JPH05154303A - Method for separating ethylbenzene or mixture of ethylbenzene and paraxylene from mixture of xylene isomers - Google Patents

Method for separating ethylbenzene or mixture of ethylbenzene and paraxylene from mixture of xylene isomers

Info

Publication number
JPH05154303A
JPH05154303A JP3348259A JP34825991A JPH05154303A JP H05154303 A JPH05154303 A JP H05154303A JP 3348259 A JP3348259 A JP 3348259A JP 34825991 A JP34825991 A JP 34825991A JP H05154303 A JPH05154303 A JP H05154303A
Authority
JP
Japan
Prior art keywords
ethylbenzene
xylene
carbon dioxide
paraxylene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3348259A
Other languages
Japanese (ja)
Other versions
JPH0811163B2 (en
Inventor
Shunsu Dan
駿 嵩 談
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIWAN HONOTSUKI KOGYO KOFUN Y
TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI
TAIWAN HONOTSUKI KOGYO KOFUN YUUGENKOUSHI
Original Assignee
TAIWAN HONOTSUKI KOGYO KOFUN Y
TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI
TAIWAN HONOTSUKI KOGYO KOFUN YUUGENKOUSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIWAN HONOTSUKI KOGYO KOFUN Y, TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI, TAIWAN HONOTSUKI KOGYO KOFUN YUUGENKOUSHI filed Critical TAIWAN HONOTSUKI KOGYO KOFUN Y
Priority to JP3348259A priority Critical patent/JPH0811163B2/en
Publication of JPH05154303A publication Critical patent/JPH05154303A/en
Publication of JPH0811163B2 publication Critical patent/JPH0811163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To provide an adsorptive separation method of a xylene isomer mixture by using carbon dioxide as a carrier and a desorbent. CONSTITUTION: By introducing a certain amount of a xylene isomer mixture with a carrier of high pressure phase carbon dioxide into a bed of high silicon zeolite adsorbent, adsorption is performed and the first product flow including large amounts of metaxylene and orthoxylene is obtained after passing through the adsorbent bed. After a mixture of ethylbenzen and paraxylene appears in the flow, supercritical carbon dioxide under higher pressure is introduced to sorb the absorbent bed thereby obtaining the second product flow including large amounts of ethylbenzen and paraxylene. It is preferable to introduce each of the first product flow and the second product flow to different absorbent beds of active carbons, to adsorb those xylene isomers products under isothermal and isobaric conditions and to reuse while circulating substantially pure carbon dioxide passing through those adsorbent beds of active carbons.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はキシレン異性体混合物の
分離方法に関する、詳しくは、二酸化炭素を担体及び脱
吸着剤とし、高シリコンゼオライトを吸着剤とし、キシ
レン異性体混合物からエチルベンゼン又はエチルベンゼ
ンとパラキシレン混合物を分離する方法キシレン異性体
混合物からエチルベンゼン又はエチルベンゼンとパラキ
シレン混合物を分離する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating a mixture of xylene isomers, more specifically, carbon dioxide as a carrier and a desorbent, a high silicon zeolite as an adsorbent, and ethylbenzene or ethylbenzene and parabenzene from a mixture of xylene isomers. Method for separating a xylene mixture relates to a method for separating ethylbenzene or a mixture of ethylbenzene and para-xylene from a xylene isomer mixture.

【0002】[0002]

【発明の背景】キシレン異性体混合物は一般ナフサ分解
工場とリホーミング工場で発生するが、その成分にはo
−キシレン(OX)、m−キシレン(MX)、p−キシ
レン(PX)及びエチルベンゼン(EB)等の4種の重
要な石油化学原料を含み、OXは無水フタル酸の原料で
あり、MXはイソフタル酸の原料であり、異性化してp
−キシレンにすることもでき、PXはポリエステル繊維
の原料であり、EBはスチレンの原料である。キシレン
異性体混合物中各成分の沸点はかなり接近している(E
B,136.2℃;PX,138.1℃;MX,139.1
℃;OX,144.4℃)ので、蒸留法では分離しにく
い。従来の方法に冷凍結晶法でキシレン異性体混合物を
分離するに、この混合物を冷凍し、先ずp−キシレンを
結晶させ、その他の成分は液相に残すが、この冷凍結晶
法には多くの欠点がある、例えば、かなり多くのエネル
ギーを要し、液・固相均衡の制限によりp−キシレンの
収率はせいぜい73%しか達しない。
BACKGROUND OF THE INVENTION Xylene isomer mixtures occur in general naphtha cracking plants and reforming plants.
-Includes four important petrochemical raw materials such as xylene (OX), m-xylene (MX), p-xylene (PX) and ethylbenzene (EB), OX is a source of phthalic anhydride and MX is isophthalic acid. It is a raw material of acid and is isomerized into p
It can also be xylene, PX being the raw material for polyester fibers and EB being the raw material for styrene. The boiling points of the components in the xylene isomer mixture are very close (E
B, 136.2 ° C; PX, 138.1 ° C; MX, 139.1
(° C; OX, 144.4 ° C), so it is difficult to separate by the distillation method. In order to separate the xylene isomer mixture by the freezing crystallization method from the conventional method, this mixture is frozen, p-xylene is first crystallized, and other components are left in the liquid phase, but there are many drawbacks to this frozen crystallization method. However, for example, it requires a considerable amount of energy, and the yield of p-xylene reaches only 73% at most due to the limitation of the liquid-solid phase equilibrium.

【0003】現在工業上、キシレン異性体の分離工程に
おいて、ゼオライトを吸着剤として、液相又は気相にて
操作する選択性吸着法が最も経済性があると認められて
いる、例えば、米国特許第3,558,732; 3,943,183; 4,05
1,192; 4,326,091; 4,439,535 等が挙げられる。これら
の方法には、通常脱吸着剤を必要とする。最も常用の脱
付着剤としてイソプロピルベンゼン、パラジエチルベン
ゼン、トルエン等が挙げられる。詳しい内容はD. M. Ru
thven の 「Principles of Adsorption andAdsorption
Processes」 , John Wiley & Sons New York (1984)を
参照されたい。Sautacesaria, E. らは 「Separaation
of Xylenes on Y Zeolites,in the Vapor Phase. 1.
Determination of the Adsorption Equilibrium Param
eters and of the Kenetic Regime」 , Ind. Eng. che
m. Process Dev. 24, 78-83(1985)にて、Y ゼオライト
で気相状態下、キシレン異性体の分離を開示し、気相で
分離すると液相で分離するより優れていて、且つ脱吸着
剤の使用量も少ないことが分かった。
At present, it is recognized in the industry that the selective adsorption method in which a zeolite is used as an adsorbent in a liquid phase or a gas phase is most economical in a separation process of xylene isomers. 3rd, 558,732; 3,943,183; 4,05
1,192; 4,326,091; 4,439,535 and the like. These methods usually require a desorbent. The most commonly used deattaching agents include isopropylbenzene, para-diethylbenzene, toluene and the like. DM Ru for details
thven's Principles of Adsorption and Adsorption
Processes ", John Wiley & Sons New York (1984). Sautacesaria, E. et al. "Separaation
of Xylenes on Y Zeolites, in the Vapor Phase. 1.
Determination of the Adsorption Equilibrium Param
eters and of the Kenetic Regime '', Ind. Eng. che
m. Process Dev. 24, 78-83 (1985) disclosed the separation of xylene isomers in a gas phase state with Y zeolite, and the separation in the gas phase was superior to the separation in the liquid phase and the desorption was performed. It was found that the amount of adsorbent used was also small.

【0004】上記いくつかの分離方法はいずれも脱吸着
剤を蒸留で回収する必要があるので、相当多くのエネル
ギーを必要とする。
All of the above separation methods require a considerable amount of energy because the desorbent has to be recovered by distillation.

