JPH05159880A - Electroluminescence element - Google Patents

Electroluminescence element

Info

Publication number
JPH05159880A
JPH05159880A JP3324954A JP32495491A JPH05159880A JP H05159880 A JPH05159880 A JP H05159880A JP 3324954 A JP3324954 A JP 3324954A JP 32495491 A JP32495491 A JP 32495491A JP H05159880 A JPH05159880 A JP H05159880A
Authority
JP
Japan
Prior art keywords
current limiting
fine powder
limiting layer
conductive fine
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3324954A
Other languages
Japanese (ja)
Inventor
Tetsuro Yoshii
哲朗 吉井
Yuichi Aoki
裕一 青木
Toshiaki Anzaki
利明 安崎
Shunji Wada
俊司 和田
Katsuhisa Enjoji
勝久 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3324954A priority Critical patent/JPH05159880A/en
Publication of JPH05159880A publication Critical patent/JPH05159880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To make any dielectric breakdown in an element hard to occur by farming conductive fine powder into the extent of impalpable powder of ferric oxide or the main ingredient, and reducing a temperature coefficient of electric resistivity. CONSTITUTION:In this electroluminesence element, plural pieces of striped electrodes 2 installed on top of a glass substrate 1 in a direction parallel with a paper face are installed being electrically insulated. In action, a luminescent layer 3 is installed almost over the whole surface of the glass substrate 1 so as to cover a part of the transparent electrodes 2 and a part of the exposed part of the glass substrate 1. Then plural striped current limiting layers 5 and back plates 5 are installed in a direction vertical to the paper face, and conductive fine powder is formed with impalpable powder of ferric oxide chiefly. Since this current limiting layer 4 is small in a temperature coefficient of electric resistivity, if the electro-luminescent element is driven for hours, the electrical resistivity will in no case be lower so largely even if a temperature of the element goes up. With this constitution, a large current is checked to flow into the element, and any possible dielectric breakdown in the element is thus prevented from occurring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、キャラクターやグラフ
ィックスなどの表示に用いるエレクトロルミネッセンス
(以下ELと略する)素子に関し、さらに詳しくは、輝
度ムラがなくブレークダウンが生じにくい薄膜ー粉末混
成型のEL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescence (hereinafter abbreviated as EL) element used for displaying characters, graphics, etc., and more specifically, it is a thin film-powder mixed molding that has no uneven brightness and is less likely to cause breakdown. Related to the EL element.

【0002】[0002]

【従来の技術】EL素子を応用したELディスプレイ
は、高い表示品質のキャラクターやグラフィックスなど
を表示するディスプレイとして、近年ポータブルタイプ
のコンピュータの端末機やワークステイションの端末機
などに急速に普及しつつある。
2. Description of the Related Art An EL display using an EL element is rapidly spreading in portable computer terminals and workstation terminals in recent years as a display for displaying characters and graphics with high display quality. is there.

【0003】キャラクターやグラフィックスなどが表示
できるEL素子には、薄膜の発光層を電気絶縁層ではさ
み、さらにその電気絶縁層の両外側に電極を設けた構造
の交流薄膜型EL素子や、硫化亜鉛の粉末からなる発光
層とそれに隣接して設けられた、銅(Cu)を表面にコ
ートした硫化亜鉛の粉末からなる電流制限層とを電極で
挟んだ構造の直流粉末型EL素子の2つのタイプが知ら
れ実用化されている。しかし、最近優れた表示品質を低
コストで達成できるコストパーフォーマンスの高いEL
素子として、薄膜型の発光層と粉末分散型の電流制限層
とを組み合わせた薄膜ー粉末混成型EL素子(以下、混
成型EL素子と呼ぶ)が、英国特許公報2176341
A号に開示されている。
For an EL element capable of displaying characters, graphics, etc., an AC thin film type EL element having a structure in which a thin light emitting layer is sandwiched between electric insulating layers, and electrodes are provided on both outer sides of the electric insulating layer, and sulfurization Two DC powder type EL devices having a structure in which a light emitting layer made of zinc powder and a current limiting layer made of zinc sulfide powder coated with copper (Cu) on the surface and provided adjacent to the light emitting layer are sandwiched between electrodes. The type is known and put to practical use. However, recently, EL with high cost performance that can achieve excellent display quality at low cost
As a device, there is a thin film-powder mixed molding EL device (hereinafter referred to as a mixed molding EL device) in which a thin film type light emitting layer and a powder dispersion type current limiting layer are combined, and British Patent Publication 2176341.
No. A is disclosed.

