JPH05157134A - Disk brake rotor - Google Patents

Disk brake rotor

Info

Publication number
JPH05157134A
JPH05157134A JP34780691A JP34780691A JPH05157134A JP H05157134 A JPH05157134 A JP H05157134A JP 34780691 A JP34780691 A JP 34780691A JP 34780691 A JP34780691 A JP 34780691A JP H05157134 A JPH05157134 A JP H05157134A
Authority
JP
Japan
Prior art keywords
layer
hardened layer
sliding surface
rotor
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34780691A
Other languages
Japanese (ja)
Inventor
Kenji Shimoda
健二 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34780691A priority Critical patent/JPH05157134A/en
Publication of JPH05157134A publication Critical patent/JPH05157134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PURPOSE:To provide a disk brake which is excellent in wear resistance and ensures a given friction factor. CONSTITUTION:A disk brake rotor comprises a rotor body 1 having a slide surface 10 formed of a base material being cast iron having flake graphite and narrow cured layers 3 formed in a radiation pattern and molten through irradiation with laser beams and cooled and exposed to the slide surface 10, and a ratio of the areas of the cured layers to that of the whole of the slide surfaces 10 is 10-40%. The cured layer 3 comprises a chilled layer 3a formed of cementite being main texture and formed through solidification of molten liquid and an annealed layer 3b formed below the chilled layer 3a and of martensite being main texture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は黒鉛をもつ鋳鉄を母材と
する摺動面を備えたディスクブレーキロータに関する。
このディスクブレーキロータは例えば自動車に適用でき
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disc brake rotor having a sliding surface having a cast iron with graphite as a base material.
This disc brake rotor can be applied to, for example, an automobile.

【0002】[0002]

【従来の技術】従来より、ディスクブレ−キロ−タとし
て、鋳鉄(ねずみ鋳鉄)製のロータ本体の表面に溶射被
膜を設けて摺動面を形成したものが知られている(特開
昭62−88828号公報)。この場合溶射被膜は投錨
効果で密着しており、急加熱、急冷却(山道を下り、水
たまりに入る場合等)を受けると溶射被膜の剥離が発生
する。又、剥離に至らずとも溶射被膜にクラックが発生
する。このような現象が起こると、ブレ−キの偏磨耗、
ブレ−キ振動等が発生し、正常なブレ−キ作用を果たさ
ない。又、溶射被膜中に銅系材料や硬質粒子等の異種金
属が複合化されている場合もあるが、この場合には、腐
食環境下において各材料間に局部電池を生じ、腐食が発
生する恐れがある。これが起こると、上記のように溶射
被膜のクラック、剥離にも至る。
2. Description of the Related Art Conventionally, as a disc brake rotor, there has been known a rotor body made of cast iron (gray cast iron) having a sprayed coating formed on the surface thereof to form a sliding surface (Japanese Patent Laid-Open No. 62-62). -88828). In this case, the thermal spray coating adheres due to the anchoring effect, and peeling of the thermal spray coating occurs when it is subjected to rapid heating and rapid cooling (such as going down a mountain path and entering a pool of water). Further, cracks are generated in the thermal spray coating even if the peeling does not occur. When such a phenomenon occurs, uneven wear of the brake,
Breaking vibration etc. occurs and normal braking action is not achieved. In some cases, different materials such as copper-based materials and hard particles are compounded in the thermal spray coating. In this case, a local battery may form between the materials in a corrosive environment, and corrosion may occur. There is. When this occurs, cracking and peeling of the thermal spray coating will occur as described above.

【0003】ところで溶射被膜にクラックが発生し易い
のは、次のような理由であると考えられる。すなわち、
溶射は一般に大気中で行われるため、溶融粒子は素材へ
衝突するまでの飛行中に表面が酸化される。そのため、
形成される溶射被膜中には酸化物が存在する(例えば、
Fe3 4 )このような溶射被膜に加熱又は冷却が繰り
返されると、溶射被膜に引張、圧縮の応力が発生する。
ここで、前述の酸化物は、一般に伸びが極めて小さく、
硬くて脆いため、応力はこの部分に集中し、クラックは
この酸化物層を起点に発生する。このようなクラックが
発生すると、そこから、錆が侵入し溶射被膜の剥離へと
至り易い。
The reason why cracks are likely to occur in the sprayed coating is considered to be as follows. That is,
Since the thermal spraying is generally performed in the atmosphere, the surface of the molten particles is oxidized during the flight until they collide with the material. for that reason,
Oxides are present in the formed spray coating (eg,
Fe 3 O 4 ) When heating or cooling is repeated on such a thermal spray coating, tensile and compressive stress is generated in the thermal spray coating.
Here, the above-mentioned oxide generally has extremely small elongation,
Since it is hard and brittle, stress concentrates on this portion, and cracks originate from this oxide layer. When such a crack is generated, rust is likely to infiltrate through the crack, leading to peeling of the thermal spray coating.

