JPH05154632A - Method for controlling level in casting nozzle - Google Patents

Method for controlling level in casting nozzle

Info

Publication number
JPH05154632A
JPH05154632A JP34764291A JP34764291A JPH05154632A JP H05154632 A JPH05154632 A JP H05154632A JP 34764291 A JP34764291 A JP 34764291A JP 34764291 A JP34764291 A JP 34764291A JP H05154632 A JPH05154632 A JP H05154632A
Authority
JP
Japan
Prior art keywords
molten steel
nozzle
level
mold
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34764291A
Other languages
Japanese (ja)
Inventor
Keiichi Otaki
慶一 大滝
Makoto Ide
誠 井出
Kyoji Okumura
恭司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34764291A priority Critical patent/JPH05154632A/en
Publication of JPH05154632A publication Critical patent/JPH05154632A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the entrapment of powder into a mold by changing Ar gas flow rate to control molten steel level in a nozzle. CONSTITUTION:At the time of pouring the molten steel 14 from a tundish 13 into the continuous casting mold 15 through the casting nozzle 3, the molten steel level (h1) in the nozzle 3 is estimated from the density and the pouring rate of the molten, steel 14 and the pressure in the casting nozzle 3. The pressure in the nozzle is controlled so that the value becomes the prescribed value obtd. from discharging flow speed V0 of the molten steel assumed with molten steel surface level in the tundish 13 as the supplying side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば連続鋳造機に於
けるタンデッシュから鋳型(モールド)へ溶鋼を供給す
る鋳造ノズル内のレベル制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a level control method in a casting nozzle for supplying molten steel from a tundish to a mold in a continuous casting machine.

【0002】[0002]

【従来の技術】連続鋳造機に於ける溶鋼の流量制御には
高精度な位置制御を実現するために、操作端として、ス
ライディングノズル(以下SNと略す)を使用すること
が一般的である。
2. Description of the Related Art For controlling the flow rate of molten steel in a continuous casting machine, it is common to use a sliding nozzle (hereinafter abbreviated as SN) as an operating end in order to realize highly accurate position control.

【0003】SNは耐火物のプレートを摺動させ、開口
面積をかえることで溶鋼の供給量を加減して、鋳型内の
溶鋼レベルを操業に必要な所定位置に制御するのに用い
ている。
The SN is used to control the molten steel level in the mold to a predetermined position necessary for operation by sliding the refractory plate and changing the opening area to adjust the amount of molten steel supplied.

【0004】しかしながら、厚みを持った耐火物を摺合
わせるために、溶鋼を酸化から防止し、供給を安定せし
めるために使用している浸せきノズル(以下INと略
す)内に空間ができ、溶鋼の片流れ(偏流)等の溶鋼流
の乱れを生じる。
However, a space is formed in the dipping nozzle (hereinafter abbreviated as IN) used to prevent the molten steel from being oxidized and to stabilize the supply in order to slide refractories having a thickness, and Disturbance of molten steel flow such as one-sided flow (uneven flow) occurs.

【0005】このためINの吐出口では流出量のアンバ
ランスとなって現れ、鋳型内でのパウダー巻き込みレベ
ル制御不調の原因となる。
For this reason, the outflow amount of IN appears as an imbalance in the outflow amount, which causes a malfunction of the powder entrainment level control in the mold.

【0006】また、ノズルの詰まりを防止するためにS
N上部やIN部にポーラスを設け、ここからArガスを
吹き込んでいるが、特にSN上部に吹き込んでいるガス
はすべてタンディシユ内の溶鋼中に入り込んでいるとは
限らず、溶鋼レベルが上がり溶鋼流出速度が速くなる
と、IN内に混入するガス量が増えていく。
In order to prevent clogging of the nozzle, S
Ar gas is blown from the upper part of N and the IN part, and the Ar gas is blown from here, but not all the gas blown to the upper part of SN is in the molten steel in the tundish, the molten steel level rises and the molten steel flows out. As the speed increases, the amount of gas mixed in the IN increases.

【0007】このためIN内の圧力が高まりノズル内部
のメニスカスレベルが下がり、ついにはINの吐出口か
らボイルとして出てくる。そのため鋳型内の溶鋼上に浮
かぶパウダーを巻き込んでしまう(図1)。
For this reason, the pressure inside the IN rises and the meniscus level inside the nozzle falls, and finally it comes out as boil from the IN discharge port. Therefore, the powder that floats on the molten steel in the mold is caught up (Fig. 1).