【0004】上記の従来技術によれば、電流制限層とし
ては二酸化マンガンの微粒子を有機樹脂で固めたものを
用い、前記電流制限層の電気抵抗率を1×104〜5×
105Ωcmとしている。
According to the above-mentioned prior art, manganese dioxide fine particles hardened with an organic resin are used as the current limiting layer, and the electric resistivity of the current limiting layer is 1 × 10 4 to 5 ×.
It is set to 10 5 Ωcm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の混成型EL素子においては、電流制限層の電気抵抗
率は負の温度係数を有しているので、EL素子の駆動に
より素子の温度が上昇すると電流制限層の電気抵抗率が
低下し、これにより過大電流が流れて電流制限層にブレ
ークダウンが生じ易くなるという欠点があった。この現
象は、EL素子の寿命を短くするというEL素子にとっ
て重大な欠点となっていた。また、表示に際しては輝度
ムラが生じ易くなるという原因になっていた。本発明
は、上記の従来技術が有する問題点を解決するためにな
されてもので、電流制限層のブレークダウンが生じにく
く、輝度ムラが生じにくいEL素子を提供するにある。
However, in the above-mentioned conventional hybrid EL device, since the electric resistivity of the current limiting layer has a negative temperature coefficient, the temperature of the device is increased by driving the EL device. Then, the electrical resistivity of the current limiting layer is lowered, which causes an excessive current to flow, and thus the current limiting layer is likely to be broken down. This phenomenon has been a serious drawback for EL devices, which shortens the life of the EL device. In addition, when displaying, uneven brightness is likely to occur. The present invention has been made in order to solve the problems of the above-described prior art, and therefore provides an EL element in which breakdown of the current limiting layer is unlikely to occur and uneven brightness is less likely to occur.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題点を
解決するために電流制限層に用いる微粉末材料を研究す
る過程でなされたもので、透明な絶縁性基板上に透明電
極、発光層、導電性微粉末を有機樹脂で固めてなる電流
制限層および背面電極を順次積層したエレクトロルミネ
ッセンス素子において、前記導電性微粉末を酸化第2鉄
を主成分としたことを特徴とするエレクトロルミネッセ
ンス素子である。
The present invention has been made in the process of researching a fine powder material used for a current limiting layer in order to solve the above problems. Layer, a current limiting layer formed by solidifying conductive fine powder with an organic resin, and a back electrode in this order, wherein the conductive fine powder is mainly composed of ferric oxide. It is an element.

【0007】本発明のEL素子の電流制限層は、EL素
子の発光により素子温度が上昇しても、電流制限層の電
気抵抗率の変化率は小さい値に抑制される。
In the current limiting layer of the EL element of the present invention, the rate of change of the electric resistivity of the current limiting layer is suppressed to a small value even if the element temperature rises due to the light emission of the EL element.