【0004】また、従来よりディスクブレ−キロ−タと
して、電子ビームの照射、レーザビームの照射により硬
化層を形成したものが知られている(特開昭63−31
2527号公報)。この公報にかかるディスクブレ−キ
ロ−タの母材は黒鉛を含まない炭素鋼である。
Further, as a disk braker, there is known a disk braker in which a hardened layer is formed by electron beam irradiation or laser beam irradiation (Japanese Patent Laid-Open No. 63-31).
No. 2527). The base material of the disc braker according to this publication is carbon steel containing no graphite.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した実情
に鑑みなされたものであり、耐摩耗性に優れかつ所要の
摩擦係数を確保できるディスクブレーキロータを提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object of the present invention is to provide a disc brake rotor having excellent wear resistance and capable of ensuring a required friction coefficient.

【0006】[0006]

【課題を解決するための手段】本発明者はディスクブレ
ーキロータについて鋭意研究を重ね、そして、ロータ本
体を鋳鉄で構成し、摺動面における硬化層の面積率を1
0〜40%とし、摺動面の残りの面を、黒鉛を含む鋳鉄
表面で形成すれば、硬化層と鋳鉄表面との割合が適切と
なり、耐摩耗性に優れかつ所要の摩擦係数を確保できる
ことを見出し、本発明を完成させたものである。
DISCLOSURE OF THE INVENTION The present inventor has conducted extensive studies on a disc brake rotor, and the rotor body is made of cast iron, and the area ratio of the hardened layer on the sliding surface is 1
If 0-40% and the remaining surface of the sliding surface is formed of a cast iron surface containing graphite, the ratio between the hardened layer and the cast iron surface becomes appropriate, and the wear resistance is excellent and the required friction coefficient can be secured. That is, the present invention has been completed.

【0007】即ち、本発明にかかるディスクブレーキロ
ータは、黒鉛をもつ鋳鉄を母材とする摺動面を備えたロ
ータ本体と、高密度エネルギビームの照射により急熱、
急冷されて該摺動面に表出した所定パターンをなす細巾
の硬化層とで構成され、該摺動面における硬化層の面積
率は10〜40%であることを特徴とするものである。
That is, the disc brake rotor according to the present invention has a rotor body having a sliding surface which is made of cast iron with graphite as a base material, and is rapidly heated by irradiation with a high-density energy beam.
It is characterized in that it is composed of a narrow hardened layer that is rapidly cooled and has a predetermined pattern exposed on the sliding surface, and the area ratio of the hardened layer on the sliding surface is 10 to 40%. ..

【0008】ロータ本体を構成する鋳鉄は片状黒鉛鋳
鉄、球状黒鉛鋳鉄が代表的なものである。鋳鉄の組成は
適宜設定できるが、例えば、C、Si量は、C:3.1
〜3.6%、Si:1.9〜2.4%にできる。硬化層
は、高密度エネルギビームの照射により急熱、急冷され
て摺動面に表出している。硬化層は、高密度エネルギビ
ームの照射で生じた溶融液の凝固で形成されたチル層
と、チル層の下方に位置しビームで熱影響された未溶融
部分の焼入層とで構成できる。チル層の主組織は一般的
にセメンタイトとなる。焼入層の主組織は一般的にマル
テンサイトとなる。また、ビームでロータの摺動面の金
属部分を急熱、急冷するだけで、溶融しない場合には、
硬化層は、一般的に、チル層をもたない焼入層で構成さ
れる。なお、チル層、焼入層の組織の粒径は、他の加熱
・冷却手段に比較して、急熱、急冷のために微細とな
る。
The cast iron forming the rotor body is typically flake graphite cast iron or spheroidal graphite cast iron. The composition of cast iron can be set as appropriate, but for example, the amounts of C and Si are C: 3.1.
˜3.6%, Si: 1.9-2.4%. The hardened layer is exposed to the sliding surface by being rapidly heated and cooled by the irradiation of the high-density energy beam. The hardened layer can be composed of a chill layer formed by solidification of a molten liquid generated by irradiation with a high-density energy beam, and a quenching layer of a non-melted portion located below the chill layer and thermally affected by the beam. The main structure of the chill layer is generally cementite. The main structure of the hardened layer is generally martensite. If the beam does not melt by simply heating and cooling the metal part of the sliding surface of the rotor,
The hardened layer is generally composed of a hardened layer without a chill layer. The grain size of the structure of the chill layer and the quenching layer becomes fine due to rapid heating and rapid cooling as compared with other heating / cooling means.

