JPH05157427A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH05157427A
JPH05157427A JP32036791A JP32036791A JPH05157427A JP H05157427 A JPH05157427 A JP H05157427A JP 32036791 A JP32036791 A JP 32036791A JP 32036791 A JP32036791 A JP 32036791A JP H05157427 A JPH05157427 A JP H05157427A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
refrigerant
refrigerant compressor
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32036791A
Other languages
Japanese (ja)
Inventor
Koji Kishita
浩次 樹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP32036791A priority Critical patent/JPH05157427A/en
Publication of JPH05157427A publication Critical patent/JPH05157427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high humidity freezing device capable of lowering the temperature in a thermal insulation box promptly without lowering the humidity in the thermal insulation box. CONSTITUTION:A suction side and a discharge side of a refrigerant compressor 11 are communicated with a bypass 18 having a solenoid valve 16 and a capillary 17. When a detected temperature of a thermistor 29 is higher than a reference temperature, the solenoid valve 16 is closed while it is lower than the reference value, the solenoid valve 16 is opened. When the solenoid valve 16 is closed, all refrigerant is supplied to a vaporizer 14, which results in an increase in a freezing capacity. Therefore, this construction makes it possible to cool the thermal insulation box 2 promptly. When the solenoid valve 16 is opened, a part of the refrigerant returns to the refrigerant compressor 11 so that the vaporization temperature of the vaporizer is increased while its freezing capacity is reduced, thereby enabling high humidity operation to be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、保冷庫内の湿度の低下
を防ぎ、高い相対湿度を維持する冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating device which prevents a decrease in humidity in a cool box and maintains a high relative humidity.

【0002】[0002]

【従来の技術】冷蔵庫のように、保冷庫内(以下「庫
内」という。)の温度を目標の温度以下に維持する冷凍
装置では、庫内の温度を検知して、その検知温度に応じ
て冷媒圧縮機の作動と停止を制御することによって冷凍
サイクルにおける蒸発器の冷凍能力の調節が行われる。
この場合、一般に庫内を冷却する蒸発器の温度と庫内温
度とには差があり、庫内空気は蒸発器の温度まで一旦冷
却された後に他の空気と混合して、庫内の温度が目標温
度以下に維持される。また、冷凍装置では、庫内空気が
冷却されると絶対湿度Φが低下するため、それに伴って
庫内の相対湿度φが低下しやすい。ここで、庫内の相対
湿度φは、必ずしも庫内温度のみに対応したものとはな
らず、図6に示すとおり、維持される庫内温度が温度T
1であっても、蒸発器の温度がTe1のときには、その
温度Te1に対する絶対湿度Φ1を庫内温度T1におけ
る水蒸気量とする点Mで示される相対湿度φ1まで下が
りやすくなり、蒸発器の温度がTe1より低いTe2の
ときには、その温度Te2に対する絶対湿度Φ2を庫内
温度T1における水蒸気量とする点Nで示される相対湿
度φ2(但しφ1>φ2)まで下がりやすくなり、一般
に蒸発器の温度Teが低い場合ほど相対湿度φは低い値
になる。なお、図6において、実線Aは温度に対する絶
対湿度Φの飽和線を示し、破線B、Cは、相対湿度φ
1、φ2となる場合の各温度に対する絶対湿度Φの値を
示す。
2. Description of the Related Art A refrigerator, such as a refrigerator, which keeps the temperature inside a cool box (hereinafter referred to as "inside box") below a target temperature, detects the temperature inside the box and responds to the detected temperature. By controlling the operation and stop of the refrigerant compressor, the refrigerating capacity of the evaporator in the refrigerating cycle is adjusted.
In this case, in general, there is a difference between the temperature of the evaporator that cools the inside of the refrigerator and the temperature of the inside of the refrigerator, and the air inside the refrigerator is once cooled to the temperature of the evaporator and then mixed with other air. Is maintained below the target temperature. Further, in the refrigeration system, when the air inside the refrigerator is cooled, the absolute humidity Φ decreases, so that the relative humidity φ inside the refrigerator easily decreases accordingly. Here, the relative humidity φ in the refrigerator does not always correspond to only the temperature in the refrigerator, and as shown in FIG.
Even if it is 1, when the temperature of the evaporator is Te1, the relative humidity Φ1 with respect to the temperature Te1 easily falls to the relative humidity Φ1 indicated by the point M which is the amount of water vapor at the internal temperature T1. When Te2 is lower than Te1, the relative humidity φ2 with respect to the temperature Te2 tends to decrease to the relative humidity φ2 (where φ1> φ2) indicated by the point N at which the amount of water vapor at the internal temperature T1 is obtained, and the temperature Te of the evaporator is generally decreased. The lower the relative humidity, the lower the relative humidity φ. In FIG. 6, a solid line A indicates a saturation line of absolute humidity Φ with respect to temperature, and broken lines B and C indicate relative humidity φ.
The values of absolute humidity Φ with respect to each temperature when 1 and φ2 are shown.