【0008】本発明にかかる電流制限層に用いられる導
電性微粉末は、酸化第2鉄を主成分とする。用いる微粉
末が酸化第2鉄のみの場合は、電流制限層の電気抵抗率
は負の小さい温度係数を有するものになる。また、用い
る微粉末としては酸化第2鉄に小量成分の他の金属酸化
物を混入してもよい。小量成分として用いられる他の金
属酸化物としては、酸化第1鉄(FeO)、酸化第1マ
ンガン(MnO)、酸化第1コバルト(CoO)、酸化
ニッケル(NiO)、酸化第1銅(CuO)、酸化亜鉛
(ZnO)、酸化鉛(PbO)、酸化ストロンチウム
(Sr0)などが例示できる。これらの金属酸化物は、
電流制限層の温度係数を大きくしない範囲に含有させる
ことができる。本発明においては、307〜400Kの
温度範囲の電気抵抗率の変化が40%以下となる範囲内
で含められる。また、307〜400Kの温度範囲の電
気抵抗率の変化を約20%以下の小さい値とするには、
小量成分として混入する金属酸化物の含有量は20%未
満とするのが好ましい。
The conductive fine powder used in the current limiting layer according to the present invention contains ferric oxide as a main component. When the fine powder used is only ferric oxide, the electric resistivity of the current limiting layer has a small negative temperature coefficient. Further, as the fine powder used, ferric oxide may be mixed with a small amount of another metal oxide. Other metal oxides used as a minor component include ferrous oxide (FeO), ferrous manganese oxide (MnO), cobaltous oxide (CoO), nickel oxide (NiO), cuprous oxide (CuO). ), Zinc oxide (ZnO), lead oxide (PbO), strontium oxide (Sr0), and the like. These metal oxides are
The current limiting layer may be contained in a range that does not increase the temperature coefficient. In the present invention, the change in the electrical resistivity in the temperature range of 307 to 400K is included within the range of 40% or less. Further, in order to make the change in the electrical resistivity in the temperature range of 307 to 400 K to be a small value of about 20% or less,
The content of the metal oxide mixed as a small amount component is preferably less than 20%.

【0009】酸化第1マンガンと酸化第2鉄の2種の微
粉末を用いる場合は、これらの金属酸化物を混合、粉
砕、さらに高温に加熱して微粉末としたものを用いるこ
とができる。
When using two kinds of fine powders of ferrous manganese oxide and ferric oxide, it is possible to use fine powders obtained by mixing and pulverizing these metal oxides and heating them to a high temperature.

【0010】本発明に用いられる電流制限層の微粉末粒
子は電子伝導体であって、有機樹脂中に均一に分散され
て電気抵抗率が1×104〜5×105Ωcmの電流制限
層とされる。電流制限層の電気抵抗率が1×104Ωc
mより小さいと、発光層の占める抵抗値が素子全体の抵
抗値を決めるようになるので好ましくない。また電気抵
抗率が5×105Ωcmより大きいと、電流制限層での
電圧降下が大きくなりEL素子を駆動させるときの駆動
電圧を大きくしなければならなくなるので好ましくな
い。電流制限層の電気抵抗率を上記範囲とし、その厚み
を5〜30μmとするのが好ましい。このとき、電流制
限層はその膜厚方向に対して1平方センチメートル当た
り50〜200Ωとなる。また、電流制限層に用いる導
電性微粉末の粒径は1μmを越えないことが、発光ムラ
を抑制する上で好ましく、さらにEL素子の表示のコン
トラストを大きくするために酸化第2鉄や酸化第1チタ
ニウムなどの黒色または暗青色の金属酸化物を用いるの
が好ましい。
The fine powder particles of the current limiting layer used in the present invention are electron conductors, which are uniformly dispersed in the organic resin and have an electric resistivity of 1 × 10 4 to 5 × 10 5 Ωcm. It is said that. The electric resistivity of the current limiting layer is 1 × 10 4 Ωc
If it is smaller than m, the resistance value occupied by the light emitting layer determines the resistance value of the entire device, which is not preferable. Further, if the electric resistivity is larger than 5 × 10 5 Ωcm, the voltage drop in the current limiting layer becomes large and the driving voltage for driving the EL element must be increased, which is not preferable. The electrical resistivity of the current limiting layer is preferably in the above range and the thickness thereof is preferably 5 to 30 μm. At this time, the current limiting layer has a thickness of 50 to 200 Ω / cm 2 in the film thickness direction. In addition, it is preferable that the particle size of the conductive fine powder used for the current limiting layer does not exceed 1 μm in order to suppress unevenness in light emission. Further, in order to increase the display contrast of the EL element, ferric oxide or ferric oxide is used. It is preferable to use a black or dark blue metal oxide such as 1 Titanium.