【0005】本発明者の一人である談駿嵩及び蔡正雷は
「Separation of Xylene Isomers on Silicalite in S
upercritical and Gaseous CarbonDioxide」, Ind. En
g.chem. Res.,Vol. 29, 502-504(1990) にて、高シリ
コンゼオライト(silicalite)吸着剤及び、気態と超臨界
(supercritical)二酸化炭素を担体として、等重量のパ
ラキシレンとメタキシレン異性体混合物を分離し、気態
二酸化炭素は超臨界二酸化炭素より優れた分離効果を示
すことを開示し、又温度、圧力及び流速の分離効果に対
する影響も検討し、体積が1cm3 のプルスフィード(a
Pulse of 1.0cm3 of Xylene Isomers Feed) 、及び3
9.5gの高シリコンゼオライト吸着剤にて、最も適する
操作条件は温度が約358°Kで、圧力が約47.6atm
で, 流速が約15.0cm3 /分である。
[0005] One of the inventors of the present invention, Sunko Tan and Cai Masaru, "Separation of Xylene Isomers on Silicalite in S
upercritical and Gaseous Carbon Dioxide '', Ind. En
g.chem. Res., Vol. 29, 502-504 (1990), high silicon zeolite (silicalite) adsorbent, gas state and supercritical
(Supercritical) carbon dioxide is used as a carrier to separate equal weight para-xylene and meta-xylene isomer mixture, and it is disclosed that gaseous carbon dioxide exhibits a separation effect superior to that of supercritical carbon dioxide. influence on the separation effect of the flow rate also studied, volume of 1 cm 3 Purus feed (a
Pulse of 1.0cm 3 of Xylene Isomers Feed) and 3
With 9.5 g of high silicon zeolite adsorbent, the most suitable operating conditions are a temperature of about 358 ° K and a pressure of about 47.6 atm.
And the flow rate is about 15.0 cm 3 / min.

【0006】本発明の主な目的は二酸化炭素を担体及び
脱吸着剤とし、キシレン異性体混合物に対して吸着分離
を行う方法を提供するにある。好ましくは、該二酸化炭
素を等温、等圧吸着工程で回収し再循環使用する。従っ
て、従来の吸着分離方法における脱吸着剤は使用され
ず、エネルギー消費が莫大な脱吸着剤の蒸留分離工程を
省けられる。
The main object of the present invention is to provide a method for carrying out adsorption separation for a xylene isomer mixture using carbon dioxide as a carrier and a desorbent. Preferably, the carbon dioxide is recovered in the isothermal and isobaric adsorption step and recycled. Therefore, the desorbent used in the conventional adsorption / separation method is not used, and the distillation separation step of the desorbent, which consumes a large amount of energy, can be omitted.

【0007】[0007]

【発明の要旨】上記目的に達する為、本発明はキシレン
異性体混合物からエチルベンゼンとパラキシレン混合物
を分離する方法を提供する、高圧気態二酸化炭素を担体
とし、該キシレン異性体混合物を高シリコンゼオライト
吸着剤床に送り、吸着を行い、該吸着剤床を通過したメ
タキシレンとオルトキシレンが多く含まれる第1製品流
を得て、該製品流に該混合物中のエチルベンゼンとパラ
キシレン混合物が出始めてから、更に高圧の超臨界二酸
化炭素を導入し、該吸着剤床を脱吸着させ、エチルベン
ゼンとパラキシレンが多く含まれる第2製品流が得られ
る。好ましくは、第1製品流と第2製品流をそれぞれ異
なる活性炭吸着剤床に送り、等温等圧にてこれらのキシ
レン異性体製品を吸着させて、これらの活性炭吸着剤床
を通した実質上純粋な二酸化炭素を再循環使用する。又
該高圧気態二酸化炭素の吸着も任意に該混合物中の全て
のメタキシレン、オルトキシレン及びパラキシレンが殆
ど析出するまで行ってから、該超臨界二酸化炭素を導入
し、該吸着剤床を脱吸着させ、エチルベンゼンが多く含
まれる第2製品流を得ることもできる。
SUMMARY OF THE INVENTION To achieve the above object, the present invention provides a method for separating a mixture of ethylbenzene and para-xylene from a mixture of xylene isomers, using high-pressure gaseous carbon dioxide as a carrier, the mixture of xylene isomers being a high-silicon zeolite. Sent to the adsorbent bed for adsorption, to obtain a first product stream containing a large amount of metaxylene and orthoxylene that has passed through the adsorbent bed, and the mixture of ethylbenzene and para-xylene in the mixture begins to appear in the product stream. From the above, a second product stream containing a large amount of ethylbenzene and para-xylene is obtained by introducing high-pressure supercritical carbon dioxide and desorbing the adsorbent bed. Preferably, the first product stream and the second product stream are respectively sent to different activated carbon adsorbent beds, and these xylene isomer products are adsorbed under isothermal and isobaric pressures so as to be substantially pure through the activated carbon adsorbent beds. Recycled fresh carbon dioxide. Further, the adsorption of the high-pressure gaseous carbon dioxide is optionally carried out until all the meta-xylene, ortho-xylene and para-xylene in the mixture are almost deposited, and then the supercritical carbon dioxide is introduced to remove the adsorbent bed. It is also possible to adsorb and obtain a second product stream rich in ethylbenzene.

【0008】上記本発明の方法は、二酸化炭素の圧力を
変更させることにより、吸着剤の吸着力を変化させ、脱
吸着剤を使用しないので、脱吸着剤の蒸留回収の問題が
避けられる。又、該二酸化炭素は好ましくは、等温等圧
にてキシレン異性体製品と分離させることができるの
で、温度と圧力を加えなくとも直接回収し再循環使用す
ることができる。従って、従来の方法のように、減圧に
より製品と担体の気液分離の際、更にエネルギー消費が
大きい増圧工程を加えなければ、該二酸化炭素担体を再
循環使用することができない欠点を避けられる。
In the above method of the present invention, the adsorption force of the adsorbent is changed by changing the pressure of carbon dioxide, and the deadsorbent is not used. Therefore, the problem of distillation recovery of the adsorbent is avoided. Further, since the carbon dioxide can be preferably separated from the xylene isomer product at isothermal and isobaric pressure, it can be directly recovered and recycled without applying temperature and pressure. Therefore, it is possible to avoid the disadvantage that the carbon dioxide carrier cannot be reused unless a pressure-increasing step that consumes more energy is added during gas-liquid separation of the product and the carrier by depressurization as in the conventional method. ..

【0009】[0009]

【発明の詳細な内容】本発明はキシレン異性体混合物か
らエチルベンゼンとパラキシレン混合物を分離する方法
を提供する、該混合物には他にメタキシレンとオルトキ
シレンが含まれている、この方法には:(a) 高圧気態二
酸化炭素流を担体とし、一定量の該キシレン異性体混合
物を高シリコンゼオライト吸着剤床に送り、吸着を行
い、該吸着剤床を通過したメタキシレンとオルトキシレ
ンが多く含まれる第1製品流を得て、(b) 該混合物フィ
ード中のメタキシレンとオルトキシレンが殆ど析出して
から、より高圧な超臨界二酸化炭素流を導入し、該吸着
剤床を脱吸着させ、パラキシレンとエチルベンゼンが多
く含まれる第2製品流を得て、(c) 該第2製品流を第1
活性炭吸着剤床に送り、約等温等圧にてその内のパラキ
シレンとエチルベンゼンを吸着集めて、これらの第1活
性炭吸着剤床を通した高純度の二酸化炭素流を(b) の超
臨界二酸化炭素流に再循環させ、(d) 該第1活性炭吸着
剤床を脱吸着させ、パラキシレンとエチルベンゼンの製
品混合物が得られ、(e) 該第1製品流を第2活性炭吸着
剤床に送り、約等温等圧にてその内のメタキシレン、オ
ルトキシレンを吸着集めて、第2活性炭吸着剤床を通し
た高純度の二酸化炭素流を(a) の気態二酸化炭素流再循
環させ、該第2活性炭吸着剤床を脱吸着させ、メタキシ
レンとオルトキシレンの混合物製品が得られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for separating an ethylbenzene and paraxylene mixture from a xylene isomer mixture, which mixture additionally contains metaxylene and orthoxylene. (a) using a high-pressure gaseous carbon dioxide stream as a carrier, sending a certain amount of the xylene isomer mixture to a high-silicon zeolite adsorbent bed for adsorption, and containing a large amount of meta-xylene and ortho-xylene that have passed through the adsorbent bed. A first product stream is obtained, (b) after most of the meta-xylene and ortho-xylene in the mixture feed have precipitated, a higher pressure supercritical carbon dioxide stream is introduced to desorb the adsorbent bed, A second product stream rich in para-xylene and ethylbenzene is obtained, and (c) the second product stream is first
It is sent to the bed of activated carbon adsorbent, and paraxylene and ethylbenzene in it are adsorbed and collected at about isothermal and isobaric pressure, and the high-purity carbon dioxide flow through these beds of activated carbon adsorbent is supercritical carbon dioxide of (b). Recycled to the carbon stream, (d) desorbing the first activated carbon adsorbent bed to obtain a product mixture of paraxylene and ethylbenzene, and (e) sending the first product stream to a second activated carbon adsorbent bed. , At about isothermal and isobaric pressure, the meta-xylene and ortho-xylene therein are adsorbed and collected, and the high-purity carbon dioxide stream that has passed through the second activated carbon adsorbent bed is recycled by The second activated carbon adsorbent bed is desorbed to obtain a mixture product of meta-xylene and ortho-xylene.

