JPH05154781A - Multi-axis robot - Google Patents

Multi-axis robot

Info

Publication number
JPH05154781A
JPH05154781A JP32287991A JP32287991A JPH05154781A JP H05154781 A JPH05154781 A JP H05154781A JP 32287991 A JP32287991 A JP 32287991A JP 32287991 A JP32287991 A JP 32287991A JP H05154781 A JPH05154781 A JP H05154781A
Authority
JP
Japan
Prior art keywords
axis
controller
robot
section
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32287991A
Other languages
Japanese (ja)
Inventor
Hirobumi Kanai
博文 金井
Kenji Toki
謙治 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32287991A priority Critical patent/JPH05154781A/en
Publication of JPH05154781A publication Critical patent/JPH05154781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To mitigate shocks and attain a long life without consuming electric power more than necessary by providing a means applying optimum operating curves to axis actions other than the axis requiring the maximum necessary time. CONSTITUTION:A robot overall controller 9 serves as a main in a robot controller, sub-routines (command reception section 8, state monitor section 10, X- controller 11, Y-controller 12, R-controller 13) are called at a fixed interval, the command reception section receiving the action command responds that the action request is given, and the robot overall controller 9 calculates the operating time of individual axes via an optimum action calculation section 14 and sets the optimum operating curves for individual axes. The optimum operating curves set for individual axes are sent to the robot overall controller 9 then to the X-axis controller 11, Y-axis controller 12, and R-axis controller 13. Control is performed according to the optimum operating curves in these axis controllers, and current values are instructed to an X-axis drive section 15, a Y-axis drive section 16, and an R-axis drive section 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多軸ロボット、特に搬
送用ロボットの多軸同時駆動制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-axis robot, and more particularly to a multi-axis simultaneous drive control of a transfer robot.

【0002】[0002]

【従来の技術】省スペース、自動化の面から多軸を有す
る自動搬送ロボットを使用することが広く普及してい
る。例えば、横方向(X軸とする)、縦方向(Y軸とす
る)にそれぞれアドレスを有する収納棚と、それらのア
ドレスを認識して任意の収納棚にアクセスを行う自動搬
送ロボットを有する装置において、任意の各アドレスに
搬送ロボットが移動する際、高速性を確保する為に、X
軸、Y軸を同時に起動し、多軸同時駆動を行っている。
従来のライブラリ装置における各軸方向の動作は、定め
られた動作曲線に従い制御され、各軸の動作時間は各軸
での動作距離に依存している。つまり、ある目標動作に
対する各軸の動作時間はそれぞれ異ることになる。
2. Description of the Related Art From the viewpoint of space saving and automation, it is widely used to use an automatic transfer robot having multiple axes. For example, in a device having a storage shelf having addresses in the horizontal direction (X axis) and a vertical direction (Y axis) and an automatic transfer robot that recognizes these addresses and accesses an arbitrary storage shelf. , To ensure high speed when the transfer robot moves to each arbitrary address, X
Axis and Y axis are activated at the same time to perform multi-axis simultaneous drive.
The movement in each axis direction in the conventional library apparatus is controlled according to a predetermined movement curve, and the movement time of each axis depends on the movement distance of each axis. That is, the operation time of each axis for a certain target operation is different.

【0003】従来の技術に関しては、複数ロボットを最
適に動作させる手段については特開昭58−16730
7等に挙げられているが、省電力化、長寿命化について
は特に出ていない。
Regarding the prior art, Japanese Patent Laid-Open No. 58-16730 discloses means for optimally operating a plurality of robots.
No. 7, etc., but there is no particular mention of power saving and long life.

【0004】[0004]

【発明が解決しようとする課題】前記、従来技術は高速
性の点で非常に有効な手段だが、次の様な課題がある。
The above-mentioned prior art is a very effective means in terms of high speed, but it has the following problems.

【0005】各軸動作モジュール(前例では、X軸、Y
軸)での動作制御においては、各軸ともに独立してお
り、それぞれ固定された動作曲線に従った動作を行う。
つまり、各軸の移動量の差によっては、各軸の移動時間
の差を生じてしまい、急な加減速の不要な軸に関して
は、必要以上の電力を消費したことになる。
Each axis operation module (in the previous example, X axis, Y axis)
In the motion control by (axis), each axis is independent, and the motion according to the fixed motion curve is performed.
That is, a difference in the moving time of each axis causes a difference in the moving time of each axis, and more power than necessary is consumed for an axis that does not require sudden acceleration / deceleration.