【0011】本発明のEL素子の電流制限層の導電性微
粉末のバインダーとして用いられる有機樹脂は、とくに
限定されるものでないがビニル系樹脂、ポリエステル系
樹脂、ポリアミド系樹脂、セルロース樹脂、ポリウレタ
ン系樹脂、尿素系樹脂、エポキシ系樹脂、メラミン系樹
脂、シリコーン系樹脂などが挙げられるが、とりわけ水
酸基、カルボキシル基、スルホニル基、ニトロ基等の極
性基やエポキシ基、イソシアヌル基、シラノール基等の
反応基を有するものが好適に用いられる。
The organic resin used as the binder of the conductive fine powder of the current limiting layer of the EL device of the present invention is not particularly limited, but vinyl-based resin, polyester-based resin, polyamide-based resin, cellulose resin, polyurethane-based resin. Examples include resins, urea-based resins, epoxy-based resins, melamine-based resins, silicone-based resins, etc., but especially reactions of polar groups such as hydroxyl groups, carboxyl groups, sulfonyl groups, nitro groups, epoxy groups, isocyanuric groups, silanol groups, etc. Those having a group are preferably used.

【0012】本発明の透明絶縁性基板としては、ナトリ
ウム成分をほとんど含まない無アルカリ組成のガラス
板、シリカやアルミナ成分を含む体積膨張係数が小さい
低膨張ガラス板、石英ガラス板、ソーダ石灰ガラス板に
シリカ膜をコーテイングしたものなどが用いられる。
As the transparent insulating substrate of the present invention, a glass plate having an alkali-free composition containing almost no sodium component, a low expansion glass plate having a small volume expansion coefficient containing silica and alumina components, a quartz glass plate, and a soda-lime glass plate. The one coated with a silica film is used.

【0013】本発明の透明電極としては、錫をドープし
た酸化インジウム(ITO)膜や酸化錫を所定の形状に
フオトリソグラフイなどの手法によりパターニングした
ものが用いられる。
As the transparent electrode of the present invention, a tin-doped indium oxide (ITO) film or tin oxide patterned into a predetermined shape by a method such as photolithography is used.

【0014】本発明にかかる発光層としては、硫化亜鉛
(ZnS)、セレン化亜鉛(ZnSe)、硫化カルシウ
ム(CaS)、硫化ストロンチウム(SrS)などの2
ー6族化合物にマンガン(Mn)、銅(Cu)などの遷
移金属やテルビウム(Tb)、サマリウム(Sm)、ジ
スプロシウム(Dy)、ユウロピウム(Eu)、セリウ
ム(Ce)などの希土類元素、あるいはそれらのフッ化
物、塩化物などを発光中心としてドープしたものが用い
られる。
The light emitting layer according to the present invention includes zinc sulfide (ZnS), zinc selenide (ZnSe), calcium sulfide (CaS), strontium sulfide (SrS) and the like.
-6 Group compounds, transition metals such as manganese (Mn) and copper (Cu), and rare earth elements such as terbium (Tb), samarium (Sm), dysprosium (Dy), europium (Eu), and cerium (Ce), or the like. What is doped with the fluoride, chloride or the like as an emission center is used.

【0015】[0015]

【作用】本発明の電流制限層は、電気抵抗率の温度係数
が小さいので、EL素子を長時間駆動させることにより
素子の温度が上昇しても、電流制限層の電気抵抗が大き
く低下することがない。したがって、電流制限層の電気
抵抗の低下により素子に大電流が流れるという現象が抑
制され、その結果EL素子の絶縁破壊が防止される。
Since the current limiting layer of the present invention has a small temperature coefficient of electric resistivity, the electric resistance of the current limiting layer is greatly reduced even when the temperature of the EL element is increased by driving the EL element for a long time. There is no. Therefore, the phenomenon that a large current flows through the element due to the decrease in the electric resistance of the current limiting layer is suppressed, and as a result, the dielectric breakdown of the EL element is prevented.