【0010】又本発明はキシレン異性体混合物からエチ
ルベンゼンを分離する方法を提供する、該混合物には他
にメタキシレン、オルトキシレン及びパラキシレンが含
まれている、この方法には:(a)’高圧気態二酸化炭素
流を担体とし、一定量の該キシレン異性体混合物を高シ
リコンゼオライト吸着剤床に送り、エチルベンゼンの吸
着を行い、該吸着剤床を通過した実質上エチルベンゼン
レンを含まない第1製品流を得て、(b)’該混合物フィ
ード中のエチルベンゼンの他の異性体がが殆ど析出して
から、より高圧な超臨界二酸化炭素流を導入し、該吸着
剤床を脱吸着させ、エチルベンゼンが多く含まれる第2
製品流を得て、(c)’該第2製品流を第1活性炭吸着剤
床に送り、約等温等圧にてその内のエチルベンゼンを吸
着集めて、第1活性炭吸着剤床を通した高純度の二酸化
炭素流を(b) ’の超臨界二酸化炭素流に再循環させ、
(d)’該第1活性炭吸着剤床を脱吸着させ、エチルベン
ゼンの製品が得られる、(e)’該第1製品流を第2活性
炭吸着剤床に送り、約等温等圧にてその内のキシレン異
性体を吸着集めて、第2活性炭吸着剤床を通した高純度
の二酸化炭素流を(a) ’の気態二酸化炭素流再循環さ
せ、該第2活性炭吸着剤床を脱吸着させ、それらのキシ
レン異性体が得られる。
The present invention also provides a method for separating ethylbenzene from a mixture of xylene isomers, which mixture additionally contains meta-xylene, ortho-xylene and para-xylene, the method comprising: (a) ' A high-pressure gaseous carbon dioxide stream is used as a carrier, and a certain amount of the xylene isomer mixture is sent to a bed of high-silicon zeolite adsorbent to adsorb ethylbenzene, and the first mixture containing substantially no ethylbenzenelen which has passed through the bed of adsorbent is adsorbed. After obtaining a product stream, (b) 'most of the other isomers of ethylbenzene in the mixture feed have been deposited and then a higher pressure supercritical carbon dioxide stream is introduced to desorb the adsorbent bed, The second containing a lot of ethylbenzene
After obtaining the product stream, (c) 'sending the second product stream to the first activated carbon adsorbent bed, adsorbing and collecting ethylbenzene in it at about isothermal and isobaric pressure, and passing it through the first activated carbon adsorbent bed. Recycle the pure carbon dioxide stream to the (b) 'supercritical carbon dioxide stream,
(d) 'The first activated carbon adsorbent bed is desorbed to obtain a product of ethylbenzene, (e)' The first product stream is sent to the second activated carbon adsorbent bed, and the product is fed at about isothermal and isobaric pressure. Adsorbing and collecting the xylene isomers of, and recirculating the high-purity carbon dioxide stream passing through the second activated carbon adsorbent bed to desorb the second activated carbon adsorbent bed. , Their xylene isomers are obtained.

【0011】本発明方法で使用するキシレン異性体混合
物は、石油化学工業にて大量得られるキシレン異性体混
合物が好ましい、例えば、ナフサ分解工場又はリホーミ
ング工場で発生するo−、m−、p−キシレン及びエチ
ルベンゼンの4種の成分を含むもので、一般その組成は
エチルベンゼン5−75重量%、メタキシレン10−4
5重量%、オルトキシレン5−45重量%、パラキシレ
ン5−25重量%である。本発明の好ましい実施例には
重量組成がエチルベンゼン54.55%、メタキシレン2
6.43%、パラキシレン10.10%、オルトキシレン8.
92%の混合物を原料とする。但し、上記4種キシレン
異性体成分の3種又は2種成分の混合物も本発明方法に
適用する。
The xylene isomer mixture used in the method of the present invention is preferably a xylene isomer mixture obtained in a large amount in the petrochemical industry. For example, o-, m-, p- generated in a naphtha cracking plant or reforming plant. It contains four components, xylene and ethylbenzene, and generally has a composition of 5-75% by weight of ethylbenzene and 10-4 of meta-xylene.
5% by weight, 5-45% by weight ortho-xylene and 5-25% by weight para-xylene. In a preferred embodiment of the present invention, the weight composition is ethylbenzene 54.55%, metaxylene 2
6.43%, paraxylene 10.10%, orthoxylene 8.
The raw material is a mixture of 92%. However, a mixture of three or two components of the above four xylene isomer components is also applicable to the method of the present invention.

【0012】本発明で使用される高シリコンゼオライト
のSi/Al比は500以上で、、大きいほど分離効果
がよい。本発明の実施例に使用したSi/Al値が10
40のものは540のものより分離効果がよい。基本的
には、吸着剤の形状とサイズには特に制限がないが、我
々は24−32メッシュの粉状高シリコンゼオライト
は、直径1.55mm,長さ6.2mmの円柱状高シリコン
ゼオライトより分離効果がよいことを見だした。本発明
の目的から言えば、気態二酸化炭素にてキシレン異性体
を分離する能力があり、超臨界二酸化炭素の洗浄により
脱吸着を行えるゼオライトなら、いずれも本発明の高シ
リコンゼオライトと効能又は操作上同等物と見做すべき
である。
The high silicon zeolite used in the present invention has a Si / Al ratio of 500 or more, and the larger the ratio, the better the separation effect. The Si / Al value used in the examples of the present invention was 10
40 has a better separation effect than 540. Basically, there are no particular restrictions on the shape and size of the adsorbent, but we prefer 24-32 mesh powdery high-silicon zeolite to a cylindrical high-silicon zeolite with a diameter of 1.55 mm and a length of 6.2 mm. We found that the separation effect was good. Speaking from the object of the present invention, any zeolite having the ability to separate xylene isomers in gaseous carbon dioxide and capable of desorbing by washing supercritical carbon dioxide is effective or operated with the high silicon zeolite of the present invention. Should be regarded as the equivalent.

【0013】上記(a) と(a) ’段階にて、高圧気態二酸
化炭素で吸着分離を行う場合、その操作温度は323−
393°K,好ましくは約340−360°Kで、操作
圧力は500−800psia、好ましくは約600−70
0psiaである。
In the above steps (a) and (a) ', when adsorption separation is carried out using high-pressure gaseous carbon dioxide, the operating temperature is 323-
393 ° K, preferably about 340-360 ° K, operating pressure is 500-800 psia, preferably about 600-70
It is 0 psia.

【0014】上記(b) と(b) ’段階にて、更に高圧の超
臨界二酸化炭素で脱吸着を行う場合、その操作圧力は1
070psia以上であるべきである。原則として、圧力が
高いほど脱吸着が速いが、圧力を増加すると設備と操作
コストも増加する。従って1200−1500psia位の
圧力が好ましい。
In the steps (b) and (b) 'above, when desorbing with supercritical carbon dioxide at a higher pressure, the operating pressure is 1
Should be above 070 psia. As a general rule, the higher the pressure, the faster the desorption, but increasing the pressure also increases equipment and operating costs. Therefore, a pressure of about 1200-1500 psia is preferable.