【0008】然るに、IN内の溶鋼レベルは品質管理上
重要であるが、INは耐火物でできているため中の様子
は外部からは分からない。
However, the molten steel level in the IN is important for quality control, but since the IN is made of refractory material, the inside state cannot be seen from the outside.

【0009】内部のレベルを推定するためにINの外壁
に熱電対などの測温素子を取り付けたり、X線を用いて
中の溶鋼レベルを調査した例がある。
There are examples in which a temperature measuring element such as a thermocouple is attached to the outer wall of IN in order to estimate the internal level, or the molten steel level inside is investigated by using X-rays.

【0010】[0010]

【発明が解決しようとする課題】IN内部の溶鋼レベル
を推定するのに、熱電対などの測温素子を使用すると位
置推定のためには複数設置しなければならず、また内部
の溶鋼レベルが鋳型内の溶鋼レベルより低くなると計測
不可能となる。
If a temperature measuring element such as a thermocouple is used to estimate the molten steel level inside the IN, a plurality of temperature measuring elements must be installed for position estimation. It becomes impossible to measure when it becomes lower than the molten steel level in the mold.

【0011】また、操業者がいるため、X線等の放射線
を使用することは好ましくない上、測温素子による方法
同様、鋳型内の溶鋼レベル以下のレベルは計測できな
い。
Further, since there is an operator, it is not preferable to use radiation such as X-rays, and similarly to the method using the temperature measuring element, the level below the molten steel level in the mold cannot be measured.

【0012】[0012]

【課題を解決するための手段】本発明は上記の問題点を
解決するために、タンデッシュからの溶鋼をガスととも
に鋳造ノズルを介して連続鋳造モールドに注入するに際
して、溶鋼の密度、流出量及び鋳造ノズル内の圧力か
ら、ノズル内の溶鋼レベルを推定し、この値が供給側の
タンデッシュの液面位置によって推定される液体の注出
流速から求められる所定値になるようにノズル内圧力を
操作することを特徴とする鋳造ノズル内レベル制御方法
である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention, when injecting molten steel from a tundish with gas into a continuous casting mold through a casting nozzle, the density, the outflow amount and the casting of the molten steel. The molten steel level in the nozzle is estimated from the pressure in the nozzle, and the pressure in the nozzle is manipulated so that this value becomes a predetermined value obtained from the pouring flow velocity of the liquid estimated by the liquid surface position of the tundish on the supply side. It is a level control method in a casting nozzle characterized by the above.

【0013】[0013]

【作用】本発明はこれらの問題点を解決する方法を提供
するものである。
The present invention provides a method for solving these problems.

【0014】IN内部が真空であれば、大気圧により溶
鋼は約1.3m程度上昇するので、IN内は溶鋼で満た
されるはずである。
If the inside of the IN is a vacuum, the molten steel rises by about 1.3 m under atmospheric pressure, so the inside of the IN should be filled with the molten steel.

【0015】これがそうなっていないのは詰まり防止・
介在物浮上のためにSN上部やIN内に吹き込んでいる
Arガスの影響が大きいためである。
The reason why this is not the case is that clogging is prevented.
This is because the Ar gas blown into the upper portion of SN or IN for the floating of inclusions has a great influence.

【0016】即ち、IN内の溶鋼レベルに対し影響度が
大きいのはArガスであり、ノズル内の溶鋼レベルを検
出し、所定位置に制御するための操作端としてはこれを
用いることが最も合理的である。
That is, it is Ar gas that has a great influence on the molten steel level in the IN, and it is most rational to use this as an operating end for detecting the molten steel level in the nozzle and controlling it at a predetermined position. Target.

【0017】操業信号とINの内部圧力を元にノズル内
部の溶鋼レベルを推定する方法を図2を用いて以下に示
す。
A method of estimating the molten steel level inside the nozzle based on the operation signal and the internal pressure of IN will be described below with reference to FIG.

【0018】簡単のために図2の様にINを密封された
ガラス容器内に上部から液体を注ぎ、下部から出すモデ
ルで近似する。
For simplification, as shown in FIG. 2, a model is approximated by a model in which liquid is poured from the upper part into a glass container sealed with IN from the upper part and discharged from the lower part.