【0006】また、各軸それぞれにおいて固定された動
作曲線に従うことによって、一定以上の衝撃・振動等が
搬送ロボット、及び関連部分に対して生じ、それに伴う
搬送ロボットの寿命短縮等の課題があった。
Further, by following a fixed operation curve on each axis, shocks and vibrations above a certain level occur on the transfer robot and related parts, and there is a problem such as shortening the life of the transfer robot. .

【0007】本発明の1つの目的は、各軸を同時駆動す
る際に、省電力化を図る為の制御方法及び装置を提供す
るにある。
An object of the present invention is to provide a control method and device for saving power consumption when simultaneously driving each axis.

【0008】本発明の他の目的は、多軸同時駆動ロボッ
トにおける、ロボット及び関連部分の長寿命化を図る為
の制御方法及び装置を提供するにある。
Another object of the present invention is to provide a control method and apparatus for extending the life of the robot and related parts in a multi-axis simultaneous drive robot.

【0009】[0009]

【課題を解決するための手段】本発明は、多軸ロボット
の多軸同時駆動に関して、任意の目標位置とロボットの
現在位置との関係より、各動作軸方向の動作量を求め、
さらに各動作軸における許容最大加速(減速)度、及び
許容最大速度と動作量より必要動作時間を求める。次
に、それぞれの動作軸について求められた必要動作時間
より最大必要時間を割出し、割出された動作軸以外の各
動作軸に対して、必要動作時間が最大必要時間となる様
な動作曲線の再設定を行うものである。
According to the present invention, in regard to multi-axis simultaneous driving of a multi-axis robot, an operation amount in each operation axis direction is obtained from a relationship between an arbitrary target position and a current position of the robot,
Further, the required operation time is obtained from the maximum allowable acceleration (deceleration) degree in each operation axis, the maximum allowable speed and the operation amount. Next, the maximum required time is calculated from the required operation time calculated for each operation axis, and the operation curve is such that the required operation time is the maximum required time for each operation axis other than the indexed operation axis. Is to be reset.

【0010】[0010]

【作用】多軸ロボットの任意の目標位置への多軸同時駆
動に関して、各軸動作モジュールにおける動作曲線の再
設定を行うことで、必要以上の電力消費をおさえ、省力
化を図ることができる。
With regard to simultaneous driving of the multi-axis robot to arbitrary target positions, by resetting the operation curve in each axis operation module, it is possible to suppress unnecessary power consumption and save labor.

【0011】また、再設定される動作モジュールに関し
ては、加速(減速)特性を低くおさえるたこにより、ロ
ボット、及び関連部分への衝撃がおさえられ長寿命化が
図られる。
With respect to the operation module to be reset, the robot that holds the acceleration (deceleration) characteristics low is suppressed in impact and the life of the robot is prolonged.

【0012】[0012]

【実施例】以下、本発明の一実施例を詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below.

【0013】図1は本発明を適用するロボットの外形図
である。ロボットはX軸、Y軸、R軸、Z軸の4軸から
構成されており、各軸がそれぞれ動作することにより任
意の位置から任意の位置へのアクセスを可能としてい
る。
FIG. 1 is an external view of a robot to which the present invention is applied. The robot is composed of four axes of X-axis, Y-axis, R-axis and Z-axis, and each axis operates to enable access from any position to any position.

【0014】図2はロボットの制御系全体を表した図で
ある。CPU5より装置に対して発行された命令は、装
置制御部6にて受付けられ解析される。装置制御部は解
析した結果を基に各部に対して命令を発行する。ロボッ
ト動作が伴う場合、装置制御部はロボット制御部7に対
して、動作コマンドを位置情報(目標アドレスX,Y,
R)を付加して発行する。
FIG. 2 is a diagram showing the entire control system of the robot. The command issued to the device from the CPU 5 is accepted and analyzed by the device control unit 6. The device control unit issues a command to each unit based on the analyzed result. When the robot operation is involved, the device control unit sends the operation command to the robot control unit 7 with position information (target address X, Y,
R) is added and issued.