【0015】基本上、上記(c) と(c) ’段階に使用され
る第1活性炭吸着剤床の活性炭使用量は(b) と(b) ’段
階にて発生した第2製品流中のキシレン異性体製品を完
全吸着収集するに充分であるべきである。同じく、該
(e) と(e) ’段階にて使用した第2活性炭吸着剤床の活
性炭使用量は(a) と(a) ’段階にて発生した第1製品流
中のキシレン異性体製品を完全吸着収集するに充分であ
るべきである。
Basically, the amount of activated carbon used in the first activated carbon adsorbent bed used in the above-mentioned steps (c) and (c) 'is in the second product stream generated in the steps (b) and (b)'. It should be sufficient to fully adsorb the xylene isomer product. Similarly, the
The amount of activated carbon used in the second activated carbon adsorbent bed used in steps (e) and (e) 'is the complete adsorption of xylene isomer products in the first product stream generated in steps (a) and (a)'. Should be sufficient to collect.

【0016】上記(d) と(d) ’、(e) と(e) ’段階にて
活性炭素吸着剤床を脱吸着させるには、従来技術中のい
かなる公知の活性炭再生技術、例えば水蒸気洗浄、超臨
界二酸化炭素洗浄等の類似技術で行うことができる。超
臨界二酸化炭素で洗浄する場合、上記(c) 段階にて第1
活性炭吸着剤床を通した高純度の二酸化炭素流は、任意
に(e) 段階の第2活性炭吸着剤床の再生に使用すること
ができる。
In order to desorb the activated carbon adsorbent bed in the above steps (d) and (d) ', (e) and (e)', any known activated carbon regeneration technique in the prior art, such as steam washing, can be used. , Supercritical carbon dioxide cleaning, and similar techniques. When cleaning with supercritical carbon dioxide, the first step in (c) above
The high purity carbon dioxide stream through the activated carbon adsorbent bed can optionally be used to regenerate the second activated carbon adsorbent bed in step (e).

【0017】〔実施例1〕:エチルベンゼンとメタキシ
レン混合物の分離 本実施例は図1に示す分離系統を使用し、等重量のエチ
ルベンゼンとメタキシレンを含む混合物を分離する。本
実施例で使用する吸着剤は高シリコンゼオライトであ
り、米国ユニオンカーバイド社から得られたもので、そ
の構造はZSM−5と似ていて、孔径は約6Åで、Si
/Al値が1040ある。ZSM−5と高シリコンゼオ
ライトの最も主な異なる点は、高シリコンゼオライトの
結晶体のアルミニウムの含有量が少ない。該高シリコン
ゼオライトは直径約1.55mmで、長さ約6.2mmのペッレ
トであり、その物理性質は表1の通りである。
Example 1 Separation of Ethylbenzene and Metaxylene Mixture In this example, the separation system shown in FIG. 1 is used to separate a mixture containing equal weight of ethylbenzene and metaxylene. The adsorbent used in this example is a high silicon zeolite, obtained from Union Carbide Co., USA, its structure is similar to ZSM-5, the pore size is about 6Å, Si
/ Al value is 1040. The main difference between ZSM-5 and high silicon zeolite is that the content of aluminum in the crystal of high silicon zeolite is low. The high silicon zeolite is a pellet having a diameter of about 1.55 mm and a length of about 6.2 mm, and its physical properties are shown in Table 1.

【0018】[0018]

【表1】 表1中の表面積はBET(Brunaauer-Emmett-Teller)方
法により測定した、孔体積はそれぞれ窒素吸着法と水銀
法で測定した、このデータより大きい孔( >600Å)
の比例は少なくないことを示す。
[Table 1] The surface area in Table 1 was measured by the BET (Brunaauer-Emmett-Teller) method, and the pore volume was measured by the nitrogen adsorption method and the mercury method, respectively. Pore larger than this data (> 600Å)
Indicates that the proportionality of is not small.

【0019】上記高シリコンゼオライトは使用する前に
先ず120℃の高温オーブンにて4時間乾燥させてか
ら、更に600℃まで温度を上げて24時間焼き活性化
させ、120℃まで温度を下げてから、重量を量り、迅
速に吸着充填床11に置く。
Before using the above-mentioned high silicon zeolite, it is first dried in a high temperature oven at 120 ° C. for 4 hours, further heated to 600 ° C. for 24 hours to be activated by firing, and then lowered to 120 ° C. , Weigh and quickly place on the adsorption packed bed 11.

【0020】充填床11は内径2.12cm、長さ25c
mの316ステンレス筒であり、この充填床11に約3
9.5gの処理済高シリコンゼオライトを高さ約14cm
に充填する。充填床を通した流に均一な分布が得られる
よう、該高シリコンゼオライト充填区の上下にはそれぞ
れ直径0.1cmのガラスビーズを6.3cmと5.3cm充
填した。
The packed bed 11 has an inner diameter of 2.12 cm and a length of 25 c.
It is a 316 stainless steel cylinder of m.
Approximately 14 cm in height of 9.5 g of treated high silicon zeolite
To fill. In order to obtain a uniform distribution in the flow through the packed bed, glass beads having a diameter of 0.1 cm were filled at 6.3 cm and 5.3 cm, respectively, above and below the high silicon zeolite packing section.

【0021】等重量の試薬級のエチルベンゼンとメタキ
シレンを混合し、分離しようとするフィード混合物を調
製した。図1に示す通り、この混合物はポンプ9により
6点サンプリング弁7(Rheodyne) に送られる、その内
サンプリングループのフィード混合物体積は1.0mlで
ある。筒1内の純度が少なくとも99%以上の二酸化炭
素を先ずゼオライト4A床を経て全てのあり得る上記と
炭水化物を除去し、隔膜圧縮機4により圧縮し、サージ
タンク5に送る。毎回測定毎に圧力を調節器2により所
望の値の±5psi 内に調節し、温度は該オイルバス13
内の予熱コイルで所望の値の±0.5℃に調節する。
An equal weight of reagent grade ethylbenzene and meta-xylene were mixed to prepare a feed mixture to be separated. As shown in FIG. 1, this mixture is sent by a pump 9 to a 6-point sampling valve 7 (Rheodyne), in which the sampling loop has a feed mixture volume of 1.0 ml. Carbon dioxide having a purity of at least 99% or more in the cylinder 1 is first passed through a bed of zeolite 4A to remove all the above-mentioned carbohydrates, compressed by a diaphragm compressor 4 and sent to a surge tank 5. The pressure was adjusted within ± 5 psi of the desired value by the controller 2 at each measurement, and the temperature was adjusted to the oil bath 13
Adjust to the desired value ± 0.5 ° C with the preheating coil inside.

【0022】該サンプリングループのフィード混合物を
吸着剤充填床11に注入する前、該6点サンプリング弁
7を二酸化炭素が該サンプリングループをバイパスする
ように回し、先に該充填床に導入する。二酸化炭素の流
速が安定した操作流速に達するよう計量弁14を調節し
てから、6点サンプリング弁7を回して二酸化炭素が該
サンプリングループ内の混合物を携帯し該充填床11に
注入させる。充填床11から流出した流体は計量弁14
の膨張を経て、約−20℃の冷却収集瓶15に流入させ
る。エチルベンゼンとメタキシレンは該冷却収集瓶15
に収集され、該冷却収集瓶15内には1.0Lの95%エ
チルアルコールを含み、氷浴に置く。20分毎に冷却収
集瓶15からサンプルを6.0μl取り、GC(Varian
3700)に送りその組成を分析する。該充填床11内
の流速は湿式ガス流量計17でガスの体積を測定して得
た。
Before injecting the feed mixture of the sampling loop into the adsorbent packed bed 11, the six-point sampling valve 7 is turned so that carbon dioxide bypasses the sampling loop and is introduced into the packed bed first. After adjusting the metering valve 14 so that the flow rate of carbon dioxide reaches a stable operation flow rate, the six-point sampling valve 7 is turned to allow carbon dioxide to carry the mixture in the sampling loop into the packed bed 11. The fluid flowing out from the packed bed 11 has a metering valve 14
And then flow into the cooling collection bottle 15 at about -20 ° C. Ethylbenzene and meta-xylene are used in the cooling collection bottle 15
The cold collection bottle 15 contains 1.0 L of 95% ethyl alcohol and is placed in an ice bath. A sample (6.0 μl) is taken from the cooling collection bottle 15 every 20 minutes, and the GC (Varian
3700) and analyze its composition. The flow velocity in the packed bed 11 was obtained by measuring the gas volume with a wet gas flow meter 17.

