JPH05159636A - Rubber insulated electric wire and manufacture thereof - Google Patents

Rubber insulated electric wire and manufacture thereof

Info

Publication number
JPH05159636A
JPH05159636A JP32174591A JP32174591A JPH05159636A JP H05159636 A JPH05159636 A JP H05159636A JP 32174591 A JP32174591 A JP 32174591A JP 32174591 A JP32174591 A JP 32174591A JP H05159636 A JPH05159636 A JP H05159636A
Authority
JP
Japan
Prior art keywords
rubber
insulator
semiconductive layer
layer
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32174591A
Other languages
Japanese (ja)
Other versions
JP3067352B2 (en
Inventor
Taku Ito
卓 伊藤
Haruaki Sunahara
治明 砂原
Hidehiko Iwakawa
英彦 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP3321745A priority Critical patent/JP3067352B2/en
Publication of JPH05159636A publication Critical patent/JPH05159636A/en
Application granted granted Critical
Publication of JP3067352B2 publication Critical patent/JP3067352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the quality and reduce the cost in the manufacture of insulated electric wire. CONSTITUTION:As a semiconductive layer 3, the polymer, which is mainly composed of polyolefine or the like, is used. The surface of the semi-conductive layer 3 is solidified by cooling to increase the mechanical strength thereof, and two extruders 11, 12 are arranged in series to adopt a method for extruding two layers of the semiconductive layer 3 and an insulator 5 continuously. A silicone group adhesive layer 4 such as primer or the like is provided by vulcanization to eliminate the generation of a clearance between the semiconductive layer 3 and the insulator 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴム絶縁電線およびそ
の製造方法に関し、詳しくは、道路、体育館等の施設用
照明に用いる水銀灯や放電灯用の高電圧用リード線とし
て用いられるもので、特に、導体とゴム系絶縁体との間
にプラスチック半導電体層を介在させたものを連続的に
製造出来るようにするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber-insulated electric wire and a method for manufacturing the same, and more specifically, it is used as a high voltage lead wire for mercury lamps and discharge lamps used for illumination of facilities such as roads and gyms, In particular, it is possible to continuously manufacture a product in which a plastic semiconductive layer is interposed between a conductor and a rubber-based insulator.

【0002】[0002]

【従来の技術】従来、上記した高電圧用リード線あるい
は高電圧モータの口出線として、軟銅撚線などの導体
に、ポリエチレン、テフロンなどのプラスチック系やE
PDM、シリコーンゴムなどのゴム系でなる絶縁体を直
接被覆した絶縁電線が多用されている。上記絶縁電線
は、導体に絶縁体を直接被覆する構造であるために、導
体と絶縁体との間に気泡や空隙が生じやすく、高電圧を
印加すると、その部分でコロナ放電が発生して絶縁体が
侵食され、絶縁破壊が生じるという問題がある。
2. Description of the Related Art Conventionally, as a lead wire for a high voltage or a lead wire for a high voltage motor as described above, a conductor such as a stranded copper wire, a plastic material such as polyethylene or Teflon, or E
Insulated wires in which a rubber-based insulator such as PDM or silicone rubber is directly coated are often used. Since the insulated wire has a structure in which the conductor is directly covered with the insulator, air bubbles or voids are easily generated between the conductor and the insulator, and when a high voltage is applied, corona discharge is generated at that portion and insulation is performed. There is a problem that the body is eroded and dielectric breakdown occurs.

【0003】この解決策として、導体と絶縁体との間
に、絶縁体と化学的に親和性のある半導電性層を設け
て、半導電性層と絶縁体を密着させて気泡等を無くし、
よって、耐電圧特性を向上させる方法が採用されてい
る。上記半導電性層の材料としては、絶縁体と同一また
は類似の化学構造を有するポリマーに、カーボンブラッ
クまたはグラファイトなどの導電性付与剤を混入したも
のが一般に用いられている。
As a solution to this problem, a semiconductive layer having a chemical affinity with the insulator is provided between the conductor and the insulator, and the semiconductive layer and the insulator are brought into close contact with each other to eliminate bubbles and the like. ,
Therefore, a method of improving the withstand voltage characteristic is adopted. As a material for the semiconductive layer, a polymer having a chemical structure identical to or similar to that of an insulator and a conductivity-imparting agent such as carbon black or graphite is generally used.