【0016】[0016]

【実施例】以下に、本発明を実施例に基づいて詳しく説
明する。図1は本発明のエレクトロルミネッセンス素子
の一実施例の一部断面図で、図2は電流制限層の電気抵
抗率の温度依存性を示す図である。図1に示されるEL
素子は、紙面と平行な方向にガラス基板1の上に設けら
れたストライプ状の複数の透明電極2が互いに電気絶縁
されて設けられており、さらに発光層3が透明電極2の
一部およびガラス基板1の露出部分の一部を覆うように
ガラス基板1のほぼ全面に設けられ、さらに紙面に垂直
な方向に複数のストライプ状の電流制限層4と背面電極
5とが設けられている。そして、背面電極5と透明電極
2との間に直流パルス電圧が電源6により印加されて駆
動される。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a partial cross-sectional view of one embodiment of the electroluminescent element of the present invention, and FIG. 2 is a diagram showing the temperature dependence of the electrical resistivity of the current limiting layer. EL shown in FIG.
The device is provided with a plurality of stripe-shaped transparent electrodes 2 provided on a glass substrate 1 in a direction parallel to the paper surface while being electrically insulated from each other. Further, a light emitting layer 3 is provided in a part of the transparent electrode 2 and the glass. The glass substrate 1 is provided on almost the entire surface so as to cover a part of the exposed portion of the substrate 1, and a plurality of stripe-shaped current limiting layers 4 and back electrodes 5 are provided in a direction perpendicular to the plane of the drawing. Then, a DC pulse voltage is applied between the back electrode 5 and the transparent electrode 2 by the power source 6 to drive the same.

【0017】このEL素子の作成方法を以下に示す。ガ
ラス基板1上に、透明電極2としてインジウム錫酸化物
(ITO)などの透明電極材料をスパッタ、真空蒸着法
などにより被覆した後に、フォトリソグラフイなどの方
法を用いて所定の形状にパターニングする。次に、発光
層3を真空蒸着法、スパッタ法、MOCVD法などの方
法で形成する。続いて発光層3の上に、電流制限層4と
して導電性の微粉末を有機樹脂で固めた数10μmの厚
みの粉末層をスプレー法などの方法で形成する。最後
に、背面電極5としてアルミニウム(Al)などの金属
を真空蒸着あるいはスパッタ法で被覆する。その後ダイ
アモンド針等を用いて背面電極5と電流制限層4とを同
時に紙面と垂直な方法に引っかいて所定形状の背面電極
とする。以上によりドットマトリックス型のEL素子が
できる。 実施例1 透明なガラス基板(コーニング社製商品名7059ガラ
ス)上に、透明電極として約500nmの厚みのITO
を反応性スパッタ法により被覆した後、フオトリソグラ
フイ法により所定形状の透明電極を作成した。続いて、
発光層としてMnを0.3重量%ドープしたZnS膜を
約1μm電子ビーム蒸着法を用いてガラス基板の加熱温
度を200℃に維持しながら被覆した。その後真空中で
発光層を550℃、2時間アニールした。つぎに、酸化
第2鉄の微粉末とエポキシ系樹脂とをその体積比が3:
7になるようにシンナーで混合して、微粉末が樹脂中に
均一に分散した塗料を作成した。この塗料をスプレー法
で塗布し、乾燥させ、電気抵抗率が2.7×105Ωc
mで、厚みが10μmの電流制限層用の被膜とした。さ
らに、背面電極用の膜として1μmの厚みのアルミニウ
ムを電子ビーム蒸着法で被覆し、その後ダイヤモンド針
を用いて電流制限層用の被膜と背面電極とを同時にスク
ライブすることにより、所定形状のストライプ状の背面
電極を作成した。最後に、EL素子全体をカバーガラス
で覆い、EL素子発光部分を有機樹脂で密封することに
より耐湿度対策を施した。
A method of making this EL element will be described below. A transparent electrode material such as indium tin oxide (ITO) is coated as a transparent electrode 2 on the glass substrate 1 by sputtering, vacuum deposition, or the like, and then patterned into a predetermined shape by a method such as photolithography. Next, the light emitting layer 3 is formed by a method such as a vacuum vapor deposition method, a sputtering method, or a MOCVD method. Then, on the light emitting layer 3, a powder layer having a thickness of several tens of μm in which conductive fine powder is hardened with an organic resin is formed as a current limiting layer 4 by a method such as a spray method. Finally, a metal such as aluminum (Al) is coated as the back electrode 5 by vacuum deposition or sputtering. After that, the back electrode 5 and the current limiting layer 4 are simultaneously scratched by a method perpendicular to the paper surface using a diamond needle or the like to form a back electrode having a predetermined shape. By the above, a dot matrix type EL element can be obtained. Example 1 ITO having a thickness of about 500 nm was used as a transparent electrode on a transparent glass substrate (trade name 7059 glass manufactured by Corning Incorporated).
Was coated by a reactive sputtering method, and then a transparent electrode having a predetermined shape was prepared by a photolithography method. continue,
As a light emitting layer, a ZnS film doped with 0.3% by weight of Mn was coated by an electron beam evaporation method of about 1 μm while maintaining the heating temperature of the glass substrate at 200 ° C. Then, the light emitting layer was annealed in vacuum at 550 ° C. for 2 hours. Next, the volume ratio of fine powder of ferric oxide to epoxy resin is 3:
7 was mixed with a thinner to prepare a paint in which fine powder was uniformly dispersed in the resin. This paint is applied by a spray method and dried to obtain an electric resistivity of 2.7 × 10 5 Ωc.
and a thickness of 10 μm for a current limiting layer. Further, aluminum having a thickness of 1 μm is coated as a film for the back electrode by an electron beam vapor deposition method, and then a film for the current limiting layer and the back electrode are simultaneously scribed by using a diamond needle to form a stripe shape of a predetermined shape. The back electrode of was prepared. Finally, the entire EL element was covered with a cover glass, and the light emitting portion of the EL element was sealed with an organic resin to take measures against humidity.