【0023】冷却収集瓶15で収集したEBとMXの総
量は該冷却収集瓶15中の最終濃度を測定して得た。こ
の総量と濃度−時間曲線から積分計算により得られたも
のと良く一致していて、且つこの総量も最初注入量と非
常に近い(誤差は5%内である)。得た結果は表2の通
りであり、その内一部分テストの反応曲線は図3と5に
示す。
The total amount of EB and MX collected in the cold collection bottle 15 was obtained by measuring the final concentration in the cold collection bottle 15. This total amount is in good agreement with the one obtained by the integral calculation from the concentration-time curve, and this total amount is also very close to the initial injection amount (the error is within 5%). The obtained results are shown in Table 2, and the reaction curves of the partial test are shown in FIGS. 3 and 5.

【0024】[0024]

【表2】 [Table 2]

【数1】 表2中の平均保持時間tの定義は[Equation 1] The definition of the average retention time t in Table 2 is

【数2】 式中、Cは濃度、tは時間を示す。[Equation 2] In the formula, C represents concentration and t represents time.

【0025】表2中、MXの回収率は充填カラムから流
出したメタキシレンの純度が98%より大きい時に収集
した量をそのフィード量で割った%を指す。EB回収率
の定義も同じである。
In Table 2, the MX recovery rate refers to the% of the amount collected when the purity of metaxylene flowing out from the packed column is greater than 98%, divided by the feed amount. The definition of EB recovery rate is also the same.

【0026】平均保持時間と回収率の両因子を考慮し、
表2のデータより、圧力600psia、温度80℃、流速
15cm3 /分間が好ましい操作条件であることを示
す。
Considering both factors of average retention time and recovery rate,
The data in Table 2 show that a pressure of 600 psia, a temperature of 80 ° C. and a flow rate of 15 cm 3 / min are preferred operating conditions.

【0027】更に分離を完成する周期時間を短縮する
為、メタキシレンが流出した後、系統圧力を速く120
0psiaまで上げ、二酸化炭素のエチルベンゼンに対する
溶解力を増加し、エチルベンゼンをより短時間内に完全
流出させる、図6参照。同じ原理により、後段のエチル
ベンゼンが流出する際、系統圧力を更に増加すると、分
離の周期を更に短縮することができる。
In order to further shorten the cycle time for completing the separation, the system pressure is increased to 120 after the metaxylene has flowed out.
Raise to 0 psia to increase the solvency of carbon dioxide for ethylbenzene, allowing ethylbenzene to completely flow out within a shorter time, see FIG. According to the same principle, when the system pressure is further increased when ethylbenzene in the latter stage flows out, the separation cycle can be further shortened.

【0028】〔実施例2〕:パラキシレンとエチルベン
ゼンの分離 等重量のパラキシレンとエチルベンゼンとの混合物をフ
ィード混合物とし、サンプリングループ中のフィード混
合物量を0.5mlとする他は、実施例1と同じく繰り返
す。その結果は表3の通りである。
Example 2 Separation of Paraxylene and Ethylbenzene As Example 1 except that a mixture of paraxylene and ethylbenzene of equal weight was used as the feed mixture and the amount of the feed mixture in the sampling loop was 0.5 ml. Repeat again. The results are shown in Table 3.

【0029】表3より、温度が120℃で、圧力が70
0psiaの時が好ましい操作条件であることを示す。この
操作条件にて、パラキシレンとエチルベンゼンの回収率
はそれぞれ68.4%と77.5%である。
From Table 3, the temperature is 120 ° C. and the pressure is 70
0 psia indicates a preferred operating condition. Under these operating conditions, the recoveries of para-xylene and ethylbenzene are 68.4% and 77.5%, respectively.

【0030】[0030]

【表3】 a、bの説明は表2と同じである。[Table 3] The description of a and b is the same as in Table 2.

【0031】〔実施例3〕:四成分混合物の分離 組成がメタキシレン26.0重量%、オルトキシレン8.8
重量%、パラキシレン10.3重量%、エチルベンゼン5
4.9重量%の四成分異性体混合物で実施例1の二成分異
性体混合物を代わりに分離を行い、実験前段の操作温度
は80℃で、圧力は600psiaで、流速15cm3 /分
間とし、操作時間が120分間の時に圧力を1200ps
iaまで上げる。実験の結果は図7の通りである。
[Example 3]: Separation of four-component mixture Composition: meta-xylene 26.0 wt%, ortho-xylene 8.8
% By weight, paraxylene 10.3% by weight, ethylbenzene 5
Separation was carried out in place of the binary isomer mixture of Example 1 with 4.9 wt. 1200ps pressure when time is 120 minutes
Raise to ia. The result of the experiment is shown in FIG. 7.

【0032】図7より、操作時間が350分間内に分離
が完成し、前段から流出した製品はメタキシレンとオル
トキシレンとの混合物であり、次はパラキシレンとエチ
ルベンゼンとの混合物で、最後に出てきたのは純粋なエ
チルベンゼン製品である。専らこの純エチルベンゼン製
品の量は最初のエチルベンゼンフィード量の34重量%
である。もし中段から出てきたパラキシレンとエチルベ
ンゼンとの混合物を上記実施例2の分離を行うと、更に
高い収率のエチルベンゼンが得られる。
From FIG. 7, the separation was completed within the operation time of 350 minutes, and the product flowing out from the previous stage was a mixture of metaxylene and orthoxylene, and next was a mixture of paraxylene and ethylbenzene. It is a pure ethylbenzene product. Exclusively this pure ethylbenzene product is 34% by weight of the original ethylbenzene feed
Is. If the mixture of para-xylene and ethylbenzene coming out of the middle stage is subjected to the separation of Example 2 above, a higher yield of ethylbenzene can be obtained.

【0033】又、図7より、該四成分キシレン異性体混
合物は先ず両部分に分離することもできる。第1部分は
メタキシレンとオルトキシレンを含み、第2部分はパラ
キシレンとエチルベンゼンを含む。このパラキシレンと
エチルベンゼンを含む第2部分の混合物は更に実施例2
の分離で純エチルベンゼンと純パラキシレンの製品が得
られる。
Further, referring to FIG. 7, the quaternary xylene isomer mixture can be first separated into both parts. The first part contains meta-xylene and ortho-xylene and the second part contains para-xylene and ethylbenzene. The mixture of the second part containing para-xylene and ethylbenzene was further prepared in Example 2.
Separation gives pure ethylbenzene and pure para-xylene products.

【0034】〔実施例4〕:四成分混合物から直接エチ
ルベンゼンを分離 組成がメタキシレン26.43重量%、オルトキシレン8.
92重量%、パラキシレン10.10重量%、エチルベン
ゼン54.55重量%の四成分異性体混合液をフィード原
料とし、吸着剤量を37.63gとする他は、実施例1と
同じく繰り返す。
[Example 4]: Ethylbenzene was directly separated from the four-component mixture. The composition was 26.43% by weight of meta-xylene and 8.
The same procedure as in Example 1 is repeated except that a mixed quaternary mixture of 92% by weight, 10.10% by weight of paraxylene and 54.55% by weight of ethylbenzene is used as a feed material and the adsorbent amount is 37.63 g.

【0035】本実施例には操作変数、例えば温度、圧
力、昇圧、昇圧時間を変化して、エチルベンゼンのより
優れた収率が得られる操作条件を求める。その結果を表
4の通りである。
In this example, operating variables such as temperature, pressure, pressurization and pressurization time are changed to determine the operating conditions that give a better yield of ethylbenzene. The results are shown in Table 4.

【0036】[0036]

【表4】 *分離に必要な操作時間 **エチルベンゼンを回収する開始時間 表4中、テスト1−7に使用された高シリコンゼオライ
トは直径約1.55mmで、長さ約6.2mmのペッレトであ
り、テスト8−10に使用された高シリコンゼオライト
はメッシュ24−32(0.707−0.5mm)の粒子で
ある。表4のデータより、後者の方が明らかに優れた分
離効果を示す。
[Table 4] * Operation time required for separation ** Start time to recover ethylbenzene In Table 4, the high silicon zeolite used in Test 1-7 was a pellet with a diameter of about 1.55 mm and a length of about 6.2 mm. The high silicon zeolite used in 8-10 is particles of mesh 24-32 (0.707-0.5 mm). From the data in Table 4, the latter clearly shows a better separation effect.