【0004】上記絶縁体がプラスチック、例えば、ポリ
エチレンの場合、ポリエチレンにカーボンブラックなど
を混入した半導電性材料が使用される。このように絶縁
体および半導電性層がいずれもプラスチックの場合、プ
ラスチックは、加熱・溶融状態で押出した後、冷却によ
り固化状態になるという特性を利用して、2台の押出機
を直列に配置して、半導電性層と絶縁体の2層押出しを
連続的に行う方法が採用することができる。
When the insulator is a plastic such as polyethylene, a semiconductive material obtained by mixing polyethylene with carbon black is used. When the insulator and the semiconductive layer are both plastics, the two extruders are connected in series by utilizing the property that the plastics are extruded in a heated / melted state and then solidified by cooling. A method of arranging and conducting two-layer extrusion of the semiconductive layer and the insulator continuously can be adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、絶縁体
及び半導電性層がシリコーンゴム、EPDE等のゴム系
の場合、押出した後、直ちに加熱等の加硫操作をして、
ゴム分子を網目構造となす必要がある。これは、押出し
ただけの未加硫ゴムは外力などで塑性変形する粘土状の
性状を示し、プラスチック系のように冷却だけで固化し
て機械的強度が増加することがないためである。
However, when the insulator and the semiconductive layer are rubber-based such as silicone rubber and EPDE, they are extruded and then immediately vulcanized by heating or the like,
It is necessary to make the rubber molecules into a mesh structure. This is because the unvulcanized rubber that has just been extruded exhibits a clay-like property in which it is plastically deformed by an external force or the like, and unlike a plastic system, it does not solidify only by cooling and the mechanical strength does not increase.

【0006】このため、絶縁体及び半導電性層がゴム系
の絶縁電線の製造に際しては、第1の押出し機で半導電
性層を押出し成形した後、直ちに加硫を行って一旦ドラ
ム等に巻取り、加硫を完結した後、第2の押出し機で絶
縁体を押出し被覆した後、直ちに加硫を行うという方法
を採用せざるを得ない。したがって、絶縁体および半導
電性層がプラスチック系の絶縁電線の製造方法のよう
に、2台の押出し機を直列に配置して、半導電性層と絶
縁体の2層押出しを連続的に行うという方法が採用でき
ず、品質の低下やコストアップになるという問題があっ
た。
Therefore, when manufacturing an insulated wire in which the insulator and the semiconductive layer are rubber-based, the semiconductive layer is extruded and molded by the first extruder, and then immediately vulcanized to once form a drum or the like. There is no choice but to employ a method in which, after the winding and vulcanization are completed, the insulator is extruded and coated by the second extruder, and then immediately vulcanized. Therefore, like the method of manufacturing an insulated wire in which the insulator and the semiconductive layer are plastic, two extruders are arranged in series to continuously perform the two-layer extrusion of the semiconductive layer and the insulator. However, there is a problem in that the quality is lowered and the cost is increased.

【0007】本発明は、上記した問題に鑑みてなされた
もので、連続的に製造できる構造としたゴム絶縁電線お
よび、その製造方法を提供し、ゴム絶縁電線の品質の向
上及びコストダウンを図ることを目的としている。
The present invention has been made in view of the above problems, and provides a rubber insulated wire having a structure that can be continuously manufactured, and a method for manufacturing the rubber insulated wire, which improves the quality of the rubber insulated wire and reduces the cost. The purpose is to

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、導体上に、ポリマーにカーボンブラッ
ク、グラファイト等を添加したプラスチック半導電性層
を被覆し、該半導電性層の表面にゴム系接着層を介して
ゴム絶縁体を被覆していることを特徴とするゴム絶縁電
線を提供するものである。
In order to achieve the above object, the present invention is directed to coating a conductor with a plastic semi-conductive layer obtained by adding carbon black, graphite or the like to a polymer, A rubber-insulated electric wire having a surface covered with a rubber insulator via a rubber-based adhesive layer.