【0009】硬化層は所定のパターン形状をなす。パタ
ーン形状は、図1に示す様に硬化層3を中心から放射状
に延ばした放射状パターンとしても良いし、或いは、図
5に示す様に硬化層3を渦巻き気味とした渦巻き状パタ
ーンとしても良いし、或いは、図6に示す様に半径の異
なる硬化層3を同心円状に多重に形成するパターンでも
良いし、或いは、図7に示す様に硬化層3を放射状パタ
ーンと、同心円を多重に形成したパターンとで形成した
ものでも良いし、或いは、図8に示す様に硬化層3を幾
何学的模様をえがくパターンとしたものでも良いし、或
いは、図9に示す様に硬化層3を点在させた点々状パタ
ーンとしても良く、或いは、図示はしないが、硬化層を
網状に形成する網状パターン、硬化層を格子状に形成す
る格子状パターン、或いは、他のパターンとしても良
い。
The hardened layer has a predetermined pattern shape. The pattern shape may be a radial pattern in which the hardened layer 3 is radially extended from the center as shown in FIG. 1, or may be a spiral pattern in which the hardened layer 3 is swirled as shown in FIG. Alternatively, as shown in FIG. 6, the hardened layers 3 having different radii may be formed in multiple concentric circles, or, as shown in FIG. 7, the hardened layers 3 may be formed in multiple radial patterns and concentric circles. The hardened layer 3 may be formed by a pattern, or the hardened layer 3 may have a geometric pattern as shown in FIG. 8, or the hardened layer 3 may be scattered as shown in FIG. Although it is not shown, it may be a dot pattern in which the hardened layer is formed in a net shape, a grid pattern in which the hardened layer is formed in a grid pattern, or another pattern, which is not shown.

【0010】なお、ロータの摺動面と相手材としてのパ
ッドとの境界面で生成した摩耗粉の排出に有利なのは、
放射状パターン、渦巻きパターン、点々状パターンと考
えられている。高密度エネルギビームは、レーザビー
ム、電子ビームが代表的なものである。レーザビームは
CO2 レーザ、YAGレーザを採用できる。CO2 レー
ザの場合、レーザの処理条件は例えば次の様にできる。
出力:1〜5KW、パワー密度:5〜25KW/c
2 、ビーム径:0.5〜4mm、移動速度:10〜4
00mm/minにできる。
Incidentally, the advantage of discharging the abrasion powder generated at the boundary surface between the sliding surface of the rotor and the pad as the mating material is that
It is considered to be a radial pattern, a spiral pattern, or a dot-like pattern. The high-density energy beam is typically a laser beam or an electron beam. A CO 2 laser or a YAG laser can be used as the laser beam. In the case of a CO 2 laser, the laser processing conditions can be set as follows, for example.
Output: 1-5KW, power density: 5-25KW / c
m 2 , beam diameter: 0.5 to 4 mm, moving speed: 10 to 4
It can be set to 00 mm / min.

【0011】硬化層の巾、深さは、摺動条件、相手材の
材質等に応じて適宜選択できるが、例えば、巾が0.5
〜4mm、深さが0.3〜1.5mm程度にできる。硬
化層を形成するにあたり、ロータ及びレーザ発振器のう
ちいずれか一方を移動させて行い得る。また硬化面はそ
のまま用いてもよいし、あるいは、研磨して用いてもよ
い。
The width and depth of the hardened layer can be appropriately selected depending on the sliding conditions, the material of the mating material and the like. For example, the width is 0.5.
The depth can be about 4 mm and the depth is about 0.3 to 1.5 mm. The hardened layer may be formed by moving either the rotor or the laser oscillator. The cured surface may be used as it is, or may be used after polishing.

【0012】[0012]

【作用】本発明にかかるディスクブレーキロータでは、
摺動面における硬化層の面積率を10〜40%とし、摺
動面の残りの面を、黒鉛を含む鋳鉄表面で形成している
ので、硬化層と鋳鉄表面との割合が適切となり、ディス
クブレーキロータとして必要な耐摩耗性及び摩擦係数の
双方が確保される。
In the disc brake rotor according to the present invention,
Since the area ratio of the hardened layer on the sliding surface is 10 to 40% and the remaining surface of the sliding surface is formed by the cast iron surface containing graphite, the ratio of the hardened layer and the cast iron surface becomes appropriate, and the disk Both the wear resistance and the friction coefficient required for the brake rotor are secured.