【0037】又、表4中、テスト8のエチルベンゼンの
収率が最も高い(97.1%)が、操作時間(380分
間)はテスト9の280分間より明らかに長い。従っ
て、収率と回収周期の両因子を考慮すると、テスト9の
方が優れている。図8はテスト8の分離結果を示す。
Further, in Table 4, the yield of ethylbenzene in Test 8 is the highest (97.1%), but the operating time (380 minutes) is obviously longer than 280 minutes in Test 9. Therefore, in consideration of both factors of yield and recovery cycle, test 9 is superior. FIG. 8 shows the separation result of test 8.

【0038】〔実施例5〕:活性炭で等温等圧にてキシ
レン異性体製品の吸着 本実施例はキシレン異性体製品を含む高圧二酸化炭素流
は活性炭の等温等圧吸着によりその内のキシレン異性体
製品そ収集し、該活性炭吸着剤床を通した純粋な二酸化
炭素は、加温加圧することなく直ちに再循環し、キシレ
ン異性体混合物を吸着分離する方法における高圧気態二
酸化炭素担体又は超臨界二酸化炭素吸着剤とすることが
できる。
Example 5: Adsorption of xylene isomer product at isothermal and isobaric pressure on activated carbon In this example, a high-pressure carbon dioxide stream containing a xylene isomer product is subjected to isothermal isobaric adsorption of activated carbon on which xylene isomers are adsorbed. The pure carbon dioxide collected from the product and passed through the activated carbon adsorbent bed is immediately recirculated without heating and pressurization to obtain a high-pressure gaseous carbon dioxide carrier or supercritical carbon dioxide in a method of adsorbing and separating a mixture of xylene isomers. It can be a carbon adsorbent.

【0039】6gの8−10メッシュの活性炭顆粒を使
用し、100℃、650psiaで、異なる濃度のメタキシ
レン(二酸化炭素担体の流速15cm3 /分間)にて吸
着収集を行うと、その突破曲線は図9の通りである。こ
れより、メタキシレンの濃度が221.9×10-6g/m
lの場合、150分間過ぎてからメタキシレンが活性炭
に吸着収集されないようになり始める。
When 6 g of 8-10 mesh activated carbon granules were used and adsorption collection was carried out at 100 ° C. and 650 psia with different concentrations of meta-xylene (flow rate of carbon dioxide carrier was 15 cm 3 / min), the breakthrough curve was As in 9. From this, the concentration of meta-xylene was 221.9 × 10 -6 g / m 2.
In the case of 1, the meta-xylene starts not being adsorbed and collected on the activated carbon after 150 minutes.

【0040】図10は異なる濃度のエチルベンゼンの1
00℃、1500psiaでの突破曲線であり、これより、
エチルベンゼンの入る濃度が7.84×10-4g/mlの
場合、約15分間過ぎるとエチルベンゼンが活性炭に吸
着収集されないようになり始める。
FIG. 10 shows one of ethylbenzene with different concentrations.
It is a breakthrough curve at 00 ° C and 1500 psia.
When the concentration of ethylbenzene is 7.84 × 10 −4 g / ml, ethylbenzene starts not to be adsorbed and collected on the activated carbon after about 15 minutes.

【0041】実施例4の図8より、析出したメタキシレ
ンの最大濃度は約2.0×10-4g/mlで、その分離析
出時間は約250分間である。若し上記図9の突破曲線
から見ると、活性炭の量を10gまで増加すると、析出
時間250分間内にメタキシレンとオルトキシレンを完
全に吸着収集することができる。
From FIG. 8 of Example 4, the maximum concentration of precipitated meta-xylene is about 2.0 × 10 −4 g / ml, and the separation and deposition time is about 250 minutes. As seen from the breakthrough curve in FIG. 9, when the amount of activated carbon is increased to 10 g, metaxylene and orthoxylene can be completely adsorbed and collected within 250 minutes of the precipitation time.

【0042】実施例4の図8より、エチルベンゼンの分
離析出時間が約130分間であると、上記図10の突破
曲線より、活性炭の量が約54g以上でないと、エチル
ベンゼンを完全に吸着収集することができない。
According to FIG. 8 of Example 4, when the separation / precipitation time of ethylbenzene is about 130 minutes, the breakthrough curve of FIG. 10 indicates that ethylbenzene is completely adsorbed and collected unless the amount of activated carbon is about 54 g or more. I can't.

【0043】〔実施例6〕:キシレン異性体混合物の分
離操作 実施例4と5のデータより、図2に示す系統で混合物の
分離を行う、その内二酸化炭素は再循環して使用する。
[Example 6]: Separation operation of xylene isomer mixture From the data of Examples 4 and 5, the mixture is separated in the system shown in Fig. 2, of which carbon dioxide is recycled.

【0044】図2に示す通り、先ず圧縮機4と熱交換器
50で二酸化炭素を2500psia、100℃まで上げ
て、サージタンク5に貯存し、圧力調節弁R2,R3で
所望の操作圧力に調節し、循環ポンプ22で系統の二酸
化炭素流量を15ml/分間に安定するよう制御する。
フィードの方法は二酸化炭素をサンプリング弁7を通し
て、キシレン混合液を導入する。フィードの前に、先ず
固定床(I−V)入口の弁60を650psiaの圧力管に
回して、出口の弁61をメタキシレン、オルトキシレ
ン、パラキシレンを吸着する活性炭床20に回す。操作
中、50分間毎に1個の固定床をフィードし、単一固定
床の操作時間が200分間に達した時、直ちに入口の弁
60を1500psiaの圧力管に回し、且つ出口の弁61
をエチルベンゼンを吸着する活性炭床21に回す、元来
該床に入った650psiaの二酸化炭素(即ち還流した二
酸化炭素)は他の固定床に送りフィード流体とする、表
5に示す通り、操作順序が5の時、第V床フィード二酸
化炭素は原I床のフィード二酸化炭素である。
As shown in FIG. 2, first, carbon dioxide is raised to 2500 psia and 100 ° C. by the compressor 4 and the heat exchanger 50, stored in the surge tank 5, and adjusted to a desired operating pressure by the pressure control valves R2 and R3. Then, the circulation pump 22 controls so that the flow rate of carbon dioxide in the system is stabilized at 15 ml / min.
The method of feeding is to introduce carbon dioxide through the sampling valve 7 and a xylene mixed solution. Prior to the feed, first the fixed bed (IV) inlet valve 60 is turned to a 650 psia pressure tube and the outlet valve 61 is turned to the activated carbon bed 20 adsorbing meta-xylene, ortho-xylene and para-xylene. During operation, one fixed bed was fed every 50 minutes, and when the operation time of a single fixed bed reached 200 minutes, the inlet valve 60 was immediately turned to a pressure pipe of 1500 psia and the outlet valve 61.
Is passed through an activated carbon bed 21 for adsorbing ethylbenzene, and 650 psia carbon dioxide originally contained in the bed (that is, refluxed carbon dioxide) is sent to another fixed bed as a feed fluid, and the operation sequence is as shown in Table 5. At 5, the V-bed feed carbon dioxide is the raw I-bed feed carbon dioxide.

【0045】[0045]

【表5】 [Table 5]

【0046】図2の系統には計4個の活性炭床があり、
2組に分け、その内の1組の活性炭床21はエチルベン
ゼンを吸着収集し、他の1組20はメタキシレン、オル
トキシレン、パラキシレンを吸着収集する操作の際、1
組毎に只1個の活性炭床を使用し製品を収集し、吸着が
飽和に近づいてたら再生を行い、この時に同組の他の1
個の活性炭床を交換し製品を収集し、連続的に操作でき
るようにする。例えば、エチルベンゼンを吸着収集する
活性炭床及びメタキシレン、オルトキシレン及びパラキ
シレンを収集する活性炭床にそれぞれ10個の固定床を
から分離した製品を完全に収集することができる活性炭
を充填するれば、10個の操作順序毎に活性炭を1回再
生しただけでよい。
The system of FIG. 2 has a total of four activated carbon beds,
When divided into two groups, one group of activated carbon beds 21 absorbs and collects ethylbenzene, and the other group 20 absorbs and collects meta-xylene, ortho-xylene, and para-xylene.
Products are collected using only one activated carbon bed for each group, and when adsorption is near saturation, regeneration is performed.
Replace individual activated carbon beds to collect product and enable continuous operation. For example, if an activated carbon bed that adsorbs and collects ethylbenzene and an activated carbon bed that collects meta-xylene, ortho-xylene and para-xylene are packed with activated carbon that can completely collect a product separated from 10 fixed beds, respectively, It is only necessary to regenerate the activated carbon once for every 10 operation sequences.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法のより好ましい実施例のフローチャ
ートである。
1 is a flow chart of a more preferred embodiment of the method of the present invention.