【0003】このため、庫内の食品その他の冷却物を乾
燥させないようにするために、大型の蒸発器を用いて蒸
発器の大きさに対して蒸発する冷媒量の割合を少なくす
ることによって蒸発器における冷媒の蒸発温度を高く設
定したものや、庫内の壁に蒸発器を埋め込み、庫内壁と
蒸発器との間の壁面を2重構造にして庫内空気の冷却面
の温度と庫内温度との温度差を小さくしたものなどのよ
うに、庫内空気が蒸発器によって冷却される際に、その
冷却温度が低くなりにくい構造によって庫内の湿度を下
がりにくくした高湿度の冷凍装置がある。
For this reason, in order to prevent the food and other cooling products in the refrigerator from being dried, a large-sized evaporator is used to reduce the ratio of the amount of refrigerant to be evaporated with respect to the size of the evaporator. Where the evaporation temperature of the refrigerant in the container is set high, or the evaporator is embedded in the inside wall of the container and the wall between the inside wall and the evaporator has a double structure, and the temperature of the cooling surface of the inside air and the inside of the container There is a high-humidity refrigeration system that makes it difficult to reduce the humidity inside the refrigerator due to the structure that makes it difficult to lower the cooling temperature when the air inside the refrigerator is cooled by the evaporator, such as the one with a smaller temperature difference from the temperature. is there.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の高湿度
の冷凍装置は、蒸発器が大型化しあるいは保冷庫の構造
が大変複雑であるため高価格になるとともに、蒸発器が
大型化されない場合には、冷却能力が弱められて庫内空
気の冷却温度を高くすることによって高湿度を維持する
ようにされているため、特に移動式冷凍装置(コールド
ロールボックス)などにおいては、運転初期や保冷庫の
扉が開放された直後などのように庫内温度が高い場合や
庫内の温度が上昇した場合などには、蒸発器等が小さい
と庫内温度が目標温度まで下がるのに時間が掛かり、速
やかに庫内温度を下げることができないという問題があ
る。
However, the above-mentioned high-humidity refrigerating apparatus is expensive when the evaporator is large or the structure of the cool box is very complicated, and when the evaporator is not large. Is designed to maintain high humidity by lowering the cooling capacity and raising the cooling temperature of the air inside the refrigerator, so especially in the mobile refrigeration system (cold roll box), etc. When the inside temperature is high, such as immediately after the door is opened, or when the inside temperature rises, it takes time for the inside temperature to drop to the target temperature if the evaporator is small, There is a problem that the internal temperature cannot be lowered promptly.

【0005】本発明は、庫内温度が高い場合に速やかに
冷却できるとともに、その際に、庫内の湿度を低下させ
ることなく高湿度を維持することができる冷凍装置を提
供することを目的とする。
An object of the present invention is to provide a refrigerating apparatus which can cool quickly when the temperature inside the refrigerator is high, and can maintain high humidity at that time without lowering the humidity inside the refrigerator. To do.

【0006】[0006]

【課題を解決するための手段】本発明は、冷媒圧縮機、
凝縮器、固定絞り部材、蒸発器を順に接続して冷凍サイ
クルを形成し前記蒸発器を保冷庫内に配置するととも
に、前記保冷庫内の温度を検知する温度検知手段の検知
温度に基づいて前記冷媒圧縮機を制御して前記保冷庫内
の温度を目標温度以下に維持する冷凍装置において、開
閉弁および絞り部材を有し前記冷媒圧縮機の吸入側と吐
出側とを連通する側路を設け、前記温度検知手段の検知
温度が、前記目標温度に対して所定の関係で高く設定さ
れた基準温度より高い場合には前記開閉弁を閉じ、前記
基準温度より低い場合には前記開閉弁を開くことを技術
的手段とする。
The present invention provides a refrigerant compressor,
A condenser, a fixed throttle member, and an evaporator are connected in sequence to form a refrigeration cycle, the evaporator is placed in a cool box, and the temperature is detected on the basis of the temperature detected by a temperature detecting means for detecting the temperature in the cool box. In a refrigeration system that controls a refrigerant compressor to maintain the temperature in the cold storage below a target temperature, a side passage that has an on-off valve and a throttle member and connects the suction side and the discharge side of the refrigerant compressor is provided. When the temperature detected by the temperature detecting means is higher than a reference temperature that is set high in a predetermined relationship with the target temperature, the on-off valve is closed, and when the temperature is lower than the reference temperature, the on-off valve is opened. That is the technical means.

【0007】[0007]

【作用】本発明では、冷凍サイクルにおいて開閉弁が閉
じている場合には、冷媒圧縮機から吐出される冷媒はす
べて、凝縮器、固定絞り部材、蒸発器を循環し、蒸発器
には多量の冷媒が供給されて蒸発器で蒸発する冷媒量が
多くなるため、大きな冷凍能力が得られ、蒸発器の温度
が低くなる。逆に、開閉弁が開いている場合には、冷媒
圧縮機から吐出された冷媒の一部は、蒸発器等を循環し
ないで冷媒圧縮機へ直接戻されて蒸発器へ供給される冷
媒量が少なくなるため、冷凍能力が小さくなり、蒸発器
の温度が高くなる。
In the present invention, when the on-off valve is closed in the refrigeration cycle, all the refrigerant discharged from the refrigerant compressor circulates through the condenser, the fixed throttle member and the evaporator, and a large amount of refrigerant is stored in the evaporator. Since the refrigerant is supplied and the amount of the refrigerant evaporated in the evaporator increases, a large refrigerating capacity is obtained and the temperature of the evaporator becomes low. On the contrary, when the on-off valve is open, a part of the refrigerant discharged from the refrigerant compressor is directly returned to the refrigerant compressor without being circulated in the evaporator and the amount of the refrigerant supplied to the evaporator is small. Since the amount decreases, the refrigerating capacity decreases and the temperature of the evaporator rises.