【0013】[0013]

【実施例】【Example】

(実施例1)本発明の実施例1を図1を参照して説明す
る。外径D1が240mm、内径D2が140mm(パ
ッドの摺動面約50mm)の鋳鉄製(FC20)ロ−タ
本体1を用いた。ロ−タ本体1は中央窪み部1a、中央
孔1b、小孔1cをもつ。そのロ−タ本体1の摺動面1
0にレーザビームLを集光レンズ系5を介して照射し、
摺動面10の表層を部分的に急熱して溶融した。レーザ
ビームLを移動させると、溶融液はロータ本体1への伝
熱により急冷される。これにより図1に示す様に放射線
状のパターンでロータ本体1の摺動面10に多数本の硬
化層3を形成した。なお、この例ではレーザの照射条件
は次の通りである。即ち、レーザ種類:CO2 レーザ、
出力:2KW、パワー密度:10W/cm2 、ビーム
径:2mm、レーザビームの移動速度:200mm/m
inである。
(Embodiment 1) Embodiment 1 of the present invention will be described with reference to FIG. A cast iron (FC20) rotor body 1 having an outer diameter D1 of 240 mm and an inner diameter D2 of 140 mm (a sliding surface of the pad of about 50 mm) was used. The rotor body 1 has a central depression 1a, a central hole 1b, and a small hole 1c. Sliding surface 1 of the rotor body 1
0 is irradiated with the laser beam L through the condenser lens system 5,
The surface layer of the sliding surface 10 was partially rapidly heated and melted. When the laser beam L is moved, the melt is rapidly cooled by heat transfer to the rotor body 1. As a result, a large number of hardened layers 3 were formed on the sliding surface 10 of the rotor body 1 in a radial pattern as shown in FIG. In this example, the laser irradiation conditions are as follows. That is, laser type: CO 2 laser,
Output: 2 kW, power density: 10 W / cm 2 , beam diameter: 2 mm, laser beam moving speed: 200 mm / m
is in.

【0014】断面模式図である図3(図1のA−A断
面)に示す様に、硬化層3は、主として、レーザビーム
の照射で生じた溶融液の凝固で形成されたチル層3a
と、チル層3aの下方に位置しレーザビームで熱影響さ
れた未溶融部分の焼入層3bとで構成されている。硬化
層3の巾は約3mm、深さは約0.7mmであった。な
お、硬化層3の巾、深さはレーザビームの照射条件によ
り容易に調整できる。
As shown in FIG. 3 (a cross section taken along the line AA in FIG. 1), which is a schematic cross-sectional view, the hardened layer 3 is mainly a chill layer 3a formed by solidification of a melt produced by irradiation with a laser beam.
And a quenching layer 3b located below the chill layer 3a and unheated by the laser beam. The hardened layer 3 had a width of about 3 mm and a depth of about 0.7 mm. The width and depth of the hardened layer 3 can be easily adjusted by the irradiation conditions of the laser beam.

【0015】また、硬化層3付近の断面組織(図1のA
−A断面)の写真を図4に示す。図4は倍率が50倍
で、3%ナイタール液でエッチングしたものである。図
4において、中央がチル層であり、チル層の下方に焼入
層が形成され、その下方は片状黒鉛をもつ母材組織とさ
れている。チル層、焼入層、母材との境界は比較的明瞭
に出ている。チル層は白銑であり、セメンタイトからな
る。チル層の内部には黒色の点々部分があるが、これは
黒鉛がガス化した気孔と考えられる。焼入層はマルテン
サイトと残留オーステナイトとからなる。焼入層には片
状の黒鉛が析出されている。母材はパーライトとフェラ
イトと片状黒鉛とを含む。なお、硬度は、チル層がHV
850、焼入層がHV700、母材がHV200であっ
た。
The cross-sectional structure near the hardened layer 3 (A in FIG. 1)
A photograph of (A cross section) is shown in FIG. In FIG. 4, the magnification is 50 times and the etching is performed with a 3% nital solution. In FIG. 4, the center is a chill layer, a quenching layer is formed below the chill layer, and the lower part has a base material structure having flake graphite. The boundaries between the chill layer, the quenching layer, and the base metal are relatively clear. The chill layer is white pig iron and consists of cementite. There are black dots inside the chill layer, which are considered to be gasified pores of graphite. The quenched layer consists of martensite and retained austenite. Flake graphite is deposited on the quenched layer. The base material contains pearlite, ferrite, and flake graphite. The hardness of the chill layer is HV.
850, the hardened layer was HV700, and the base material was HV200.