【図2】本発明方法の他の一つより好ましい実施例のフ
ローチャートである。
FIG. 2 is a flowchart of another preferred embodiment of the method of the present invention.

【図3】EBとMX混合物が異なる操作圧力にての反応
曲線。
FIG. 3: Reaction curves for EB and MX mixtures at different operating pressures.

【図4】EBとMX混合物が異なる操作温度にての反応
曲線。
FIG. 4. Reaction curves for EB and MX mixtures at different operating temperatures.

【図5】EBとMX混合物が異なる二酸化炭素流速にて
の反応曲線。
FIG. 5: Reaction curves for EB and MX mixtures at different carbon dioxide flow rates.

【図6】EBとMX混合物が120分の時に操作圧力を
650psiaから1200psiaに上げた場合の反応曲線。
FIG. 6 is a reaction curve of the EB and MX mixture when the operating pressure was increased from 650 psia to 1200 psia at 120 minutes.

【図7】四成分キシレン異性体混合物の反応曲線。FIG. 7: Reaction curve of a quaternary xylene isomer mixture.

【図8】四成分キシレン異性体混合物を325分の時に
操作圧力を650psiaから1500psiaに上げた場合の
反応曲線であり、使用した高シリコンゼオライトはメッ
シュ24−32の粒子である。
FIG. 8 is a reaction curve when the operating pressure of the quaternary xylene isomer mixture was raised from 650 psia to 1500 psia at 325 minutes, and the high silicon zeolite used was particles of mesh 24-32.

【図9】100℃と650psiaにて異なる濃度のメタキ
シレンにおける活性炭床の突破曲線。
FIG. 9: Breakthrough curves of activated carbon beds at different concentrations of meta-xylene at 100 ° C. and 650 psia.

【図10】100℃と1500psiaにて異なる濃度のエ
チルベンゼンにおける活性炭床の突破曲線。
FIG. 10: Breakthrough curve of activated carbon bed in different concentrations of ethylbenzene at 100 ° C. and 1500 psia.

【符号の説明】[Explanation of symbols]

1 二酸化炭素筒 2 調節器 3 ゼオライト4A 4 圧縮機 5 サージタンク 6 圧力計 7 サンプリング弁 8 ニードル弁 9 配管ポンプ 10 キシレン異性
体フィード 11 吸着剤充填床 12 熱電対 13 オイルバス 14 計量弁 15 冷却トラップ 16 電磁攪拌機 17 湿式ガス流量計 20 活性炭床 21 活性炭床 22 循環ポンプ 50 熱交換器 60 三方向弁 61 三方向弁 I−V 吸着剤充填床 R1 、R2 、R3 圧力調節器
1 Carbon dioxide cylinder 2 Regulator 3 Zeolite 4A 4 Compressor 5 Surge tank 6 Pressure gauge 7 Sampling valve 8 Needle valve 9 Piping pump 10 Xylene isomer feed 11 Adsorbent packed bed 12 Thermocouple 13 Oil bath 14 Metering valve 15 Cooling trap 16 Electromagnetic Stirrer 17 Wet Gas Flow Meter 20 Activated Carbon Bed 21 Activated Carbon Bed 22 Circulation Pump 50 Heat Exchanger 60 Three-way Valve 61 Three-way Valve IV Adsorbent Packed Bed R1, R2, R3 Pressure Controller