【0009】上記絶縁体のゴムはシリコーンゴム、 ゴム
系接着剤はプライマーのようなシリコーンゴム系接着剤
が好適に用いられる。また、 半導電性層は、ポリオレフ
ィンを主としたポリマーにカーボンブラック、グラファ
イト等の導電性付与剤を添加したものが好適に用いられ
る。 例えば、ポリエチレンとエチレンプロピレンゴムの
混合物にアセチレンブラックやグラファイト等を添加し
て、103〜106オーム・cmの固有抵抗を有するものも
好適に用いられる。
Silicon rubber is preferably used as the rubber of the above-mentioned insulator, and silicone rubber adhesive such as a primer is preferably used as the rubber adhesive. For the semiconductive layer, a polymer containing a polyolefin as a main component and a conductivity-imparting agent such as carbon black or graphite added thereto is preferably used. For example, a mixture of polyethylene and ethylene propylene rubber to which acetylene black, graphite or the like is added and which has a specific resistance of 10 3 to 10 6 ohm · cm is also suitably used.

【0010】本発明は、上記ゴム絶縁電線の連続製造方
法として、2台の押出機を直列に配置して、連続的に、
第1の押出機により、カーボンブラック、グラファイト
等を添加したポリマーの半導電性層を導体表面に被覆す
るように押出し成形し、ついで、冷却した後、第2の押
出機によりゴム系絶縁体を押出して被覆し直ちに加硫す
る製造方法を提供するものである。
The present invention provides a method for continuously producing the above-described rubber insulated wire, in which two extruders are arranged in series and continuously,
Extruded by a first extruder so as to cover the surface of the conductor with a semiconductive layer of a polymer to which carbon black, graphite, etc. are added, and then, after cooling, a rubber-based insulator is extruded by a second extruder. The present invention provides a manufacturing method in which extrusion, coating, and immediate vulcanization are performed.

【0011】さらに、上記第1の押出機による半導電性
層の押し出し成形して冷却した後に、その表面にゴム系
接着剤を塗布し、その後、第2の押出機によりゴム系絶
縁体を押し出すようにしても良い。
Further, the semiconductive layer is extruded by the first extruder and cooled, and then a rubber adhesive is applied to the surface of the semiconductive layer, and then a rubber insulator is extruded by the second extruder. You may do it.

【0012】さらにまた、本発明は、連続製造方法とし
て、2台の押出し機を直列に配置して、連続的に、第1
の押出機によりカーボンブラック、グラファイト等を添
加したポリマー半導電性層を導体表面を被覆するように
押出し成形し、ついで、第2の押出機によりゴム系絶縁
体を押出して半導電性層に被覆し、その後、蒸気加硫管
を通して上記半導電性層と絶縁体の架橋剤を分解させて
同時に架橋させることにより半導電性層と絶縁体とを密
着させるようにしても良い。
Furthermore, the present invention provides a continuous manufacturing method in which two extruders are arranged in series to continuously
Extruder is used to extrude a polymer semi-conductive layer containing carbon black, graphite, etc. so as to cover the conductor surface, and then a second extruder is used to extrude a rubber-based insulator to cover the semi-conductive layer. Then, after that, the semiconductive layer and the insulator may be brought into close contact with each other by decomposing the crosslinking agent of the semiconductive layer and the insulator through a steam vulcanization tube and simultaneously crosslinking.