【0008】従って、保冷庫内の検知温度が目標温度に
対して所定の関係で高く設定された基準温度より高い場
合には、開閉弁が閉じられて、蒸発器の冷凍能力が大き
くなるため、保冷庫内の温度を速やかに下げることがで
きる。このとき、蒸発器の温度は低めになり、庫内空気
の温度低下幅が大きくなるが、庫内空気の温度は、目標
温度に対して高く設定されている基準温度より高い場合
であるため、蒸発器による温度低下幅が大きくても、目
標温度に対しては低過ぎることがない。保冷庫内の検知
温度が基準温度より低い場合には、開閉弁が開いて冷凍
能力が小さくなるため、蒸発器の温度が高めになり、保
冷庫内の湿度を低下させることなく目標温度以下に維持
することができる。従って、保冷庫内の温度に関係な
く、保冷庫内の空気が目標温度に対して過剰に冷却され
ることがなく、保冷庫内空気中に含まれる水蒸気が凝縮
しにくいため、保冷庫内を高湿度に維持することができ
る。
Therefore, when the detected temperature in the cool box is higher than the reference temperature which is set higher than the target temperature in a predetermined relationship, the on-off valve is closed and the refrigerating capacity of the evaporator is increased. The temperature in the cool box can be quickly lowered. At this time, the temperature of the evaporator becomes low, and the temperature decrease range of the internal air becomes large, but the temperature of the internal air is higher than the reference temperature that is set higher than the target temperature. Even if the temperature decrease range by the evaporator is large, it is not too low with respect to the target temperature. When the detected temperature in the cool box is lower than the reference temperature, the on-off valve opens and the refrigerating capacity becomes smaller.Therefore, the temperature of the evaporator becomes higher and the temperature in the cool box becomes lower than the target temperature without lowering the humidity. Can be maintained. Therefore, regardless of the temperature in the cool box, the air in the cool box is not excessively cooled to the target temperature, and the water vapor contained in the air in the cool box is less likely to condense. It can be maintained at high humidity.

【0009】[0009]

【発明の効果】本発明では、保冷庫内の温度が高い場合
には、冷凍能力が大きくなるため、運転開始初期や保冷
庫のドアの開放後などには、速やかに保冷庫温度を下げ
ることができる。また、保冷庫内の温度が低い場合に
は、冷凍能力が下がるため、高湿度運転を行いながら保
冷庫内の温度を目標温度以下に維持することができる。
According to the present invention, the refrigerating capacity is increased when the temperature inside the cool box is high. Therefore, the cool box temperature should be lowered promptly at the beginning of operation or after the door of the cool box is opened. You can Further, when the temperature in the cool box is low, the refrigerating capacity is lowered, so that the temperature in the cool box can be maintained below the target temperature while performing high humidity operation.

【0010】[0010]