【0016】また、実施例1において、放射状パターン
で形成した硬化層3の間隔角度θを4〜40°まで変え
て硬化層3の本数を変え、これにより硬化層3の面積率
を変えた。そして、各ロータの摺動面10にパッドを当
てて摩擦試験を行い、摺動面10の摩耗量、摩擦係数と
の関係を調べた。試験条件は、パッド:低炭素スチール
系、車速:130km/h→0、油圧:60kgf/c
2、制動回数:500回である。硬化層3の面積率と
摺動面10の磨耗量及び摩擦係数μとの関係を図2に示
す。図2において○印は実施例1における摩耗量を示
し、●印は実施例1における摩擦係数を示す。図2にお
いて○印をつなぐと、摩耗量を示す特性線Aとなり、●
印をつなぐと、摩擦係数を示す特性線Bとなる。図2の
特性線Aから理解できる様に、硬化層3の面積率が10
%以上ではロ−タ自身の摩耗量はほぼ平衡に達し、ロー
タの耐摩耗性は良好である。また特性線Bから理解でき
る様に、摩擦係数μは硬化層3の面積率が40%を越え
ると急激に低下することがわかった。即ち、図2に示す
様に、硬化層3の面積率の最適範囲は、硬化層3の面積
率が10〜40%であるHで示される範囲である。また
硬化層3のチル層は耐食性も良好であるので、ブレーキ
ロータの耐久性向上に有利である。
Further, in Example 1, the interval angle θ of the hardened layer 3 formed in the radial pattern was changed to 4 to 40 ° to change the number of hardened layers 3, and thereby the area ratio of the hardened layer 3 was changed. Then, a friction test was conducted by applying a pad to the sliding surface 10 of each rotor, and the relationship between the amount of wear of the sliding surface 10 and the friction coefficient was investigated. The test conditions are: pad: low carbon steel, vehicle speed: 130 km / h → 0, hydraulic pressure: 60 kgf / c
m 2 , braking frequency: 500 times. The relationship between the area ratio of the hardened layer 3, the amount of wear of the sliding surface 10 and the coefficient of friction μ is shown in FIG. In FIG. 2, the ∘ mark indicates the amount of wear in Example 1, and the ● mark indicates the friction coefficient in Example 1. In Fig. 2, connecting the ○ marks gives a characteristic line A indicating the amount of wear.
When the marks are connected, a characteristic line B indicating the coefficient of friction is obtained. As can be understood from the characteristic line A of FIG. 2, the area ratio of the hardened layer 3 is 10
If it is more than 0.1%, the amount of wear of the rotor itself reaches almost equilibrium, and the wear resistance of the rotor is good. Further, as can be understood from the characteristic line B, it was found that the friction coefficient μ drastically decreases when the area ratio of the hardened layer 3 exceeds 40%. That is, as shown in FIG. 2, the optimum range of the area ratio of the hardened layer 3 is the range indicated by H where the area ratio of the hardened layer 3 is 10 to 40%. Further, since the chill layer of the hardened layer 3 has good corrosion resistance, it is advantageous for improving the durability of the brake rotor.

【0017】(実施例2)実施例1と同形状、同材質の
ロ−タ本体1を用い、図6に示す様に、ロータ本体1の
摺動面10に、同心円状パターンで硬化層3を形成し
た。この場合も同様に硬化層3の本数、つまり面積率を
変え、摩擦特性との関係を調べた。図2において△印は
実施例2における摩耗量を示し、▲印は実施例2におけ
る摩擦係数を示す。△印は特性線Aにそってプロットさ
れ、▲印も特性線Bにそってプロットされ、実施例2に
おける最適範囲Hは有効である。即ち、図6に示す実施
例2にかかるパタ−ンにおいても、硬化層3の面積率1
0〜40%の範囲で、摩耗量、摩擦係数μともに良好で
あることが確認された。
(Embodiment 2) A rotor body 1 having the same shape and material as in Embodiment 1 is used, and as shown in FIG. 6, a hardened layer 3 is formed on a sliding surface 10 of a rotor body 1 in a concentric pattern. Formed. In this case as well, the number of hardened layers 3, that is, the area ratio was changed in the same manner, and the relationship with the frictional characteristics was examined. In FIG. 2, Δ indicates the amount of wear in Example 2, and ▲ indicates the coefficient of friction in Example 2. The triangle marks are plotted along the characteristic line A, and the triangle marks are also plotted along the characteristic line B, and the optimum range H in Example 2 is effective. That is, also in the pattern according to Example 2 shown in FIG. 6, the area ratio of the hardened layer 3 is 1
It was confirmed that both the wear amount and the friction coefficient μ were good in the range of 0 to 40%.