【0013】上記のように、半導電性層と絶縁体の架橋
剤を架橋させて密着させる場合には、同一の架橋剤、例
えば、ジクミルパーオキサイド、2.5ジメチル2.5ジ
(tert ブチルパーオキシ)ヘキサン等を半導電性層と
絶縁体とに添加していおくことが好ましい。 尚、蒸気加硫管を用いずに、温風加硫機により加硫する
場合は、前記した製造方法のように、半導電性層と絶縁
体との間にゴム系接着剤を塗布しておくことが好まし
い。
As described above, when the semiconductive layer and the cross-linking agent for the insulator are cross-linked and adhered to each other, the same cross-linking agent such as dicumyl peroxide, 2.5 dimethyl 2.5 di (tert. It is preferable to add butylperoxy) hexane etc. to the semiconductive layer and the insulator. When vulcanizing with a warm air vulcanizer without using a steam vulcanizing tube, apply a rubber-based adhesive between the semiconductive layer and the insulator as in the manufacturing method described above. It is preferable to set.

【0014】[0014]

【作用】本発明によれば、半導電性層にポリオレフィン
等を主としたポリマーを使用したから、第1の押出機で
半導電性層を押出し成形した後に冷却すると、半導電性
層の表面が固化して、機械的強度が増加する。これによ
り、従来のような加硫が不要になるから、2台の押出し
機を直列に配置して、半導電性層と絶縁体の2層押出し
を連続的に行う方法を採用できるので、絶縁電線のコス
トダウン化が図れる。また、機械的強度が増加するの
で、第2の押出し機の被覆装置に接触しても損傷を受け
ないために、品質が安定する。
According to the present invention, since the semiconductive layer is mainly made of a polymer such as polyolefin, the semiconductive layer is extruded by the first extruder and then cooled. Solidify, increasing the mechanical strength. This eliminates the need for conventional vulcanization, so that it is possible to employ a method in which two extruders are arranged in series and two-layer extrusion of the semiconductive layer and the insulator is continuously performed. The cost of electric wires can be reduced. In addition, since the mechanical strength is increased, the quality is stable because it is not damaged even if it comes into contact with the coating device of the second extruder.

【0015】さらに、プラスチック半導電性層とゴム絶
縁体とは親和性が低いが、プライマー等のようなシリコ
ーン系接着層を介在させることにより、半導電性層と絶
縁体との間に空隙が生じないので、耐電圧特性が向上す
る。
Furthermore, although the plastic semiconductive layer and the rubber insulator have a low affinity, a gap is formed between the semiconductive layer and the insulator by interposing a silicone adhesive layer such as a primer. Since it does not occur, the withstand voltage characteristic is improved.

【0016】[0016]

【実施例】以下、本発明を図示の実施例により詳細に説
明する。図1〜図3に示すように、絶縁電線1の製造装
置には、2台の第1押出機11と第2押出機12が直列
に配置されている。第1押出機11の前側には給線機1
3が配置され、両押出機11,12の間には、第1押出
機11側に空冷装置14が配置され、第2押出機12側
に接着装置15が配置されている。また、第2押出機1
2の後側には、加硫管16と、キャプスタン17と、巻
取り機18とが配置されている。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. As shown in FIGS. 1 to 3, in the manufacturing apparatus for the insulated wire 1, two first extruders 11 and two second extruders 12 are arranged in series. The feeder 1 is provided in front of the first extruder 11.
3, the air-cooling device 14 is arranged on the side of the first extruder 11 and the bonding device 15 is arranged on the side of the second extruder 12 between the extruders 11 and 12. In addition, the second extruder 1
A vulcanization pipe 16, a capstan 17, and a winder 18 are arranged on the rear side of the unit 2.

【0017】上記連続製造装置によりゴム絶縁電線を製
造する場合、給線機13から供給される導体2の表面に
被覆するように、第1押出機11により、ポリオレフィ
ンを主としたポリマーの半導電性層3を押出し成形した
後に、空冷装置14で冷却する。ついで、接着装置15
でプライマー等のシリコーンゴム系接着層4を表面全体
に塗布した後、第2押出機12により、ゴム系の絶縁体
5をシリコーンゴム系接着剤4を介して半導電性層3に
被覆するように押出す。その後、直ちに、加硫管16で
加硫して、キャプスタン17を介して巻取り機18で絶
縁電線1を連続的に巻取る。
When a rubber insulated wire is manufactured by the above continuous manufacturing apparatus, the first extruder 11 is used to cover the surface of the conductor 2 supplied from the wire feeder 13 so that the semi-conductive polymer mainly composed of polyolefin is used. After the elastic layer 3 is extruded and molded, it is cooled by the air cooling device 14. Then, the adhesion device 15
After the silicone rubber adhesive layer 4 such as a primer is applied to the entire surface with the second extruder 12, the rubber insulator 5 is coated on the semiconductive layer 3 through the silicone rubber adhesive 4. Extrude into. Immediately thereafter, the insulated wire 1 is vulcanized by the vulcanization pipe 16 and continuously wound by the winder 18 via the capstan 17.