【実施例】次に本発明を車載用のコールドロールボック
スとして用いられる冷凍装置1の実施例に基づいて説明
する。図1に示す冷凍装置1は、冷凍サイクル10とし
て、冷媒圧縮機11、凝縮器(コンデンサ)12、キャ
ピラリ13、蒸発器(エバポレータ)14、アキュムレ
ータ15を管路部材によって循環路を形成するように接
続し、蒸発器14を断熱材等により形成された保冷庫2
内に配して、保冷庫2内を冷却するようにしたもので、
さらに、保冷庫2内の湿度を低下させることなく高湿度
に維持するために、凝縮器12の上流側と蒸発器14の
下流側とを電磁弁16およびキャピラリ17とを直列に
接続したバイパス18により接続して、蒸発器14を通
過する冷媒量の調節ができるようにしている。ここで、
電磁弁16が開いた場合には、破線矢印で示すように、
冷凍サイクル10内を循環する冷媒の一部がバイパス1
8を通過して冷媒圧縮機11へ戻るため、蒸発器14を
通過する冷媒量が減少する。これにより、電磁弁16が
開状態の場合には、蒸発器14の冷却能力は低下して、
蒸発器14による冷却される庫内空気の温度低下が小さ
くなり、目標温度に対して過剰な冷却が行われなくなる
ため、庫内の湿度を低下させることなく、高湿度に維持
することができる。また、電磁弁16が閉じる場合に
は、実線矢印で示すように、冷媒圧縮機11によって循
環される冷媒がすべて蒸発器14を通過することになる
ため、蒸発器14の冷却能力が大きくなる。従って、庫
内の温度を速やかに下げることができる。なお、保冷庫
2内の蒸発器14には、保冷庫2内の強制対流を行う冷
却ファン3が備えられ、また、凝縮器12には、放熱フ
ァン4が備えられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described based on an embodiment of a refrigerating apparatus 1 used as an on-vehicle cold roll box. In the refrigeration system 1 shown in FIG. 1, as a refrigeration cycle 10, a refrigerant compressor 11, a condenser (condenser) 12, a capillary 13, an evaporator (evaporator) 14, and an accumulator 15 form a circulation path by a conduit member. A cool box 2 that is connected and has the evaporator 14 formed of a heat insulating material or the like.
It is arranged inside to cool the inside of the cool box 2.
Further, in order to maintain the humidity in the cool box 2 at a high level without lowering the humidity, a bypass 18 in which an upstream side of the condenser 12 and a downstream side of the evaporator 14 are connected in series with a solenoid valve 16 and a capillary 17 is provided. The amount of refrigerant passing through the evaporator 14 can be adjusted by connecting the above. here,
When the solenoid valve 16 is opened, as indicated by a dashed arrow,
Part of the refrigerant circulating in the refrigeration cycle 10 is the bypass 1
8 and returns to the refrigerant compressor 11, the amount of refrigerant passing through the evaporator 14 decreases. As a result, when the solenoid valve 16 is in the open state, the cooling capacity of the evaporator 14 decreases,
Since the temperature of the air inside the refrigerator to be cooled by the evaporator 14 is reduced and the target temperature is not excessively cooled, it is possible to maintain high humidity without lowering the humidity inside the refrigerator. Further, when the solenoid valve 16 is closed, all the refrigerant circulated by the refrigerant compressor 11 passes through the evaporator 14 as indicated by the solid arrow, so that the cooling capacity of the evaporator 14 becomes large. Therefore, it is possible to quickly reduce the temperature inside the refrigerator. The evaporator 14 in the cool box 2 is provided with a cooling fan 3 for performing forced convection in the cool box 2, and the condenser 12 is provided with a heat radiating fan 4.

【0011】以上の構成からなる冷凍サイクル10は、
制御装置20により保冷庫2内の温度制御および蒸発器
14の冷凍能力制御が行われる。制御装置20は、図2
に示すとおり、商用電源あるいは車載発電機等の交流電
源Lにより供給される電力により作動するもので、電源
トランス21、ブリッジ接続された4個のダイオードに
よるレクティファイヤ22、コンデンサ23により直流
に変換されたる制御電源により作動する制御部24と、
交流電源Lにより直接駆動される駆動部30とからな
る。制御部24には、制御回路25と、制御回路25に
制御される圧縮機リレー26、電磁弁リレー27、冷却
ファンリレー28と、冷却ファンリレー28の接点28
aに接続された冷却ファン3のファンモータ3aが設け
られている。また制御回路25は、各リレーを制御する
ために、保冷庫2内の温度を検知するためのサーミスタ
29を備えている。
The refrigerating cycle 10 having the above structure is
The controller 20 controls the temperature inside the cool box 2 and the refrigerating capacity of the evaporator 14. The control device 20 is shown in FIG.
As shown in, it is operated by electric power supplied from an AC power source L such as a commercial power source or an in-vehicle generator, and is converted into direct current by a power transformer 21, a rectifier 22 with four diodes connected in a bridge, and a capacitor 23. A control unit 24 operated by a barrel control power supply;
The driving unit 30 is directly driven by the AC power supply L. The control unit 24 includes a control circuit 25, a compressor relay 26 controlled by the control circuit 25, an electromagnetic valve relay 27, a cooling fan relay 28, and a contact 28 of the cooling fan relay 28.
A fan motor 3a of the cooling fan 3 connected to a is provided. Further, the control circuit 25 includes a thermistor 29 for detecting the temperature inside the cool box 2 in order to control each relay.

【0012】駆動部30には、冷凍サイクル10におけ
る冷媒圧縮機11を駆動するための交流電動機31と、
始動用コンデンサ、始動用リレーおよび運転用コンデン
サからなり交流電動機31を運転する誘導回路32と、
誘導回路32を制御するために誘導回路32に設けられ
た接点33aを開閉する電磁接触器33と、電磁接触器
33に並列接続され放熱ファン4の駆動モータ4aと、
電磁弁16のコイル16aとが設けられている。電磁接
触器33および駆動モータ4aは、圧縮機リレー26の
接点26aを介して交流電源Lと接続され、また、電磁
弁16のコイル16aは、電磁弁リレー27の接点27
aを介して交流電源Lと接続されている。なお、制御装
置20内には、交流電源Lとの間にサーキットブレーカ
が設けられている。
The drive unit 30 includes an AC electric motor 31 for driving the refrigerant compressor 11 in the refrigeration cycle 10,
An induction circuit 32 for operating the AC electric motor 31, which includes a starting capacitor, a starting relay, and a driving capacitor;
An electromagnetic contactor 33 for opening and closing a contact 33a provided in the induction circuit 32 for controlling the induction circuit 32; a drive motor 4a for the heat dissipation fan 4 connected in parallel to the electromagnetic contactor 33;
The coil 16a of the solenoid valve 16 is provided. The electromagnetic contactor 33 and the drive motor 4a are connected to the AC power source L via the contact 26a of the compressor relay 26, and the coil 16a of the solenoid valve 16 is connected to the contact 27 of the solenoid valve relay 27.
It is connected to the AC power supply L via a. A circuit breaker is provided in the control device 20 between it and the AC power supply L.