【0018】(実施例3)実施例1と同形状、同材質の
ロ−タ本体1を用い、図7に示す様に、実施例1にかか
る放射状パターンと、実施例2にかかる同心円状パター
ンとを組み合わせた硬化層3を形成した。この場合も同
様に硬化層3の面積率を変え、摩擦特性との関係を調べ
た。図2において◇印は実施例3における摩耗量を示
し、◆印は実施例3における摩擦係数を示す。実施例2
の場合にも、◇印は特性線Aにそってプロットされ、◆
印も特性線Bにそってプロットされ、実施例3における
最適範囲Hは有効である。即ち、図7に示す実施例3に
かかるパタ−ンにおいても、硬化層3の面積率10〜4
0%においては、摩耗量、摩擦係数μとも良好であるこ
とが確認された。
(Embodiment 3) Using the rotor body 1 having the same shape and the same material as those of Embodiment 1, as shown in FIG. 7, the radial pattern according to Embodiment 1 and the concentric pattern according to Embodiment 2 are used. A cured layer 3 was formed by combining and. In this case as well, the area ratio of the hardened layer 3 was changed in the same manner and the relationship with the frictional characteristics was investigated. In FIG. 2, the symbol ⋄ indicates the amount of wear in Example 3, and the symbol ◆ indicates the coefficient of friction in Example 3. Example 2
In the case of, the ◇ mark is plotted along the characteristic line A, and
The mark is also plotted along the characteristic line B, and the optimum range H in Example 3 is effective. That is, even in the pattern according to Example 3 shown in FIG. 7, the area ratio of the hardened layer 3 is 10 to 4
At 0%, it was confirmed that both the wear amount and the friction coefficient μ were good.

【0019】(比較例1)実施例1と同形状、同材質の
ロ−タ本体1を用い、レーザ焼入れ処理なしで、つまり
硬化層3のパターンを形成しないで同様な摩擦試験を行
った。図2において☆印は比較例1における摩耗量を示
し、★印は比較例1における摩擦係数を示す。この例で
は、摩擦係数μは比較的良好であるが、☆印に示す様に
摩耗量が非常に多いことがわかる。
(Comparative Example 1) Using the rotor body 1 having the same shape and the same material as in Example 1, the same friction test was performed without laser hardening treatment, that is, without forming the pattern of the hardened layer 3. In FIG. 2, the star marks show the amount of wear in Comparative Example 1, and the star marks show the friction coefficient in Comparative Example 1. In this example, the friction coefficient μ is relatively good, but it can be seen that the wear amount is very large as shown by the star.

【0020】(比較例2)実施例1と同形状、同材質の
ロ−タ本体1を用い、従来の方法で、溶射被膜(Feー
Cr合金+Cu合金+硬質粒子)をプラズマ溶射法にて
形成し、溶射被膜を厚さ300μmに仕上げ、そのロ−
タを同じ条件で試験した。図2において□印は比較例2
における摩耗量を示し、■印は比較例2における摩擦係
数を示す。
(Comparative Example 2) A rotor body 1 having the same shape and material as in Example 1 was used, and a sprayed coating (Fe-Cr alloy + Cu alloy + hard particles) was formed by plasma spraying by a conventional method. Formed and finish the sprayed coating to a thickness of 300 μm,
Was tested under the same conditions. In FIG. 2, □ indicates Comparative Example 2
Shows the amount of wear, and the mark ■ shows the friction coefficient in Comparative Example 2.

【0021】□印、■印に示す様に、耐摩耗性及び摩擦
係数μは、実施例1〜3とほぼ同レベルであったが、比
較例2にかかる試験後の面には、実施例1〜3では生じ
なかったヘアークラックが発生していた。ヘアークラッ
クの起点は酸化物層であった。なお、ヘアークラック発
生部分の溶射被膜の断面を図10に示す。 (評価)ロータの相手材であるパッドにはスチールファ
イバー、硬質粒子等が分散している。これらの存在によ
り、比較例1、2においては、ロ−タ本体1の摺動面を
構成する鋳鉄(HV200程度)が摩耗される。摩擦熱
に起因する高温化により素材が軟化すると、さらに摩耗
も多くなる。これに対し、実施例1〜実施例3において
は、レーザビーム照射によりHV700〜800の硬化
層3が摺動面10に形成されるため、ロータの耐摩耗性
が増し、相手材からの攻撃に対して摩耗されにくくな
る。
As shown by □ marks and ■ marks, the wear resistance and the friction coefficient μ were almost the same level as in Examples 1 to 3, but the surface after the test according to Comparative Example 2 was Hair cracks that did not occur in Nos. 1 to 3 were generated. The origin of the hair crack was the oxide layer. The cross section of the thermal spray coating at the hair crack generation portion is shown in FIG. (Evaluation) Steel fibers, hard particles, etc. are dispersed in the pad, which is the mating member of the rotor. Due to the presence of these, in Comparative Examples 1 and 2, the cast iron (about HV200) forming the sliding surface of the rotor body 1 is worn. When the material is softened by the high temperature caused by the frictional heat, the wear is further increased. On the other hand, in Examples 1 to 3, since the hardened layer 3 of HV700 to 800 is formed on the sliding surface 10 by laser beam irradiation, the wear resistance of the rotor is increased, and the attack from the mating material is increased. It is less likely to be worn.