【0019】大気圧をP0、容器内の圧力をP1、液体の
出口位置をh0、容器内の液面をh1、液の流出速度をv
0、液面の下がる速度をv1、液体の密度をρとすると、
ベルヌーイの定理から以下の式が成り立つ。
The atmospheric pressure is P 0 , the pressure in the container is P 1 , the outlet position of the liquid is h 0 , the liquid level in the container is h 1 , and the outflow rate of the liquid is v.
0 , the velocity of liquid drop is v 1 , and the density of the liquid is ρ,
The following equation holds from Bernoulli's theorem.

【0020】[0020]

【数1】 0=0とすると、[Equation 1] If h 0 = 0,

【0021】[0021]

【数2】 [Equation 2]

【0022】即ち、ノズル内部の液面位置は液体の速度
に関する項と、内外部の圧力に関する項からなっている
ことが分かる。
That is, it can be seen that the liquid surface position inside the nozzle has a term relating to the velocity of the liquid and a term relating to the pressure inside and outside.

【0023】実プラントにおいては、鋳型の幅をW、厚
みをD、引き抜き速度をVcとすると流出量Qoutは Qout=Vc・D・W
In an actual plant, if the width of the mold is W, the thickness is D, and the drawing speed is Vc, the outflow amount Q out is Q out = Vc · D · W

【0024】INは2つの吐出口を持つものを考える
と、吐出口面積がsならば吐出口からの流速v0は次の
ように表わせる(吐出口の数が2個以上の時は式の2が
吐出口の数になるだけである)。 v0=Qout/2s=(Vc・D・W)/2s
Considering that IN has two discharge ports, if the discharge port area is s, the flow velocity v 0 from the discharge port can be expressed as follows (when the number of discharge ports is two or more, it is expressed by 2 is only the number of outlets). v 0 = Q out / 2s = (Vc · D · W) / 2s

【0025】引き抜き速度が一定の状態で有ればv0
1の比はノズルの断面積をSとすると S・v0=2s・v1よりv1/v0=S/2s よって h1=1/2[{(Vc・D・W)/2s}2 −{(Vc
・D・W)/2s}2・(S/2s)2]/g+(P 0
1)/ρg=Vc2・W2・D2・(4s2−S2)/32
4/g+(P 0−P1)/ρg
If the drawing speed is constant, v0,
v1Assuming that the nozzle cross-sectional area is S, the ratio of0= 2s · v1Than v1/ V0= S / 2s Therefore h1= 1/2 [{(Vc · D · W) / 2s}2 -{(Vc
・ D ・ W) / 2s}2・ (S / 2s)2] / G + (P 0
P1) / Ρg = Vc2・ W2・ D2・ (4s2-S2) / 32
sFour/ G + (P 0-P1) / Ρg

【0026】P1以外の変数はすべて既知であるから、
ノズル内の溶鋼レベルh1はIN内の圧力を計測するこ
とで推定できる。
Since all variables except P 1 are known,
The molten steel level h 1 in the nozzle can be estimated by measuring the pressure in IN.

【0027】次にこの値を用いたノズル内溶鋼レベル制
御方法を図3を用いて説明する。
Next, a method for controlling the molten steel level in the nozzle using this value will be described with reference to FIG.

【0028】タンディシュ内の溶鋼レベル(溶鋼表面か
らSN出口までの距離)をH、SN出口から鋳型上端ま
での距離をl1、鋳型内溶鋼レベルをl0とすると前述の
ようにベルヌーイの定理を用いてSNでの溶鋼流速v0
を求めることができる。
Assuming that the molten steel level in the tundish (distance from the molten steel surface to the SN outlet) is H, the distance from the SN outlet to the upper end of the mold is l 1 and the molten steel level in the mold is l 0 , Bernoulli's theorem is used as described above. Using molten steel flow velocity v 0 at SN
Can be asked.

【0029】ただしタンディシユの断面積はSN開口面
積と比べて十分に大きいので、流速vは近似的に
However, since the cross-sectional area of the tundish is sufficiently larger than the SN opening area, the flow velocity v is approximately

【0030】[0030]

【数3】 k:流出抵抗の補正係数(0.8程度にする)となる。[Equation 3] k: Outflow resistance correction coefficient (approx. 0.8).