【0013】次に、制御回路25による冷凍サイクル1
0の制御について説明する。制御回路25は、保冷庫3
内のサーミスタ29の検知温度Tに基づいて、冷媒圧縮
機11の作動および停止を制御して、保冷庫2内の温度
を目標温度Ta以下に維持する温調制御と、保冷庫2内
の温度が高くなった場合に、速やかに温度を下げるとと
もに、保冷庫2内を高湿度に維持するための冷凍能力制
御とを行う。温調制御では、検知温度Tが目標温度Ta
に対して高い場合に、冷媒圧縮機11を作動させ、検知
温度Tが目標温度Taより低い場合に冷媒圧縮機11を
停止させる。また、冷媒圧縮機11の作動停止と連動し
て、冷却ファン3および放熱ファン4の作動停止の制御
を行う。冷凍能力制御では、保冷庫2内の湿度が低下し
ないようにしつつ、保冷庫2内の温度をできる限り速や
かに目標温度Ta以下にするために、検知温度Tに応じ
て、蒸発器14の冷却能力を制御する。ここでは、冷媒
圧縮機11が駆動されているときの保冷庫2内の検知温
度Tを、保冷庫2の目標温度Taに対して所定温度ΔT
αだけ高い基準温度Ts(=Ta+ΔTα;但しΔTα
>0)と比較して、検知温度Tが基準温度Tsを越える
場合には、電磁弁16を閉状態にして冷媒圧縮機11に
よる循環される冷媒を全て凝縮器12および蒸発器14
を通過させるようにして、蒸発器14による冷凍能力を
大きくし、検知温度Tが基準温度Ts以下の場合には、
電磁弁16を開状態にして冷媒圧縮機11により循環さ
れる冷媒の一部を蒸発器14等を通過させないでアキュ
ムレータ15を介して冷媒圧縮機11へ直接戻すように
して、蒸発器14による冷凍能力を小さくする。
Next, the refrigeration cycle 1 by the control circuit 25
The control of 0 will be described. The control circuit 25 is used for the cool box 3
Based on the temperature T detected by the thermistor 29 therein, temperature control in which the operation of the refrigerant compressor 11 is controlled and the temperature inside the cool box 2 is maintained below the target temperature Ta, and the temperature inside the cool box 2 is controlled. When the temperature rises, the temperature is quickly lowered and the refrigerating capacity is controlled to maintain the inside of the cool box 2 at high humidity. In the temperature control, the detected temperature T is the target temperature Ta.
When the detected temperature T is lower than the target temperature Ta, the refrigerant compressor 11 is stopped, and the refrigerant compressor 11 is stopped. Further, in conjunction with the operation stop of the refrigerant compressor 11, the operation stop of the cooling fan 3 and the heat radiation fan 4 is controlled. In the refrigerating capacity control, the evaporator 14 is cooled according to the detected temperature T in order to keep the temperature in the cool box 2 at the target temperature Ta or less as quickly as possible while preventing the humidity in the cool box 2 from decreasing. Control the ability. Here, the detected temperature T in the cool box 2 when the refrigerant compressor 11 is driven is a predetermined temperature ΔT with respect to the target temperature Ta of the cool box 2.
Reference temperature Ts (= Ta + ΔTα that is higher by α; however, ΔTα
> 0), when the detected temperature T exceeds the reference temperature Ts, the electromagnetic valve 16 is closed and all the refrigerant circulated by the refrigerant compressor 11 is condensed by the condenser 12 and the evaporator 14.
To increase the refrigerating capacity of the evaporator 14 and the detected temperature T is equal to or lower than the reference temperature Ts,
The electromagnetic valve 16 is opened to directly return a part of the refrigerant circulated by the refrigerant compressor 11 to the refrigerant compressor 11 via the accumulator 15 without passing through the evaporator 14 or the like, and the freezing by the evaporator 14 is performed. Reduce capacity.