【0018】上記導体2は、軟銅線やスズ、ニッケル、
銀などのメッキ付き軟銅線の単線もしくは撚線である。
The conductor 2 is made of soft copper wire, tin, nickel,
It is a single wire or stranded wire of annealed copper wire with plating such as silver.

【0019】第1押出機11から押出される半導電性層
13は、ポリオレフィンを主としたポリマーとしては、
例えば、ポリエチレンとエチレンプロピレンゴムの混合
物に、カーボンブラック、アセチレンブラック、グラフ
ァイトなどの導電性付与剤を混合して、103〜106
ーム・cmの固有抵抗を有するものが用いられる。この半
導電性層13は、冷却により固化状態になるという特性
を有する。
The semiconductive layer 13 extruded from the first extruder 11 is a polymer mainly composed of polyolefin.
For example, a mixture of polyethylene and ethylene propylene rubber is mixed with a conductivity-imparting agent such as carbon black, acetylene black, or graphite to have a specific resistance of 10 3 to 10 6 ohm · cm. The semiconductive layer 13 has a characteristic that it becomes a solidified state by cooling.

【0020】上記ポリエチレンとエチレンプロピレンゴ
ムの混合物におけるポリエチレンの比率は、30%〜7
0%が好ましい。ポリエチレンが30%未満であると、
成形後の冷却固化状態での硬度 (機械的強度)が不足
し、70%を越えると、導電性付与剤を高充填した際、
機械的強度が著しく不足する。
The proportion of polyethylene in the mixture of polyethylene and ethylene propylene rubber is 30% to 7%.
0% is preferable. If polyethylene is less than 30%,
When the hardness (mechanical strength) in the cooled and solidified state after molding is insufficient and exceeds 70%, when the conductivity-imparting agent is highly filled,
Mechanical strength is remarkably insufficient.

【0021】第1押出機11で導体2に押出し成形され
た半導電性層13を空冷装置14で冷却すると、半導電
性層3の表面が固化して、機械的強度が増加する。これ
により、次の第2押出機12の被覆装置 (ガイダーチッ
プ)に接触しても損傷を受けないために、品質が安定す
る。
When the semi-conductive layer 13 extruded into the conductor 2 by the first extruder 11 is cooled by the air cooling device 14, the surface of the semi-conductive layer 3 is solidified and the mechanical strength is increased. As a result, the quality will be stable because it will not be damaged even if it comes into contact with the next coating device (guider chip) of the second extruder 12.

【0022】尚、上記接着装置15から半導電性層3に
塗布される接着層4は、必要に応じて設けるものであ
る。即ち、次の第2押出し機12でゴム系の絶縁体5を
押出し被覆した後に、加硫管16で蒸気による加熱・加
圧の加硫を行うと、半導電性層3及び絶縁体5の架橋剤
(例えばジクミルパーオキサイト゛)が分解されて、それ
ぞれ同時に架橋することで、半導電性層3と絶縁体5が
密着する。
The adhesive layer 4 applied to the semiconductive layer 3 from the adhesive device 15 is provided as needed. That is, when the rubber-based insulator 5 is extruded and covered by the second extruder 12 and then vulcanized by heating and pressurizing with steam in the vulcanization pipe 16, the semiconductive layer 3 and the insulator 5 are removed. Cross-linking agent
(For example, dicumyl peroxide) is decomposed and simultaneously cross-linked, so that the semiconductive layer 3 and the insulator 5 adhere to each other.