【0031】ノズル内圧が大気圧ならばノズル内溶鋼レ
ベルは鋳型内の溶鋼レベルと同じ位置でバランスするの
で、鋳型内溶鋼レベルの基準値は鋳型内溶鋼レベル位置
でとるべきである。従って溶鋼の落下距離は前述の式に
より求めたh1より SNからの溶鋼落下距離=l0+l1−h1 これより溶鋼の落下時間tは
If the internal pressure of the nozzle is atmospheric pressure, the molten steel level in the nozzle balances at the same position as the molten steel level in the mold, so the reference value of the molten steel level in the mold should be taken at the molten steel level position in the mold. Therefore, the falling distance of the molten steel is calculated from the above-mentioned formula h 1 by the molten steel drop distance from SN = l 0 + l 1 −h 1

【0032】[0032]

【数4】 IN内の溶鋼表面に達した時の速度vは[Equation 4] The velocity v when reaching the molten steel surface in IN is

【0033】[0033]

【数5】 となる。[Equation 5] Becomes

【0034】この値が小さいほど、INの吐出口での流
速は弱まって望ましいのであるが、そのために際限なく
Ar流量を絞ってしまうと、Arを流す効果がなくなり
ノズル詰まりが進行していく。
The smaller the value, the weaker the flow velocity at the IN discharge port, which is desirable. However, if the Ar flow rate is reduced indefinitely, the effect of flowing Ar is lost and nozzle clogging progresses.

【0035】即ち、Ar流量はノズル詰まりを生じない
レベルで、IN内部の溶鋼レベルに達した時の溶鋼速度
を最小に保てるところに設定することが望ましい。
That is, it is desirable that the Ar flow rate is set to a level at which the nozzle clogging does not occur and the molten steel velocity when the molten steel level inside the IN is reached can be kept to a minimum.

【0036】詰まりは鋳型への溶鋼の流入量と流出量の
アンバランスから評価できるから例えば、SN開口面積
(SN開度から算出できる)をAとすると鋳型への流入
量はQinは、 Qin=A・v0 となる。これと前述のQとの比から詰まりの指標xを定
義すると x=Qout/Qin・100(%) が得られる。
Since the clogging can be evaluated from the imbalance between the inflow amount and the outflow amount of the molten steel into the mold, for example, when the SN opening area (calculated from the SN opening) is A, the inflow amount into the mold is Q in : in = A · v 0 . If the index x of clogging is defined from the ratio of this and the above-mentioned Q, x = Q out / Q in · 100 (%) is obtained.

【0037】この指標xは諸処の実験の結果適正範囲は
80〜100%程度で、70%以下は詰まりが進行しや
すく、品質上も悪影響が大きいことが分かっている。
As a result of various experiments, an appropriate range of the index x is about 80 to 100%, and it is known that if the index x is 70% or less, clogging is likely to occur and quality is badly affected.

【0038】従ってxが70%以下になる流量を下限値
とし、IN内の溶鋼レベルが鋳型内の溶鋼レベルと同じ
になる点を流量の上限値とする。
Therefore, the lower limit value is the flow rate at which x is 70% or less, and the upper limit value of the flow rate is the point at which the molten steel level in IN is the same as the molten steel level in the mold.

【0039】IN吐出口での流量アンバランスを緩和す
るために必要なIN内の溶鋼レベルはノズルの吐出角や
溶鋼粘性・ノズルサイズなどで変わるため数式で決定し
にくいので、これらを見込んでノズル内の溶鋼に当たる
流速の目標値を決定する係数f(1.0〜1.2程度)
を設定し(実験により適正値を求める)、vがf・v0
と一致する様にAr流量を変えていく。
The molten steel level in the IN, which is necessary to alleviate the flow rate imbalance at the IN discharge port, varies with the discharge angle of the nozzle, the viscosity of the molten steel, the nozzle size, etc., so it is difficult to determine by a mathematical expression. Coefficient f (about 1.0 to 1.2) that determines the target value of the flow velocity of molten steel inside
Is set (the appropriate value is obtained by experiment), and v is f · v 0
The Ar flow rate is changed so as to coincide with.

【0040】[0040]

【実施例】以下に実プラントでテストした結果を図4に
示す。
EXAMPLES The results of tests conducted in an actual plant are shown in FIG.