【0018】得られたEL素子のサンプル1をパルス電
圧100vを印加するEL駆動回路に接続して100時
間発光させたあと発光面を観察したところ、発光面全面
が均一に発光しており、輝度ムラは認められなかった。
The sample 1 of the EL device thus obtained was connected to an EL drive circuit for applying a pulse voltage of 100 V, and after the light was emitted for 100 hours, the light emitting surface was observed. No unevenness was observed.

【0019】サンプル1に用いた電流制限層の電気抵抗
の温度依存性を測定したところ、図2の白丸で示される
特性が得られた。1000/絶対温度(K)で表した数
値が2.50〜3.25、すなわち308〜400Kの
温度範囲で電気抵抗率の変化は、12%であり小さな変
化率であった。発光テストの結果を表1に示す。 実施例2 電流制限層の導電性微粉末を表1の材料に変えたこと以
外は実施例1と全く同様にしてEL素子のサンプル2を
作成した。得られた結果を表1に示す。
When the temperature dependence of the electric resistance of the current limiting layer used in Sample 1 was measured, the characteristics shown by the white circles in FIG. 2 were obtained. The numerical value expressed by 1000 / absolute temperature (K) was 2.50 to 3.25, that is, the change in electrical resistivity was 12% in the temperature range of 308 to 400K, which was a small change rate. The results of the light emission test are shown in Table 1. Example 2 An EL device sample 2 was prepared in the same manner as in Example 1 except that the conductive fine powder for the current limiting layer was changed to the material shown in Table 1. The results obtained are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例3 電流制限層の導電性微粉末を表1の材料に変えたこと以
外は実施例1と全く同様にしてEL素子のサンプル3を
作成した。得られた結果を表1に示す。サンプル3の電
流制限層の電気抵抗率の変化率は負の値を示した。 比較例 電流制限層の導電性微粉末に電解法で製造した平均粒径
が0.3μmの二酸化マンガンとエポキシ系樹脂との体
積比が3:7になるようにシンナーを用いて混合し、二
酸化マンガンがエポキシ系樹脂中に均一に分散した塗料
を作成した。この塗布液を用いて厚みが13μmで、電
気抵抗率が1.3×105Ωcmの電流制限層を用いた
こと以外は、実施例1と全く同様にしてEL素子の比較
サンプルを作成した。
Example 3 Sample 3 of an EL device was prepared in the same manner as in Example 1 except that the conductive fine powder for the current limiting layer was changed to the material shown in Table 1. The results obtained are shown in Table 1. The rate of change of the electrical resistivity of the current limiting layer of Sample 3 showed a negative value. Comparative Example The conductive fine powder of the current limiting layer was mixed using a thinner so that the volume ratio of the manganese dioxide having an average particle size of 0.3 μm and the epoxy resin produced by the electrolysis method was 3: 7, A paint in which manganese was uniformly dispersed in an epoxy resin was prepared. Using this coating solution, a comparative sample of an EL device was prepared in exactly the same manner as in Example 1 except that a current limiting layer having a thickness of 13 μm and an electric resistivity of 1.3 × 10 5 Ωcm was used.