【0023】尚、上記した蒸気による加硫ではなく、H
AV (熱風加硫機)のような常圧加硫機で架橋させると
きは、蒸気による加圧の場合に生じる密着度を期待でき
ない。よって、HAVで加硫する場合には、前記方法の
ように、プライマーのようなシリコーン系接着層4を半
導電性層3と絶縁体5との間に設けて密着性を高め、空
隙が生じないようにしている。
It should be noted that the above-mentioned vulcanization by steam, not H
When crosslinking is carried out with an atmospheric pressure vulcanizer such as AV (hot air vulcanizer), the degree of adhesion that occurs when pressure is applied by steam cannot be expected. Therefore, in the case of vulcanizing with HAV, as in the above method, a silicone-based adhesive layer 4 such as a primer is provided between the semiconductive layer 3 and the insulator 5 to enhance the adhesiveness and generate voids. I try not to.

【0024】上記架橋により半導電性層と絶縁体との密
着性の向上を図る場合、半導電性層3と絶縁体5には同
一の架橋剤を添加することが、架橋反応を制御するうえ
で好ましい。
When the adhesion between the semiconductive layer and the insulator is to be improved by the above crosslinking, it is necessary to add the same crosslinking agent to the semiconductive layer 3 and the insulator 5 in order to control the crosslinking reaction. Is preferred.

【0025】上記第2押出機12から押出される絶縁体
5としては、ポリオルガ/シロキサンを主原料とし、そ
れにシリカ系の補強性充填剤、架橋剤などを配合してな
るシリコーンゴム混和物が好ましい。
The insulator 5 extruded from the second extruder 12 is preferably a silicone rubber mixture prepared by using polyorgan / siloxane as a main raw material and a silica-based reinforcing filler, a cross-linking agent and the like. ..

【0026】上記製造方法によって、図2及び図3に示
したような導体2、半導電性層3、接着層4及び絶縁体
5からなるる絶縁電線1が連続的に製造できるので、コ
ストダウン化が図れるようになる。また、接着層4が不
要な場合には、図4及び図5に示したような導体2、半
導電性層4及び絶縁体5でなる絶縁電線1が連続的に製
造できる。
Since the insulated wire 1 including the conductor 2, the semiconductive layer 3, the adhesive layer 4 and the insulator 5 as shown in FIGS. 2 and 3 can be continuously manufactured by the above manufacturing method, the cost can be reduced. Can be realized. Further, when the adhesive layer 4 is unnecessary, the insulated wire 1 including the conductor 2, the semiconductive layer 4 and the insulator 5 as shown in FIGS. 4 and 5 can be continuously manufactured.