【0041】引さ抜き速度Vc=1.48(m/mi
n)、鋳片幅W=1800(mm)、厚みD=280
(mm)、IN断面積S=42・π(cm2)、IN吐出
口断面積s=72(cm2)、溶鋼密度ρ=8(g/cm
3)とすると、 h 1=(P 0−P1)/ρg−1.99(cm) ノズル内外部圧力差△P=P0−P1を測定すると300
mmH2Oであった。これからノズル内部のレベルhは
1.76cmと推定される。
Pulling speed Vc = 1.48 (m / mi
n), slab width W = 1800 (mm), thickness D = 280
(Mm), IN cross section S = 42・ Π (cm2), IN discharge
Mouth cross section s = 72(Cm2), Molten steel density ρ = 8 (g / cm
3), H 1= (P 0-P1) /Ρg-1.99 (cm) Nozzle external pressure difference ΔP = P0-P1Is measured to be 300
mmH2It was O. From now on, the level h inside the nozzle is
It is estimated to be 1.76 cm.

【0042】このときタンディシユ内の溶鋼レベルはH
=1000mm、SN出口から鋳型上端までの距離はl
1=300mm、湯面レベルはl0=100mmであった
ので、SN出側の溶鋼流速v1は3.5m/secであ
り、これからノズル内溶鋼レベルに達した時の流速は
4.4m/secが得られる。係数fを1.1に選べ
ば、この速度をvaim=3.896m/secに落とす
ことになる。 h1=vaim/2g−k2H−l 0−l1 よりhは26.55cmでなければならない。
At this time, the molten steel level in the tundish is H
= 1000 mm, the distance from the SN exit to the top of the mold is l
1= 300 mm, the level of the molten metal is l0= 100 mm
Therefore, the molten steel flow velocity v on the SN exit side1Is 3.5 m / sec
The flow velocity when reaching the molten steel level in the nozzle is
4.4 m / sec is obtained. Select the coefficient f to 1.1
If this speed is vaim= 3.896 m / sec
It will be. h1= Vaim/ 2g-k2H-1 0-L1 More h should be 26.55 cm.

【0043】内部に吹き込むArガスを減らしていく
と、△P=2312mmH2Oで目標流速に達している
と推定された。
It was estimated that the target flow velocity was reached at ΔP = 2312 mmH 2 O as the Ar gas blown into the interior was reduced.

【0044】このときのノズル詰まり量xは95%であ
り、安定した操業であったといえる。
The nozzle clogging amount x at this time was 95%, and it can be said that the operation was stable.

【0045】[0045]

【発明の効果】本発明はINノズル内の溶鋼流速を一定
に保つように内部の溶鋼レベルをArガスの流量を変え
て内圧を制御するもので、鋳型内での偏流・Arガスの
ボイルによる鋳型内のパウダー巻き込みを防止する上で
効果がある。
INDUSTRIAL APPLICABILITY The present invention controls the internal pressure by changing the flow rate of Ar gas to the internal molten steel level so as to keep the molten steel flow velocity in the IN nozzle constant. It is effective in preventing powder entrapment in the mold.

【0046】流量の上限を鋳型内の溶鋼レベルが鋳型内
の溶鋼レベルにとり、流量の下限をノズル詰まり量の上
限値にとることで、Arガスを流す効果を保ちながら、
湯面の安定が図れる。
By setting the upper limit of the flow rate to the molten steel level in the mold and the lower limit of the flow rate to the upper limit of the nozzle clogging amount, while maintaining the effect of flowing Ar gas,
The surface of the bath can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ar流量とノズル内溶鋼レベルと偏流・Arボ
イルの関係説明図。
FIG. 1 is an explanatory diagram of a relationship between an Ar flow rate, a molten steel level in a nozzle, a drift and Ar boil.

【図2】密閉容器内の液体レベルと内圧の関係説明図。FIG. 2 is an explanatory diagram of a relationship between a liquid level in a closed container and an internal pressure.

【図3】ノズル内溶鋼レベル算出法説明図。FIG. 3 is an explanatory diagram of a molten steel level calculation method in a nozzle.

【図4】オンラインテスト結果を示す図。FIG. 4 is a diagram showing an online test result.