【0014】次に、以上の構成からなる本実施例の冷凍
装置1の作動を図3を参考にして説明する。制御回路2
5は、図示のない電源スイッチが投入されると、冷媒圧
縮機11を駆動するために圧縮機リレー26を通電して
接点26aを閉じる。これによって、駆動モータ4aが
作動して放熱ファン4が作動するとともに、電磁接触器
33の接点33aが閉じて誘導回路32によって交流電
動機31が始動し、冷媒圧縮機11が作動する(ステッ
プS1)。また、このとき、冷却ファンリレー28も通
電されて接点28aが閉じられるため、ファンモータ3
aが通電されて冷却ファン3も作動する。交流電動機3
1が回転を始めると、冷凍サイクル10においては、冷
媒圧縮機11が冷媒を圧縮して吐出するため、冷凍サイ
クル10内の冷媒は、凝縮器12、キャピラリ13、蒸
発器14、アキュムレータ15を順に通過する。また、
サーミスタ29の検知温度Tに基づいて電磁弁リレー2
7が制御され、検知温度Tが基準温度Tsより高い場合
には(ステップS2においてNO)、接点27aが開
き、コイル16aが通電されないため、電磁弁16は閉
状態に制御され(ステップS3)、冷媒圧縮機11から
供給される冷媒は、すべて蒸発器14を通過するため、
冷凍能力が大きくなる。逆に、検知温度Tが基準温度T
sより低い場合には(ステップS2においてYES)、
接点27aが閉じ、コイル16aが通電されるため、電
磁弁16は開状態に制御され(ステップS4)、冷媒圧
縮機11から供給される冷媒の一部は、蒸発器14を通
過しないで冷媒圧縮機11へ戻るため、冷凍能力が小さ
くなる。この間、凝縮器12では、高温高圧の気相冷媒
が放熱ファン4の送風等により冷却されて液状冷媒に変
化し、キャピラリ13を通過して蒸発器14内へ少量ず
つ流入した液状冷媒は、蒸発器14で保冷庫2内の熱を
奪って蒸発して蒸発器14を冷却させ、再び気相冷媒と
なって冷媒圧縮機11へ吸い込まれる。
Next, the operation of the refrigerating apparatus 1 of the present embodiment having the above construction will be described with reference to FIG. Control circuit 2
When a power switch (not shown) is turned on, 5 turns on the compressor relay 26 to drive the refrigerant compressor 11 and closes the contact 26a. As a result, the drive motor 4a operates to operate the heat dissipation fan 4, the contact 33a of the electromagnetic contactor 33 closes, the induction circuit 32 starts the AC electric motor 31, and the refrigerant compressor 11 operates (step S1). .. At this time, the cooling fan relay 28 is also energized and the contact 28a is closed.
When a is energized, the cooling fan 3 also operates. AC motor 3
When 1 starts rotating, in the refrigeration cycle 10, the refrigerant compressor 11 compresses and discharges the refrigerant, so that the refrigerant in the refrigeration cycle 10 sequentially passes through the condenser 12, the capillary 13, the evaporator 14, and the accumulator 15. pass. Also,
Based on the temperature T detected by the thermistor 29, the solenoid valve relay 2
7 is controlled, and when the detected temperature T is higher than the reference temperature Ts (NO in step S2), the contact 27a is opened and the coil 16a is not energized, so the solenoid valve 16 is controlled to be in the closed state (step S3), Since all the refrigerant supplied from the refrigerant compressor 11 passes through the evaporator 14,
Freezing capacity increases. Conversely, the detected temperature T is the reference temperature T
When it is lower than s (YES in step S2),
Since the contact 27a is closed and the coil 16a is energized, the solenoid valve 16 is controlled to be in the open state (step S4), and a part of the refrigerant supplied from the refrigerant compressor 11 does not pass through the evaporator 14 and is compressed by the refrigerant. Since it returns to the machine 11, the refrigerating capacity is reduced. In the meantime, in the condenser 12, the high-temperature and high-pressure gas-phase refrigerant is cooled by the airflow of the heat radiating fan 4 and changed into the liquid refrigerant, and the liquid refrigerant that has passed through the capillary 13 into the evaporator 14 little by little is evaporated. The heat in the cool box 2 is taken by the container 14 to evaporate and cool the evaporator 14, and again becomes a gas-phase refrigerant and is sucked into the refrigerant compressor 11.

【0015】従って、蒸発器14の温度は、図4に示す
とおり、電磁弁16が閉状態で冷凍能力が大きい場合に
は、蒸発器14を通過する大量の冷媒循環量に対応し
て、点Xで示されるとおり、保冷庫2内の温度に対して
大幅に低くなり、逆に、電磁弁16が開状態で冷凍能力
が小さい場合には、蒸発器14を通過する少量の冷媒循
環量に対応して、点Yで示されるとおり、保冷庫2内の
温度に対してそれほど低い値にはならない。その後は、
検知温度Tが、目標温度Taと比較され、検知温度Tが
目標温度Taより高い場合には(ステップS5において
NO)、ステップS1へ移行して、以上のステップを繰
り返し、検知温度Tがさらに下がり、検知温度Tが目標
温度Ta以下になった場合には(ステップS5において
YES)、圧縮機リレー26への通電が停止して接点2
6aが開き、電磁接触器33の接点33aが開いて交流
電動機31の駆動が停止されて冷媒圧縮機11が停止し
(ステップS6)、同時に放熱ファン4の駆動も停止す
る。また、このとき、電磁弁リレー27への通電を停止
して、電磁弁16を閉じるとともに、冷却ファン3の駆
動も停止する。その後、ステップS5へ移行して、検知
温度Tが目標温度Taより高くなるまで、冷媒圧縮機1
1を停止して、冷凍サイクル10の運転を停止する。
Therefore, as shown in FIG. 4, when the electromagnetic valve 16 is closed and the refrigerating capacity is high, the temperature of the evaporator 14 corresponds to a large amount of refrigerant circulation passing through the evaporator 14. As indicated by X, the temperature is significantly lower than the temperature inside the cool box 2, and conversely, when the electromagnetic valve 16 is open and the refrigerating capacity is small, a small amount of refrigerant circulating through the evaporator 14 is generated. Correspondingly, as indicated by the point Y, the value does not become so low with respect to the temperature inside the cool box 2. After that,
The detected temperature T is compared with the target temperature Ta, and when the detected temperature T is higher than the target temperature Ta (NO in step S5), the process proceeds to step S1 and the above steps are repeated to further decrease the detected temperature T. When the detected temperature T becomes equal to or lower than the target temperature Ta (YES in step S5), the energization of the compressor relay 26 is stopped and the contact 2
6a is opened, the contact 33a of the electromagnetic contactor 33 is opened, the driving of the AC motor 31 is stopped, the refrigerant compressor 11 is stopped (step S6), and at the same time, the driving of the heat radiation fan 4 is stopped. At this time, the solenoid valve relay 27 is de-energized, the solenoid valve 16 is closed, and the driving of the cooling fan 3 is stopped. Then, the process proceeds to step S5, and the refrigerant compressor 1 is operated until the detected temperature T becomes higher than the target temperature Ta.
1 to stop the operation of the refrigeration cycle 10.