【0027】上記製造方法によって製造した絶縁電線1
を用いて、破壊電圧のテストを行った。導体2の直径を
1.35mm、半導電性層4の厚みを0.15mm、絶縁体5
の厚みを2.5mmに形成した長さ1mの試料の内、50cm
を水中に没して、絶縁電線1の導体2と水との間に電圧
を印加した。電圧は、最初、20KVで10分間保持し
た後、2KV/分の割りで段階的に上げて、破壊電圧を
測定した。屈曲は、絶縁電線1をその直径の3倍の棒に
巻付けて行った。その結果は表1の通りである。半導電
性層3の有無により、屈曲の耐電圧特性が向上している
のがわかる。
Insulated wire 1 manufactured by the above manufacturing method
Was used to test the breakdown voltage. Diameter of conductor 2 is 1.35 mm, thickness of semi-conductive layer 4 is 0.15 mm, insulator 5
Of the 1m long sample with a thickness of 2.5mm, 50cm
Was immersed in water, and a voltage was applied between the conductor 2 of the insulated wire 1 and water. The voltage was initially maintained at 20 KV for 10 minutes and then increased stepwise at a rate of 2 KV / min to measure the breakdown voltage. The bending was performed by winding the insulated wire 1 around a rod having a diameter three times that of the insulated wire 1. The results are shown in Table 1. It can be seen that the withstand voltage characteristic of bending is improved depending on the presence or absence of the semiconductive layer 3.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上の説明より明らかなように、本発明
の絶縁電線の製造方法は、半導電性層にポリオレフィン
等を主としたポリマーを使用したものであるから、冷却
により、半導電性層の表面が固化して、機械的強度が増
加するようになる。したがって、従来のような加硫が不
要になるから、2台の押出し機を直列に配置して、半導
電性層と絶縁体の2層押出しを連続的に行う方法を採用
できるので、絶縁電線のコストダウン化が図れるように
なる。また、機械的強度が増加するので品質も安定す
る。さらに、加硫の方法によって、プライマー等のよう
なシリコーン系接着層を設けると、半導電性層と絶縁体
との間に空隙が生じないので、耐電圧特性が向上するよ
うになる。
As is apparent from the above description, the method for producing an insulated wire of the present invention uses a polymer mainly composed of polyolefin or the like in the semiconductive layer, and therefore, the semiconductive layer is cooled by cooling. The surface of the layer solidifies, increasing the mechanical strength. Therefore, conventional vulcanization is not required, and therefore, a method of arranging two extruders in series and continuously performing two-layer extrusion of a semiconductive layer and an insulator can be adopted. The cost can be reduced. In addition, the mechanical strength increases, so the quality is stable. Further, when a silicone-based adhesive layer such as a primer is provided by the vulcanization method, no void is generated between the semiconductive layer and the insulator, so that the withstand voltage characteristic is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の絶縁電線の製造装置の側面図であ
る。
FIG. 1 is a side view of an apparatus for manufacturing an insulated wire according to the present invention.

【図2】 第1例の絶縁電線の側面図である。FIG. 2 is a side view of the insulated wire of the first example.

【図3】 図2の断面図である。3 is a cross-sectional view of FIG.

【図4】 第2例の絶縁電線の側面図である。FIG. 4 is a side view of an insulated wire of a second example.

【図5】 図4の断面図である。5 is a cross-sectional view of FIG.

【符号の説明】[Explanation of symbols]

1 絶縁電線 2 導体 3 半導電性層 4 接着層 5 絶縁体 11 第1押出し機 12 第2押出し機 14 空冷装置 15 接着装置 16 加硫管 1 Insulated Wire 2 Conductor 3 Semiconductive Layer 4 Adhesive Layer 5 Insulator 11 First Extruder 12 Second Extruder 14 Air Cooling Device 15 Adhesive Device 16 Vulcanizing Pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導体上に、導電性付与剤等を添加したプ
ラスチック半導電性層を被覆し、該半導電性層の表面に
ゴム系接着剤層を介してゴム絶縁体を被覆していること
を特徴とするゴム絶縁電線。
1. A conductor is coated with a plastic semiconductive layer containing a conductivity-imparting agent or the like, and the surface of the semiconductive layer is coated with a rubber insulator via a rubber adhesive layer. A rubber insulated wire characterized by the following.
【請求項2】 上記半導電性層はポリオレフィンを主と
したポリマーにカーボンブラックやグラファイトを添加
したプラスチック層からなり、又、ゴム系接着剤はシリ
コーンゴム系接着剤からなると共に、絶縁体のゴムはシ
リコーンゴムからなる請求項1記載のゴム絶縁電線。
2. The semiconductive layer comprises a plastic layer in which carbon black or graphite is added to a polymer mainly composed of polyolefin, and the rubber-based adhesive comprises a silicone rubber-based adhesive, and also an insulating rubber. The rubber insulated wire according to claim 1, wherein is made of silicone rubber.
【請求項3】 2台の押出機を直列に配置して、連続的
に、 第1の押出機により、導体表面を被覆するように、ポリ
マーの半導電性層を押出し成形した後に冷却し、つい
で、第2の押出機によりゴム系絶縁体を押出して加硫す
るこをと特徴とするゴム絶縁電線の製造方法。
3. Extruding a semiconductive layer of polymer so as to cover the conductor surface by means of a first extruder, in which two extruders are arranged in series, and then cooled, Then, a method for producing a rubber insulated wire, characterized in that a rubber-based insulator is extruded and vulcanized by a second extruder.
【請求項4】 2台の押出し機を直列に配置して、連続
的に、 第1の押出機により、ポリオレフィン等を主としたポリ
マーの半導電性層を、導体表面を被覆するように押出し
成形した後、冷却し、 ついで、プライマー等のシリコーンゴム系接着剤を塗布
し、 その後、第2の押出機により、ゴム系絶縁体を押出して
被覆した後に加硫することを特徴とするゴム絶縁電線の
製造方法。
4. Two extruders are arranged in series and continuously extruded by a first extruder with a semiconductive layer of a polymer mainly including polyolefin so as to cover a conductor surface. Molded, cooled, then coated with a silicone rubber adhesive such as a primer, and then extruded with a second extruder to cover the rubber insulator, and then vulcanized. Electric wire manufacturing method.
【請求項5】 上記第2の押出機による加硫は蒸気加硫
管を通して行い、上記半導電性層と絶縁体の架橋剤を分
解させて同時に架橋させることにより半導電性層と絶縁
体とを密着させることを特徴とする請求項3記載の方
法。
5. The vulcanization by the second extruder is performed through a steam vulcanizing tube, and the semiconducting layer and the insulator are decomposed and simultaneously crosslinked to thereby form the semiconducting layer and the insulator. The method according to claim 3, characterized in that:
JP3321745A 1991-12-05 1991-12-05 Rubber insulated wire and method of manufacturing the same Expired - Lifetime JP3067352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3321745A JP3067352B2 (en) 1991-12-05 1991-12-05 Rubber insulated wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3321745A JP3067352B2 (en) 1991-12-05 1991-12-05 Rubber insulated wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05159636A true JPH05159636A (en) 1993-06-25
JP3067352B2 JP3067352B2 (en) 2000-07-17