【符号の説明】[Explanation of symbols]

1 Ar気泡 2 ポーラス 3 IN 4 内圧の低いときのIN内溶鋼レベル 5 内圧の高いときのIN内溶鋼レベル 6 バウダー層 7 巻き込まれたパウダー粒子 8 溶鋼の流れ方向 9 密閉容器 10 容器内液体レベル 11 出側蛇口 12 入り側蛇口 13 タンディシユ 14 溶鋼 15 鋳型内溶鋼レベル 16 鋳型 1 Ar bubbles 2 Porous 3 IN 4 Molten steel level in IN when internal pressure is low 5 Molten steel level in IN when internal pressure is high 6 Bowder layer 7 Powder particles entrained 8 Flow direction of molten steel 9 Closed container 10 Liquid level in container 11 Outlet faucet 12 Inlet side faucet 13 Tandishyu 14 Molten steel 15 Molten steel level in mold 16 Mold

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タンデッシュからの溶鋼をガスとともに
鋳造ノズルを介して連続鋳造モールドに注入するに際し
て、溶鋼の密度、流出量及び鋳造ノズル内の圧力から、
ノズル内の溶鋼レベルを推定し、この値が供給側のタン
デッシュの液面位置によって推定される液体の注出流速
から求められる所定値になるようにノズル内圧力を操作
することを特徴とする鋳造ノズル内レベル制御方法。
1. When injecting molten steel from a tundish with gas into a continuous casting mold through a casting nozzle, from the density of molten steel, the outflow amount and the pressure in the casting nozzle,
Casting characterized in that the molten steel level in the nozzle is estimated and the pressure in the nozzle is manipulated so that this value becomes a predetermined value obtained from the pouring flow velocity of the liquid estimated by the liquid surface position of the tundish on the supply side. Nozzle level control method.
JP34764291A 1991-12-04 1991-12-04 Method for controlling level in casting nozzle Withdrawn JPH05154632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34764291A JPH05154632A (en) 1991-12-04 1991-12-04 Method for controlling level in casting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34764291A JPH05154632A (en) 1991-12-04 1991-12-04 Method for controlling level in casting nozzle

Publications (1)

Publication Number Publication Date
JPH05154632A true JPH05154632A (en) 1993-06-22

Family

ID=18391606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34764291A Withdrawn JPH05154632A (en) 1991-12-04 1991-12-04 Method for controlling level in casting nozzle

Country Status (1)

Country Link
JP (1) JPH05154632A (en)

Similar Documents

Publication Publication Date Title
KR100984597B1 (en) Storage medium storing automatic pouring control method and tilt movement control program for ladle
JP2882556B2 (en) Method and apparatus for supplying powder or granular material to ingot mold for continuous casting
GB2172532A (en) Method and apparatus for starting a continuous casting installation
US4761266A (en) Controlled addition of lithium to molten aluminum
US5355937A (en) Method and apparatus for the manufacture of a metal strip with near net shape
CA2026724C (en) Method and apparatus for improved melt flow during continuous strip casting
CN111593283B (en) Hot-coating galvanizing pot liquid level measuring system and control method
JPH05154632A (en) Method for controlling level in casting nozzle
CZ160694A3 (en) Inlet system of aluminium continuous casting apparatus
JP3649143B2 (en) Continuous casting method
US6675996B1 (en) Flow deviation preventing immersed nozzle
KR910006067B1 (en) Method for starting a continous casting plant
JP4430834B2 (en) Immersion nozzle drift prevention structure
JP2702344B2 (en) Method for producing atomized metal powder
KR920002108B1 (en) Automatic pouring apparatus
JPH07112253A (en) Device for controlling flow rate of inert gas in continuous casting apparatus
JPS62270264A (en) Control method at casting initial stage for continuous casting
JPS62197257A (en) Pouring method for molten steel in continuous casting
RU2100137C1 (en) Gear to feed melt in plant for continuous casting of aluminium
JPS6221447A (en) Method for controlling blowing of gas with immersion nozzle for continuous casting
JPS5762855A (en) Control device for flow rate of supplying liquid material
JP3610036B2 (en) Ladle inlet minimum opening judging method and judging device
JPH04228249A (en) Detecting and regulating device for level of molten metal
JPH0327300B2 (en)
US20050200056A1 (en) Apparatus and method for determining fluid depth

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311