【0015】ロボット制御部内では、ロボット全体制御
部9をメインとし、各サブルーチン(コマンド受付け部
8,状態監視部10,X制御部11,Y制御部12,R
制御部13)の呼び出しが一定間隔で行われており、動
作コマンドを受けたコマンド受付け部は、動作要求があ
ったことをロボット全体制御部に報告する。動作要求を
受けたロボット全体制御部は、最適動作演算部14によ
り、各軸の動作時間の計算を行い、各軸に対して最適動
作曲線を設定する。ここで設定された各軸の最適動作曲
線はロボット全体制御9に送られ、ここから、X軸制御
部11、Y軸制御部12、R軸制御部13に送られる。
各軸制御部では、この最適動作曲線に従って制御を実施
し、X軸駆動部15、Y軸駆動部16、R軸駆動部17
に対して電流値を指示し、ロボット18上のモータを駆
動し、各目標アドレスまで動作する。
Within the robot control unit, the entire robot control unit 9 is mainly used, and each subroutine (command receiving unit 8, state monitoring unit 10, X control unit 11, Y control unit 12, R).
The control unit 13) is called at regular intervals, and the command receiving unit that has received the operation command reports to the robot overall control unit that there is an operation request. Upon receiving the motion request, the robot overall control unit calculates the motion time of each axis by the optimum motion calculation unit 14, and sets the optimum motion curve for each axis. The optimum motion curve of each axis set here is sent to the robot overall control 9, and from there, sent to the X-axis control unit 11, the Y-axis control unit 12, and the R-axis control unit 13.
Each axis control unit executes control according to this optimum operation curve, and the X-axis drive unit 15, the Y-axis drive unit 16, the R-axis drive unit 17 are executed.
To indicate the current value, drive the motor on the robot 18, and operate up to each target address.

【0016】図3に最適動作演算部の概要を示す。X,
Y,R軸の現在位置と目標位置の関係より動作が必要か
否かを判断(19,21,23)し、必要ならば各軸に
おけるあらかじめ決められた最大加速(減速)度、最大
速度、位置決め時間より各軸の動作時間をそれぞれ計算
(20,22,24)する。次に各結果より最大必要時
間を割出す(25)。次に最大必要時間に該当する動作
軸以外の軸に対し、最大必要時間を基に各動作曲線の再
計算を行い(26)曲線の再設定を行った後、ロボット
全体制御部に返す。
FIG. 3 shows an outline of the optimum operation calculation section. X,
Based on the relationship between the current position of the Y and R axes and the target position, it is judged whether or not motion is required (19, 21, 23), and if necessary, the maximum acceleration (deceleration) degree, maximum speed, and the like determined in advance for each axis The operation time of each axis is calculated (20, 22, 24) from the positioning time. Next, the maximum required time is calculated from each result (25). Next, with respect to the axes other than the operation axis corresponding to the maximum required time, each operation curve is recalculated based on the maximum required time (26) and the curve is reset, and then returned to the robot overall control unit.

【0017】[0017]

【発明の効果】従来、多軸ロボット、及び多軸を有する
搬送ロボットの任意の位置から任意の位置への移動に関
しては、定められた動作曲線に従っていた為、各軸の移
動時間は各軸の移動距離に依存してしまい、急な加
(減)速の不要な軸についても必要以上の電力を消費す
ると伴に、一定以上の衝撃が常に加わることになる。
In the past, the movement time of each axis was determined because the movement curve of each axis of a multi-axis robot and a transfer robot having multi-axis was from a given position to a given position. Since it depends on the moving distance, unnecessary power is consumed even for an unnecessary axis that suddenly accelerates (decelerates), and at the same time, a certain amount of impact is constantly applied.

【0018】本発明によれば、必要以上の電力を消費す
ることがなくなると伴に、衝撃を緩和することにより長
寿命化が図れ、高信頼性を得ることができる。
According to the present invention, it is possible to achieve a long life and a high reliability by consuming less power than necessary and reducing the impact.

【図面の簡単な説明】[Brief description of drawings]

【図1】多軸搬送ロボットの外形図である。FIG. 1 is an external view of a multi-axis transfer robot.

【図2】ロボットの制御系全体図である。FIG. 2 is an overall view of a robot control system.