【0022】得られたEL素子の比較サンプルをパルス
電圧100vを印加するEL駆動回路に接続して50時
間発光させた。輝度を大きくするに従い、EL素子の温
度が上昇し、発光面の最も明るい部分から順次ブレーク
ダウンが生じ、その個所は黒点となってしまった。
The comparative sample of the obtained EL device was connected to an EL drive circuit for applying a pulse voltage of 100 V, and light was emitted for 50 hours. As the brightness was increased, the temperature of the EL element was increased, and breakdown was sequentially generated from the brightest part of the light emitting surface, and that part became a black spot.

【0023】比較サンプル1に用いた電流制限層の電気
抵抗の温度依存性を測定したところ、図2の黒丸で示さ
れる特性が得られた。1000/絶対温度(K)で表し
た数値が2.50〜3.25の温度、すなわち308〜
400Kの温度範囲で、電気抵抗率は温度上昇と共に小
さくなり、上記温度範囲で91%の変化率すなわち、約
1桁変化した。
When the temperature dependence of the electric resistance of the current limiting layer used in Comparative Sample 1 was measured, the characteristics shown by the black circles in FIG. 2 were obtained. The value expressed by 1000 / absolute temperature (K) is a temperature of 2.50 to 3.25, that is, 308 to
In the temperature range of 400 K, the electrical resistivity decreased with increasing temperature, and in the above temperature range, the change rate was 91%, that is, about one digit change.

【0024】上記のテスト結果から、電流制限層に用い
る導電性微粉末として酸化第2鉄を主成分とし、電流制
限層の電気抵抗率の温度変化を小さくしたものは、素子
のブレークダウンが起こりにくいことが分かる。
From the above test results, when the conductive fine powder used for the current limiting layer contains ferric oxide as a main component and the electric resistance of the current limiting layer changes little with temperature, breakdown of the device occurs. I find it difficult.

【0025】[0025]

【発明の効果】本発明によれば、輝度ムラが改善され、
かつ、素子の絶縁破壊が生じにくいEL素子を得ること
ができる。また、本発明により、所用電力の時間変動が
少なく、輝度の劣化が小さいEL素子が得られる。
According to the present invention, uneven brightness is improved,
In addition, it is possible to obtain an EL element in which insulation breakdown of the element is unlikely to occur. Further, according to the present invention, it is possible to obtain the EL element in which the fluctuation of the required power with time is small and the deterioration of the luminance is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のエレクトロルミネッセンス素子の一実
施例の一部断面図である。
FIG. 1 is a partial cross-sectional view of an example of an electroluminescent element of the present invention.