【0016】以上の制御動作を行うことにより、本実施
例の冷凍装置1は、運転を開始してから検知温度Tが基
準温度Tsに下がるまでは、電磁弁16が閉じられて大
きな冷凍能力で運転され、基準温度Tsより低くなる
と、電磁弁16が開いて、冷凍能力が小さくなって高湿
度運転が行われる。この結果、図5に示すとおり、比較
的短時間で保冷庫2内の温度を下げることができるとと
もに、基準温度Ts以下においては、高湿度運転が行わ
れるため、保冷庫2内の湿度を低下させることがない。
By performing the above control operation, in the refrigerating apparatus 1 of this embodiment, the electromagnetic valve 16 is closed with a large refrigerating capacity from the start of operation until the detected temperature T drops to the reference temperature Ts. When it is operated and becomes lower than the reference temperature Ts, the solenoid valve 16 is opened, the refrigerating capacity is reduced, and high humidity operation is performed. As a result, as shown in FIG. 5, the temperature in the cool box 2 can be lowered in a relatively short time, and the humidity in the cool box 2 is lowered because the high-humidity operation is performed at the reference temperature Ts or lower. There is nothing to do.

【0017】なお上記の実施例において、目標温度Ta
および基準温度Tsは、いずれも、所定の温度幅を与え
て設定されるもので、冷媒圧縮機11の作動開始温度と
停止温度、電磁弁16の開成温度と閉成温度には、それ
ぞれ異なる温度が設定されている。
In the above embodiment, the target temperature Ta
Both the reference temperature Ts and the reference temperature Ts are set by giving a predetermined temperature range, and the operation start temperature and the stop temperature of the refrigerant compressor 11 and the opening temperature and the closing temperature of the solenoid valve 16 are different temperatures. Is set.

【0018】以上のとおり、本実施例によれば、電力が
供給されてから比較的短時間で、保冷庫内の温度を目標
温度まで冷却することができるとともに、保冷庫内の湿
度を高湿度に維持することができる。従って、常時冷凍
サイクルを運転する必要がないような用途、例えば、生
産地から市場へ食品等を輸送する場合のように、片道の
みに冷却が必要な用途等においては、輸送前の冷凍サイ
クルの運転時間を短くすることができるため、効率がよ
い。上記の実施例では、開閉弁として電磁弁を用いた
が、二方弁でもよい。上記の実施例では、交流電源を利
用した交流電動機によって冷媒圧縮機を駆動するものを
示したが、エンジンによって駆動するものでもよい。
As described above, according to this embodiment, the temperature in the cool box can be cooled to the target temperature in a relatively short time after the power is supplied, and the humidity in the cool box can be kept high. Can be maintained at. Therefore, in applications where it is not necessary to operate the refrigeration cycle at all times, for example, in cases where food or the like is transported from the production site to the market, where cooling is required for only one way, etc. Efficiency is good because the operating time can be shortened. Although the solenoid valve is used as the on-off valve in the above embodiment, a two-way valve may be used. In the above embodiment, the refrigerant compressor is driven by the AC electric motor using the AC power source, but it may be driven by the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の冷凍装置を示す概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a refrigerating apparatus according to an embodiment of the present invention.

【図2】本発明の実施例の冷凍装置の制御装置を示す電
気回路図である。
FIG. 2 is an electric circuit diagram showing a control device of the refrigerating apparatus according to the embodiment of the present invention.

【図3】本発明の実施例の冷凍装置の制御動作を示すフ
ローチャートである。
FIG. 3 is a flowchart showing a control operation of the refrigerating apparatus according to the embodiment of the present invention.

【図4】本発明の実施例の冷凍装置の蒸発器における冷
媒量に対する温度低下を説明するための特性図である。
FIG. 4 is a characteristic diagram for explaining the temperature decrease with respect to the amount of refrigerant in the evaporator of the refrigeration system of the embodiment of the present invention.