【0022】また、硬化層3をもつ摺動面10の摩擦係
数μについては、次のように考えられる。すなわち、鋳
鉄の大きな特徴は、黒鉛が分散していることであり、鋳
鉄の場合、このような黒鉛がもともと存在しているた
め、ディスクブレーキロータとしての摩擦係数μは十分
確保される。ディスクブレーキロータとしての摩擦係数
μが十分確保される理由は、鋳鉄の黒鉛が摺動時にえぐ
れてて凹形状となり、凹形状に起因するエッジ効果によ
り摩擦係数μが高くなるからであると考えられている。
ところで前述したように、ロ−タの耐摩耗性を上げるに
は、レーザビーム照射により硬質層3が必要であるが、
レーザビーム照射によりレーザビームが直接当った部位
はチル化し、黒鉛が消失してしまう。よって、摩擦係数
μを確保するという観点からすると、硬化層3が存在し
すぎること、黒鉛が消失しすぎることは不利である。そ
こで本発明にかかる実施例1〜実施例3では、耐摩耗性
は硬質層3で分担し、所要の摩擦係数μの確保はそれ以
外の鋳鉄地で達成することを主眼とする。そのちょうど
適切な割合が硬化層3の面積率が10〜40%の範囲で
ある。
Further, the friction coefficient μ of the sliding surface 10 having the hardened layer 3 is considered as follows. That is, a great feature of cast iron is that graphite is dispersed. In the case of cast iron, since such graphite is originally present, the friction coefficient μ as the disc brake rotor is sufficiently secured. The reason why the friction coefficient μ of the disc brake rotor is sufficiently secured is considered to be that the graphite of cast iron is carved into a concave shape when sliding, and the friction coefficient μ is increased due to the edge effect caused by the concave shape. ing.
By the way, as described above, in order to improve the wear resistance of the rotor, the hard layer 3 is required by laser beam irradiation.
The area directly hit by the laser beam is chilled by the laser beam irradiation, and the graphite disappears. Therefore, from the viewpoint of ensuring the friction coefficient μ, it is disadvantageous that the hardened layer 3 exists too much and the graphite disappears too much. Therefore, in Examples 1 to 3 according to the present invention, the wear resistance is shared by the hard layer 3 and the required friction coefficient μ is secured by other cast iron materials. The area ratio of the hardened layer 3 is 10-40% in the just appropriate ratio.

【0023】ところで、ディスクブレーキロータにおい
て、摺動面の表面にクラックが入る主因は、熱応力によ
り表面に引張応力が働くためである。この点本実施例で
は、レーザビーム照射により形成した硬化層3の焼入層
3bは、焼入層3bに含まれる黒鉛により膨張量は多少
吸収されるものの、マルテンサイト変態に伴い体積膨張
しており、そのため焼入層3bには適度な圧縮残留応力
が存在している。このため、クラックの主因となる引張
応力に対して抵抗となるので、クラックの抑制に有効で
ある。よって本発明にかかる実施例1〜実施例3では、
ロータ本体1の母材と硬化層3との境界でクラックが入
ることを回避、低減できる。
In the disc brake rotor, the main cause of cracks on the surface of the sliding surface is that tensile stress acts on the surface due to thermal stress. In this regard, in this embodiment, the hardened layer 3b of the hardened layer 3 formed by laser beam irradiation expands in volume due to martensite transformation, although the expansion amount is somewhat absorbed by the graphite contained in the hardened layer 3b. Therefore, the quenching layer 3b has an appropriate compressive residual stress. Therefore, it is effective in suppressing cracks because it becomes resistant to the tensile stress that is the main cause of cracks. Therefore, in Examples 1 to 3 according to the present invention,
It is possible to avoid and reduce cracking at the boundary between the base material of the rotor body 1 and the hardened layer 3.

【0024】[0024]

【発明の効果】本発明にかかるディスクブレーキロータ
によれば、耐摩耗性に優れかつ所要の摩擦係数を確保で
きる。更に本発明にかかるディスクブレーキロータによ
れば、硬化層を構成する焼入層には適度な圧縮残留応力
が残留するため、クラック発生防止に有利である。
The disc brake rotor according to the present invention is excellent in wear resistance and can secure a required friction coefficient. Further, according to the disc brake rotor of the present invention, an appropriate compressive residual stress remains in the hardened layer forming the hardened layer, which is advantageous in preventing cracks from occurring.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザビームをディスクブレーキロータの摺動
面に照射している状態を示す斜視図である。
FIG. 1 is a perspective view showing a state in which a laser beam is applied to a sliding surface of a disc brake rotor.

【図2】硬化率の面積率と摩耗量、摩擦係数との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the area ratio of the curing rate, the amount of wear, and the coefficient of friction.

【図3】硬化層付近の断面を模式的に示す断面図であ
る。
FIG. 3 is a cross-sectional view schematically showing a cross section near a cured layer.