【図3】最適動作演算部のフロー図である。FIG. 3 is a flowchart of an optimum operation calculation unit.

【符号の説明】[Explanation of symbols]

8…コマンド受付け部、 9…ロボット全体制御部、 11…X制御部、 12…Y制御部、 13…R制御部、 14…最適動作演算部、 20…X動作時間の計算、 22…Y動作時間の計算、 24…R動作時間の計算、 25…最大必要時間の割出、 26…動作曲線の再設定。 8 ... Command accepting section, 9 ... Robot overall control section, 11 ... X control section, 12 ... Y control section, 13 ... R control section, 14 ... Optimal operation calculation section, 20 ... X operation time calculation, 22 ... Y operation Calculation of time, 24 ... Calculation of R operation time, 25 ... Index of maximum required time, 26 ... Reset of operation curve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多軸ロボット、及び多軸を有する搬送用ロ
ボットにおける任意の位置より、指定された位置への移
動において、多軸を同時に駆動する場合、各動作軸方向
の移動距離と各動作軸における許容最大加速(減速)
度、及び許容最大速度、位置決め時間より、各軸の移動
時間を知る手段と、各軸の移動時間をそれぞれ比較して
最大必要時間を知る手段と、最大必要時間を要する軸以
外の、各軸動作に対して最適動作曲線を与える手段を有
することを特徴とする多軸ロボット。
1. A multi-axis robot and a transfer robot having multi-axis, when moving from an arbitrary position to a designated position, when the multi-axes are simultaneously driven, a moving distance in each operation axis direction and each operation. Maximum allowable acceleration (deceleration) on the axis
Degree, allowable maximum speed, and positioning time, a means to know the movement time of each axis, a means to compare the movement time of each axis to know the maximum required time, and an axis other than the axis that requires the maximum required time A multi-axis robot having means for giving an optimum motion curve to a motion.
JP32287991A 1991-12-06 1991-12-06 Multi-axis robot Pending JPH05154781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32287991A JPH05154781A (en) 1991-12-06 1991-12-06 Multi-axis robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32287991A JPH05154781A (en) 1991-12-06 1991-12-06 Multi-axis robot

Publications (1)

Publication Number Publication Date
JPH05154781A true JPH05154781A (en) 1993-06-22

Family

ID=18148637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32287991A Pending JPH05154781A (en) 1991-12-06 1991-12-06 Multi-axis robot

Country Status (1)

Country Link
JP (1) JPH05154781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970061462A (en) * 1996-02-26 1997-09-12 이종수 Control method of industrial robot
US8468908B2 (en) 2005-03-30 2013-06-25 Panasonic Corporation Industrial robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970061462A (en) * 1996-02-26 1997-09-12 이종수 Control method of industrial robot
US8468908B2 (en) 2005-03-30 2013-06-25 Panasonic Corporation Industrial robot

Similar Documents

Publication Publication Date Title
JP2895672B2 (en) Multiple robot control method
CN109507980B (en) Control device and control method
US5204942A (en) Robot control system for controlling a set of industrial robots for cooperative operation
JP5146512B2 (en) Control device, control system, and control method
JP6272599B1 (en) Control device and motor control system
US20190193269A1 (en) Robot control system and method of controlling a robot
KR910002446B1 (en) Speed controller
EP0357778A1 (en) Method of speed control for servomotor
EP0240570A1 (en) Acceleration and deceleration control system for horizontal-joint robots
WO1991003009A1 (en) Acceleration/deceleration control method of numeric controller
JPH05154781A (en) Multi-axis robot
US10035264B1 (en) Real time robot implementation of state machine
US6377012B1 (en) Servo system controller
US11633851B2 (en) Control method for robot system
JPH04155406A (en) Numerical control system
US20230294286A1 (en) Robot Controller And Robot System
US9905264B2 (en) Servo control system having function of switching learning memory
JP3534254B2 (en) Moving object speed control device and moving object speed control method
CN111699078A (en) Operation of the robot
JPH0666042B2 (en) Industrial robot controller
CN113459103B (en) Corner track control method and device during automatic operation of manipulator
JPH07111647B2 (en) Robot arm control method
CN112135718B (en) Control of robots
JP2000084880A (en) Robot device
JPS63132344A (en) Abnormality monitoring system in divided processing system by plural computers