Family

ID=18135977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3321745A Expired - Lifetime JP3067352B2 (en) 1991-12-05 1991-12-05 Rubber insulated wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3067352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580096B1 (en) * 2005-03-23 2006-05-16 엘에스전선 주식회사 Method and apparatus manufacturing extra high voltage cable core using two step extruding process for improving line speed at vcv line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580096B1 (en) * 2005-03-23 2006-05-16 엘에스전선 주식회사 Method and apparatus manufacturing extra high voltage cable core using two step extruding process for improving line speed at vcv line

Also Published As

Publication number Publication date
JP3067352B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
KR930002947B1 (en) Strippable laminate
US3569610A (en) Ethylene-propylene rubber insulated cable with cross-linked polyethylene strand shielding
US4426339A (en) Method of making electrical devices comprising conductive polymer compositions
US3479446A (en) Strand shielded cable and method of making
KR102005113B1 (en) A insulation composition and an electric cable including the same
US3885085A (en) High voltage solid extruded insulated power cables
JP2008130367A (en) High-voltage cabtire cable
JPS6120969B2 (en)
US3909507A (en) Electrical conductors with strippable polymeric materials
CN1762029A (en) Power cable compositions for strippable adhesion
US3541228A (en) Medium voltage cables
US4876440A (en) Electrical devices comprising conductive polymer compositions
US4469538A (en) Process for continuous production of a multilayer electric cable and materials therefor
US3925597A (en) Electrical conductors with strippable insulation and method of making the same
JPH0132730B2 (en)
KR20150108910A (en) Method in the manufacturing of an insulated electric high voltage dc termination or joint
JPS6056392A (en) Self-adjusable heating cable and method of producing same
JP3067352B2 (en) Rubber insulated wire and method of manufacturing the same
US4866253A (en) Electrical devices comprising conductive polymer compositions
WO2017175270A1 (en) Power transmission cable
JP2005524932A (en) Flexible high voltage cable
JPH0645168B2 (en) Extrusion cross-linking method for insulators
JPH10233123A (en) X-ray cable
WO2004053896A1 (en) Electrical cable with foamed semiconductive insulation shield
WO2022180939A1 (en) Resin composition, power cable, and method for producing power cable

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000418