ── (14) That is, Rm = K 1/2 , W = K 1 When / 2 , that is, when Rm = W, P becomes the minimum.

【0017】今、W=K1/2 を固定しRmをこれのX倍
とすると Rm=X・K1/2 これを(11)式に代入して P=X・K1/2 +K/X・K1/2 =X・K1/2 +K1/2 /X ∴ P=K1/2 (X+1/X)─────(15) 図8は、このPとXの関係をプロットした図である。P
はX=1のとき最小となり、Xに対しX+1/Xのカー
ブで増加する。Pの値の実用的な範囲として、その最小
値からプラス15パーセントまでをとると、このときの
Xの値、すなわちRmとWの比は図に示すように0.6
〜1.7の範囲となる。
Now, assuming that W = K 1/2 is fixed and Rm is X times this, Rm = X · K 1/2 Substituting this into the equation (11), P = X · K 1/2 + K / X · K 1/2 = X · K 1/2 + K 1/2 / X ∴ P = K 1/2 (X + 1 / X) ────── (15) Figure 8 shows the relationship between P and X. It is the plotted figure. P
Becomes minimum when X = 1, and increases with the curve of X + 1 / X with respect to X. As a practical range of the value of P, from the minimum value to plus 15%, the value of X at this time, that is, the ratio of Rm and W is 0.6 as shown in the figure.
The range is from to 1.7.

【0018】[0018]

【発明の効果】本発明によれば、低背形で、しかも底面
積の小さい高周波昇圧トランスを構成でき、巻線線材が
短縮されることにより銅損も減少する。また、二次巻線
を複数段に分割巻きしなくてもよいので、巻線工程が簡
略化され生産性が向上する効果もある。
According to the present invention, a high-frequency step-up transformer having a low profile and a small bottom area can be constructed, and copper wire loss is reduced by shortening the winding wire material. Further, since it is not necessary to divide the secondary winding into a plurality of stages, there is an effect that the winding process is simplified and the productivity is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のトランスの分解斜視図FIG. 1 is an exploded perspective view of a conventional transformer

【図2】 本発明のトランスの一実施例を示す正面断面
FIG. 2 is a front sectional view showing an embodiment of the transformer of the present invention.

【図3】 同トランス要部の一部切欠斜視図FIG. 3 is a partially cutaway perspective view of the transformer main part.

【図4】 同トランスにおけるボビンの正面断面図FIG. 4 is a front sectional view of a bobbin in the transformer.

【図5】 多層に巻いた線材を断面にした状態の説明図FIG. 5 is an explanatory view of a cross-section of a wire wound in multiple layers.

【図6】 巻数と磁気抵抗との関係を示す図FIG. 6 is a diagram showing the relationship between the number of turns and the magnetic resistance.

【図7】 コアと巻線の寸法関係を示すための側面断面
FIG. 7 is a side sectional view showing the dimensional relationship between the core and the winding.

【図8】 XとPの関係を示す図FIG. 8 is a diagram showing a relationship between X and P.

【符号の説明】[Explanation of symbols]

10 コア 13 中央脚 L1 一次巻線 L2 二次巻線10 core 13 center leg L 1 primary winding L 2 secondary winding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断面がE形のコアの略円柱形の中央脚の
周りに低圧側一次巻線と高圧側二次巻線を巻回した高周
波昇圧トランスにおいて、一次巻線と二次巻線は、該中
央脚の中心軸方向に互いに隣合う位置にそれぞれ多層に
巻回され、中央脚の中心軸に直交する方向のそれぞれの
巻幅がほぼ同一寸法であるとともに、二次巻線の一層あ
たりの巻数が二次巻線の全巻数の1/10以下であり、中
央脚の半径をRmとし、一次巻線と二次巻線の該巻幅を
共にWとしたとき、Rm/Wが0.6〜1.7の範囲に
あることを特徴とする高周波昇圧トランス。
1. A high-frequency step-up transformer in which a low-voltage side primary winding and a high-voltage side secondary winding are wound around a substantially cylindrical central leg of a core having an E-shaped cross section. Is wound in multiple layers at positions adjacent to each other in the central axis direction of the central leg, and the winding widths in the direction orthogonal to the central axis of the central leg are substantially the same, and When the number of turns per unit is 1/10 or less of the total number of turns of the secondary winding, the radius of the central leg is Rm, and the winding widths of the primary winding and the secondary winding are both W, Rm / W is A high-frequency boosting transformer characterized by being in the range of 0.6 to 1.7.
JP35006391A 1991-12-10 1991-12-10 High frequency boost transformer Expired - Fee Related JPH0831379B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35006391A JPH0831379B2 (en) 1991-12-10 1991-12-10 High frequency boost transformer
US07/983,682 US5359313A (en) 1991-12-10 1992-12-01 Step-up transformer
DE4241689A DE4241689C2 (en) 1991-12-10 1992-12-10 Step-up (high voltage) transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35006391A JPH0831379B2 (en) 1991-12-10 1991-12-10 High frequency boost transformer

Publications (2)

Publication Number Publication Date
JPH05159944A true JPH05159944A (en) 1993-06-25
JPH0831379B2 JPH0831379B2 (en) 1996-03-27

Family

ID=18407981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35006391A Expired - Fee Related JPH0831379B2 (en) 1991-12-10 1991-12-10 High frequency boost transformer

Country Status (1)

Country Link
JP (1) JPH0831379B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847518A (en) * 1996-07-08 1998-12-08 Hitachi Ferrite Electronics, Ltd. High voltage transformer with secondary coil windings on opposing bobbins
EP1278403A1 (en) * 1998-05-08 2003-01-22 Denso Corporation Starter transformer for discharge lamp
KR101388891B1 (en) * 2011-12-28 2014-04-24 삼성전기주식회사 Transformer and power module using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847518A (en) * 1996-07-08 1998-12-08 Hitachi Ferrite Electronics, Ltd. High voltage transformer with secondary coil windings on opposing bobbins
EP1278403A1 (en) * 1998-05-08 2003-01-22 Denso Corporation Starter transformer for discharge lamp
KR101388891B1 (en) * 2011-12-28 2014-04-24 삼성전기주식회사 Transformer and power module using the same

Also Published As

Publication number Publication date
JPH0831379B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US5359313A (en) Step-up transformer
US5847518A (en) High voltage transformer with secondary coil windings on opposing bobbins
JP2001230119A (en) Laminated inductor
US5414401A (en) High-frequency, low-profile inductor
JPH0855738A (en) Transformer
US20120299681A1 (en) Flat band winding for an inductor core
JPH06112058A (en) Step-up transformer
JPH08316054A (en) Thin transformer
US20030016112A1 (en) Inductive component made with circular development planar windings
JPH04283909A (en) High-frequecy high leakage reactance transformer
JPH05283248A (en) High frequency booster transformer
JPH05159944A (en) High frequency booster transformer
JPH05304033A (en) High-frequency step-up transformer
JPH05159945A (en) High frequency booster transformer
JPS5944812A (en) Core composing members for leakage transformer
JP2000269039A (en) Low-height type surface mounting coil component
JP2001068364A (en) Toroidal coil and its manufacturing method
JP2628524B2 (en) Step-up transformer
JP2525756B2 (en) Step-up transformer
JP2737067B2 (en) High frequency step-up transformer
JPH0626222U (en) Thin coil
JP2003133137A (en) Wire-wound coil
JPH0541534Y2 (en)
JPH06325945A (en) Common mode choke coil and noise filter
JP2002064021A (en) Planar transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090327

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090327

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100327

LAPS Cancellation because of no payment of annual fees