【図2】実施例と比較例に用いた電流制限層の電気抵抗
率の温度依存性を示す図である。
FIG. 2 is a diagram showing the temperature dependence of the electrical resistivity of the current limiting layers used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1・・・ガラス基板、2・・・透明電極、3・・・発光
層、4・・・導電性微粉末を固めた電流制限層、5・・
・背面電極、6・・・駆動電源
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... Emitting layer, 4 ... Current limiting layer formed by solidifying conductive fine powder, 5 ...
・ Back electrode, 6 ... Driving power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 俊司 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 円城寺 勝久 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunji Wada 3-5-11 Doshumachi, Chuo-ku, Osaka-shi, Osaka Within Nippon Sheet Glass Co., Ltd. (72) Inventor Katsuhisa Enjoji 3-chome, Dosho-machi, Chuo-ku, Osaka 5th-11th Nippon Sheet Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明な絶縁性基板上に透明電極、発光層、
導電性微粉末を有機樹脂で固めてなる電流制限層および
背面電極を順次積層したエレクトロルミネッセンス素子
において、前記導電性微粉末が酸化第2鉄の微粉末から
主としてなることを特徴とするエレクトロルミネッセン
ス素子。
1. A transparent electrode, a light emitting layer, and a transparent insulating substrate.
In an electroluminescent element in which a current limiting layer obtained by solidifying conductive fine powder with an organic resin and a back electrode are sequentially laminated, the conductive fine powder is mainly composed of fine powder of ferric oxide. ..
【請求項2】前記導電性微粉末は、酸化第2鉄の微粉末
を80重量%以上含むことを特徴とする請求項1に記載
のエレクトロルミネッセンス素子。
2. The electroluminescent device according to claim 1, wherein the conductive fine powder contains 80 wt% or more of fine powder of ferric oxide.
JP3324954A 1991-12-10 1991-12-10 Electroluminescence element Pending JPH05159880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324954A JPH05159880A (en) 1991-12-10 1991-12-10 Electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324954A JPH05159880A (en) 1991-12-10 1991-12-10 Electroluminescence element

Publications (1)

Publication Number Publication Date
JPH05159880A true JPH05159880A (en) 1993-06-25

Family

ID=18171487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324954A Pending JPH05159880A (en) 1991-12-10 1991-12-10 Electroluminescence element

Country Status (1)

Country Link
JP (1) JPH05159880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104020A1 (en) * 2005-03-25 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104020A1 (en) * 2005-03-25 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same
US8058794B2 (en) 2005-03-25 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same
US8476827B2 (en) 2005-03-25 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same

Similar Documents

Publication Publication Date Title
KR0172005B1 (en) Phosphor and fluorescent display device
US5229628A (en) Electroluminescent device having sub-interlayers for high luminous efficiency with device life
JPS63289794A (en) Electroluminescence display
US4826727A (en) Phosphorescent material for electroluminescent display, comprising silver sulfide in copper sulfide coating on phosphor particles and/or elemental sulfur in dielectric binder for phosphor particles
KR20070107726A (en) Dispersion-type electroluminescent element
JPH0375686A (en) Electroluminescence element
US4672264A (en) High contrast electroluminescent display panels
JPS61230296A (en) El element and manufacture thereof
JPH05159880A (en) Electroluminescence element
JP4631316B2 (en) Electroluminescence element
EP0413345B1 (en) Gas discharge panel
US4859904A (en) High contrast electroluminescent displays
JP3533710B2 (en) Electroluminescence device and multicolor electroluminescence device
GB2177540A (en) Phosphorescent material for electroluminescent display
JPH05211093A (en) Direct current electroluminescence element
JP2837766B2 (en) Electroluminescence element
JPS6369193A (en) El device and manufacture of the same
US20080074046A1 (en) Electroluminescent Display Apparatus and Methods
JP2006040642A (en) Color conversion film and electroluminescent element using this
JP2529296B2 (en) Color EL display device
JPH04363895A (en) Electroluminescence element
JPH06140157A (en) Electroluminescent element
JP2532506B2 (en) Color EL display device
JPH0745369A (en) El element
JPS6344685A (en) Thin film image display device