【図5】本発明の冷凍装置の効果を説明するための庫内
温度の変化を示すタイムチャートである。
FIG. 5 is a time chart showing changes in the internal cold storage temperature for explaining the effect of the refrigerating apparatus of the present invention.

【図6】冷凍装置における庫内温度および蒸発器温度と
絶対湿度および相対湿度との関係を説明するための温度
に対する絶対湿度を示す特性図である。
FIG. 6 is a characteristic diagram showing the absolute humidity with respect to the temperature for explaining the relationship between the internal temperature and the evaporator temperature and the absolute humidity and the relative humidity in the refrigerating apparatus.

【符号の説明】[Explanation of symbols]

1 冷凍装置 2 保冷庫 10 冷凍サイクル 11 冷媒圧縮機 12 凝縮器 13 キャピラリ(固定絞り部材) 14 蒸発器 16 電磁弁(開閉弁) 17 キャピラリ(絞り部材) 18 バイパス(側路) 29 サーミスタ(温度検知手段) 1 Refrigerator 2 Refrigerator 10 Refrigeration Cycle 11 Refrigerant Compressor 12 Condenser 13 Capillary (fixed throttle member) 14 Evaporator 16 Electromagnetic valve (open / close valve) 17 Capillary (throttle member) 18 Bypass (bypass) 29 Thermistor (temperature detection) means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒圧縮機、凝縮器、固定絞り部材、蒸
発器を順に接続して冷凍サイクルを形成し前記蒸発器を
保冷庫内に配置するとともに、前記保冷庫内の温度を検
知する温度検知手段の検知温度に基づいて前記冷媒圧縮
機を制御して前記保冷庫内の温度を目標温度以下に維持
する冷凍装置において、 開閉弁および絞り部材を有し前記冷媒圧縮機の吸入側と
吐出側とを連通する側路を設け、前記温度検知手段の検
知温度が、前記目標温度に対して所定の関係で高く設定
された基準温度より高い場合には前記開閉弁を閉じ、前
記基準温度より低い場合には前記開閉弁を開くことを特
徴とする冷凍装置。
1. A temperature at which a refrigerant compressor, a condenser, a fixed throttle member, and an evaporator are sequentially connected to form a refrigeration cycle, the evaporator is arranged in a cold storage, and the temperature in the cold storage is detected. In a refrigeration system for controlling the refrigerant compressor based on the temperature detected by a detection means to maintain the temperature inside the cold storage below a target temperature, an on-off valve and a throttle member are provided and a suction side and a discharge side of the refrigerant compressor. A side passage communicating with the side is provided, and when the temperature detected by the temperature detecting means is higher than a reference temperature set high in a predetermined relationship with respect to the target temperature, the on-off valve is closed and the temperature is higher than the reference temperature. A refrigerating apparatus which opens the on-off valve when the temperature is low.
JP32036791A 1991-12-04 1991-12-04 Refrigerating device Pending JPH05157427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32036791A JPH05157427A (en) 1991-12-04 1991-12-04 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32036791A JPH05157427A (en) 1991-12-04 1991-12-04 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH05157427A true JPH05157427A (en) 1993-06-22

Family

ID=18120688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32036791A Pending JPH05157427A (en) 1991-12-04 1991-12-04 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH05157427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309585A (en) * 2006-05-18 2007-11-29 Daikin Ind Ltd Refrigerating device
JP2016042012A (en) * 2014-08-18 2016-03-31 ポール ミュラー カンパニー System and method for operating refrigeration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309585A (en) * 2006-05-18 2007-11-29 Daikin Ind Ltd Refrigerating device
JP2016042012A (en) * 2014-08-18 2016-03-31 ポール ミュラー カンパニー System and method for operating refrigeration system

Similar Documents

Publication Publication Date Title
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
KR900008901B1 (en) Air conditioner for vehicle and refrigeration system for refrigerator
EP2180278B1 (en) Control of pull-down in refrigeration systems
JP2010101618A (en) Control of refrigerating state of cargo
EP2795205A1 (en) Method of operating refrigeration system and refrigeration system
JPH05157427A (en) Refrigerating device
JP2002298210A (en) Vending machine control device
JP5137742B2 (en) refrigerator
US3455118A (en) Fan speed control for refrigeration system
JP2002081844A (en) Refrigerator
JPH09189460A (en) Refrigerating device
US2657543A (en) Method and apparatus for maintaining temperature and humidity constant
RU2230265C2 (en) Operation method for vapor-compression cooling machine and cooling machine for method implementation
JPH07305904A (en) Freezer
JPH0338593Y2 (en)
JP2512866Y2 (en) Ice making device for vehicle cold storage
JPH082243A (en) Cold/warm store for vehicle
JP4362985B2 (en) Vending machine controller
JPH07139863A (en) Refrigerator
KR100207086B1 (en) Refrigerator defrost operating control method
JPS61231378A (en) Method of operating cryogenic warehouse
Banu UEE: Other Applications of Electrical Engineering
JPS599040B2 (en) Refrigeration equipment control device
KR100234096B1 (en) Refrigerator and controlling method of thermal thereof
JPH109745A (en) Low temperature refrigerator