【図4】硬化層付近の金属組織を示す顕微鏡写真であ
る。
FIG. 4 is a micrograph showing a metal structure in the vicinity of a hardened layer.

【図5】レーザビームをディスクブレーキロータの摺動
面に照射している状態を示す他の例にかかる斜視図であ
る。
FIG. 5 is a perspective view of another example showing a state in which a laser beam is applied to the sliding surface of the disc brake rotor.

【図6】硬化層の他のパターンを示す平面図である。FIG. 6 is a plan view showing another pattern of the cured layer.

【図7】硬化層の他のパターンを示す平面図である。FIG. 7 is a plan view showing another pattern of the cured layer.

【図8】硬化層の他のパターンを示す平面図である。FIG. 8 is a plan view showing another pattern of the cured layer.

【図9】硬化層の他のパターンを示す平面図である。FIG. 9 is a plan view showing another pattern of the cured layer.

【図10】比較例にかかる溶射被膜付近の金属組織を示
す顕微鏡写真である。
FIG. 10 is a micrograph showing a metal structure in the vicinity of a sprayed coating according to a comparative example.

【符号の説明】[Explanation of symbols]

1はロータ本体、10は摺動面、3は硬化層を示す。 Reference numeral 1 is a rotor body, 10 is a sliding surface, and 3 is a hardened layer.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月2日[Submission date] December 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図3】 [Figure 3]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図2】 [Fig. 2]

【図4】 [Figure 4]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図10】 [Figure 10]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛をもつ鋳鉄を母材とする摺動面を備
えたロータ本体と、高密度エネルギビームの照射により
急熱、急冷されて該摺動面に表出した所定パターンをな
す細巾の硬化層とで構成され、該摺動面における硬化層
の面積率は10〜40%であることを特徴とするディス
クブレーキロータ。
1. A rotor body having a sliding surface made of cast iron with graphite as a base material, and a thin pattern having a predetermined pattern exposed on the sliding surface by being rapidly heated and quenched by irradiation of a high-density energy beam. A disc brake rotor comprising a hardened layer having a width, and the area ratio of the hardened layer on the sliding surface is 10 to 40%.
JP34780691A 1991-12-02 1991-12-02 Disk brake rotor Pending JPH05157134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34780691A JPH05157134A (en) 1991-12-02 1991-12-02 Disk brake rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34780691A JPH05157134A (en) 1991-12-02 1991-12-02 Disk brake rotor

Publications (1)

Publication Number Publication Date
JPH05157134A true JPH05157134A (en) 1993-06-22

Family

ID=18392715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34780691A Pending JPH05157134A (en) 1991-12-02 1991-12-02 Disk brake rotor

Country Status (1)

Country Link
JP (1) JPH05157134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258648A2 (en) * 2001-04-19 2002-11-20 Buderus Guss GmbH Brake disc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258648A2 (en) * 2001-04-19 2002-11-20 Buderus Guss GmbH Brake disc
EP1258648A3 (en) * 2001-04-19 2004-03-24 Buderus Guss GmbH Brake disc

Similar Documents

Publication Publication Date Title
Chen et al. Laser processing of cast iron for enhanced erosion resistance
RU2194776C2 (en) Rails from bainitic steel with high resistance to surface fatigue failure and to wear
Shariff et al. Sliding wear behaviour of laser surface modified pearlitic rail steel
US11788593B2 (en) Method of making a brake disc and brake disc for a disc brake
EP0715916B1 (en) An iron based powder composition
JP2009063072A (en) Brake disc, method for surface modification thereof, and surface modification device for brake disc
JP2004169149A (en) Weather resistant cast iron, and production method therefor
Molian Engineering Applications and Analysis of Hardining Data for Laser Heat Treated Ferrous Alloys
JPH05157134A (en) Disk brake rotor
JP2000337410A (en) Rotor for disc brake
CN115176039A (en) Method for producing a nitrided steel component
JP3234209B2 (en) Manufacturing method of sliding member
JPH0941125A (en) Method for hardening metallic surface
JP2008163363A (en) Surface hardening method and hydraulic component
JPS591678A (en) Production of composite tool steel for hot working
JPS62290883A (en) Casting article made of aluminum having at least one abrasion resistant region on at least one surface thereof and alloy thereof
Li et al. Laser surface treatment of high‐phosphorus cast iron
CN110741100A (en) Surface treatment method of steel Yangke cylinder
Yao et al. Laser surface hardening
JPS62174388A (en) Disk rotor and its production
JPS59179776A (en) Surface hardening method by carburization hardening of pure iron and low carbon steel by laser
JPH0617700B2 (en) Brake disc material
JPS5980712A (en) Treatment of metallic surface
Kawamoto et al. Wear of cast iron in vacuum and the frictional hardened layer
JP2906012B2 (en) Surface hardening method for aluminum material or its alloy material