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 エチルベンゼンの他にメタキシレン、オ
ルトキシレン及びパラキシレンからなる群より選ばれる
少なくとも一種を含むキシレン異性体混合物からエチル
ベンゼンを分離する方法において、 (a) 高圧気態二酸化炭素流を担体とし、一定量の該キシ
レン異性体混合物を高シリコンゼオライト吸着剤床に送
り、エチルベンゼンの吸着を行い、該吸着剤床を通過し
た第1製品流を得て、 (b) 該第1製品流に含まれるキシレン異性体のエチルベ
ンゼン成分が予定する比例に達したら、より高圧な超臨
界二酸化炭素流を導入し、該吸着剤床を脱吸着させ、実
質上純粋なエチルベンゼンを含まれる第2製品流を得る
ことを特徴とする方法。
1. A method for separating ethylbenzene from a xylene isomer mixture containing at least one selected from the group consisting of metaxylene, orthoxylene, and paraxylene in addition to ethylbenzene, wherein (a) a high-pressure gaseous carbon dioxide stream is used as a carrier. And sending a certain amount of the xylene isomer mixture to the high-silicon zeolite adsorbent bed to adsorb ethylbenzene to obtain a first product stream passing through the adsorbent bed, and (b) in the first product stream. When the contained ethylbenzene component of the xylene isomer reaches the expected proportion, a higher pressure supercritical carbon dioxide stream is introduced to desorb the adsorbent bed and produce a second product stream containing substantially pure ethylbenzene. A method of obtaining.
【請求項2】 (b) 段階におけるエチルベンゼンの予定
する比例は98重量%である請求項1の方法。
2. The method of claim 1 wherein the expected proportion of ethylbenzene in step (b) is 98% by weight.
【請求項3】 該キシレン異性体混合物にメタキシレ
ン、オルトキシレン、パラキシレン及びエチルベンゼン
を含まれる請求項1の方法。
3. The method of claim 1 wherein the xylene isomer mixture comprises metaxylene, orthoxylene, paraxylene and ethylbenzene.
【請求項4】 該キシレン異性体混合物の重量組成がエ
チルベンゼン:パラキシレン:メタキシレン:オルトキ
シレン=5−75重量%:10−45重量%:5−45
重量%:5−25重量%である請求項3の方法。
4. The weight composition of the xylene isomer mixture is ethylbenzene: paraxylene: metaxylene: orthoxylene = 5-75% by weight: 10-45% by weight: 5-45.
%, 5-25% by weight.
【請求項5】 該キシレン異性体混合物にパラキシレン
及びエチルベンゼンを含まれる請求項1の方法。
5. The method of claim 1, wherein the xylene isomer mixture comprises paraxylene and ethylbenzene.
【請求項6】 エチルベンゼンの他にメタキシレン、オ
ルトキシレン及びパラキシレンからなる群より選ばれる
少なくとも一種を含むキシレン異性体混合物からエチル
ベンゼンを分離する方法において、 (a) 高圧気態二酸化炭素流を担体とし、一定量の該キシ
レン異性体混合物を高シリコンゼオライト吸着剤床に送
り、エチルベンゼンの吸着を行い、該吸着剤床を通過し
た第1製品流を得て、 (b) 該第1製品流に含まれるキシレン異性体のエチルベ
ンゼン成分が予定する比例に達したら、より高圧な超臨
界二酸化炭素流を導入し、該吸着剤床を脱吸着させ、実
質上純粋なエチルベンゼンを含まれる第2製品流を得
て、 (c) 該第2製品流を第1活性炭吸着剤床に送り、等温等
圧にてその内の実質的純粋なエチルベンゼンを吸着集め
て、該第1活性炭吸着剤床を通した高純度の二酸化炭素
流を(b) 段階の超臨界二酸化炭素流に再循環させ、 (d) 該第1製品流を第2活性炭吸着剤床に送り、等温等
圧にてその内の他のキシレン異性体を吸着集めて、該第
2活性炭吸着剤床を通した高純度の二酸化炭素流を(a)
段階の気態二酸化炭素流再循環させ、該第2活性炭吸着
剤床を脱吸着させることを特徴とする方法。
6. A method for separating ethylbenzene from a xylene isomer mixture containing at least one selected from the group consisting of metaxylene, orthoxylene and paraxylene in addition to ethylbenzene, wherein (a) a high-pressure gaseous carbon dioxide stream is used as a carrier. And sending a certain amount of the xylene isomer mixture to the high-silicon zeolite adsorbent bed to adsorb ethylbenzene to obtain a first product stream passing through the adsorbent bed, and (b) in the first product stream. When the contained ethylbenzene component of the xylene isomer reaches the expected proportion, a higher pressure supercritical carbon dioxide stream is introduced to desorb the adsorbent bed and produce a second product stream containing substantially pure ethylbenzene. Then, (c) the second product stream is sent to the first activated carbon adsorbent bed, and substantially pure ethylbenzene therein is adsorbed and collected at an isothermal and isobaric pressure to obtain the first activated carbon. The high-purity carbon dioxide stream through the adsorbent bed is recirculated to the (b) stage supercritical carbon dioxide stream, and (d) the first product stream is sent to the second activated carbon adsorbent bed for isothermal and isobaric pressure. The other xylene isomers therein are adsorbed and collected, and a high-purity carbon dioxide stream is passed through the second activated carbon adsorbent bed (a).
A step of recirculating the gaseous carbon dioxide flow of the step to desorb the second activated carbon adsorbent bed.
【請求項7】 (b) 段階におけるエチルベンゼンの予定
する比例は98重量%である請求項6の方法。
7. The method of claim 6 wherein the expected proportion of ethylbenzene in step (b) is 98% by weight.
【請求項8】 該キシレン異性体混合物にメタキシレ
ン、オルトキシレン、パラキシレン及びエチルベンゼン
を含まれる請求項6の方法。
8. The method of claim 6 wherein said xylene isomer mixture comprises metaxylene, orthoxylene, paraxylene and ethylbenzene.
【請求項9】 該キシレン異性体混合物の重量組成がエ
チルベンゼン:パラキシレン:メタキシレン:オルトキ
シレン=5−75重量%:10−45重量%:5−45
重量%:5−25重量%である請求項8の方法。
9. The weight composition of the xylene isomer mixture is ethylbenzene: paraxylene: metaxylene: orthoxylene = 5-75% by weight: 10-45% by weight: 5-45.
Weight%: 5-25% by weight.
【請求項10】 該キシレン異性体混合物にパラキシレ
ン及びエチルベンゼンを含まれる請求項6の方法。
10. The method of claim 6 wherein said xylene isomer mixture comprises paraxylene and ethylbenzene.
【請求項11】 エチルベンゼン及びパラキシレンの他
にメタキシレン及びオルトキシレンからなる群より選ば
れる少なくとも一種を含むキシレン異性体混合物からエ
チルベンゼン及びパラキシレンを分離する方法におい
て、 (a) 高圧気態二酸化炭素流を担体とし、一定量の該キシ
レン異性体混合物を高シリコンゼオライト吸着剤床に送
り、エチルベンゼン及びパラキシレンの吸着を行い、該
吸着剤床を通過した第1製品流を得て、 (b) 該第1製品流に含まれるキシレン異性体のエチルベ
ンゼン及びパラキシレン両成分が予定する比例に達した
ら、より高圧な超臨界二酸化炭素流を導入し、該吸着剤
床を脱吸着させ、エチルベンゼン及びパラキシレンを含
まれる第2製品流を得ることを特徴とする方法。
11. A method for separating ethylbenzene and paraxylene from a xylene isomer mixture containing at least one selected from the group consisting of metaxylene and orthoxylene in addition to ethylbenzene and paraxylene, comprising: (a) high-pressure gaseous carbon dioxide. Using the stream as a carrier, a certain amount of the xylene isomer mixture is sent to the high-silicon zeolite adsorbent bed to adsorb ethylbenzene and para-xylene to obtain a first product stream that has passed through the adsorbent bed, and (b) When both the ethylbenzene and para-xylene components of the xylene isomers contained in the first product stream have reached their expected proportions, a higher pressure supercritical carbon dioxide stream is introduced to desorb the adsorbent bed to remove ethylbenzene and paraxylene. A method comprising obtaining a second product stream containing xylene.
【請求項12】 (b) 段階におけるエチルベンゼン及び
パラキシレン両成分の予定する比例は98重量%である
請求項11の方法。
12. The method of claim 11 wherein the expected proportion of both ethylbenzene and paraxylene components in step (b) is 98% by weight.
【請求項13】 該キシレン異性体混合物にメタキシレ
ン、オルトキシレン、パラキシレン及びエチルベンゼン
を含まれる請求項11の方法。
13. The method of claim 11 wherein said xylene isomer mixture comprises metaxylene, orthoxylene, paraxylene and ethylbenzene.
【請求項14】 該キシレン異性体混合物の重量組成が
エチルベンゼン:パラキシレン:メタキシレン:オルト
キシレン=5−75重量%:10−45重量%:5−4
5重量%:5−25重量%である請求項13の方法。
14. The weight composition of the xylene isomer mixture is ethylbenzene: paraxylene: metaxylene: orthoxylene = 5-75% by weight: 10-45% by weight: 5-4.
The method of claim 13, wherein 5% by weight: 5-25% by weight.
【請求項15】 エチルベンゼン及びパラキシレンの他
にメタキシレン及びオルトキシレンからなる群より選ば
れる少なくとも一種を含むキシレン異性体混合物からエ
チルベンゼン及びパラキシレンを分離する方法におい
て、 (a) 高圧気態二酸化炭素流を担体とし、一定量の該キシ
レン異性体混合物を高シリコンゼオライト吸着剤床に送
り、エチルベンゼン及びパラキシレンの吸着を行い、該
吸着剤床を通過した第1製品流を得て、 (b) 該第1製品流に含まれるキシレン異性体のエチルベ
ンゼン及びパラキシレン両成分が予定する比例に達した
ら、より高圧な超臨界二酸化炭素流を導入し、該吸着剤
床を脱吸着させ、エチルベンゼン及びパラキシレンを含
まれる第2製品流を得て (c) 該第2製品流を第1活性炭吸着剤床に送り、等温等
圧にてその内のエチルベンゼン及びパラキシレンを吸着
集めて、該第1活性炭吸着剤床を通した高純度の二酸化
炭素流を(b) 段階の超臨界二酸化炭素流に再循環させ、 (d) 該第1製品流を第2活性炭吸着剤床に送り、等温等
圧にてその内他のキシレン異性体を吸着集めて、該第2
活性炭吸着剤床を通した高純度の二酸化炭素流を(a) 段
階の気態二酸化炭素流再循環させることを特徴とする方
法。
15. A method for separating ethylbenzene and paraxylene from a xylene isomer mixture containing at least one selected from the group consisting of metaxylene and orthoxylene in addition to ethylbenzene and paraxylene, wherein (a) high-pressure gaseous carbon dioxide Using the stream as a carrier, a certain amount of the xylene isomer mixture is sent to the high-silicon zeolite adsorbent bed to adsorb ethylbenzene and para-xylene to obtain a first product stream that has passed through the adsorbent bed, and (b) When both the ethylbenzene and para-xylene components of the xylene isomers contained in the first product stream have reached their expected proportions, a higher pressure supercritical carbon dioxide stream is introduced to desorb the adsorbent bed to remove ethylbenzene and paraxylene. A second product stream containing xylene is obtained (c) the second product stream is sent to the first activated carbon adsorbent bed and isotherm isothermally By adsorbing and collecting ethylbenzene and para-xylene, and recirculating the high-purity carbon dioxide stream passing through the first activated carbon adsorbent bed to the (b) stage supercritical carbon dioxide stream; (d) the first product. The stream is sent to a bed of the second activated carbon adsorbent, and the other xylene isomers among them are adsorbed and collected under isothermal and isobaric pressure,
A method characterized in that a high-purity carbon dioxide stream that has passed through an activated carbon adsorbent bed is recirculated in the gaseous carbon dioxide stream of step (a).
【請求項16】 (b) 段階におけるエチルベンゼン及び
パラキシレン両成分の予定する比例は98重量%である
請求項15の方法。
16. The method of claim 15 wherein the expected proportion of both ethylbenzene and paraxylene components in step (b) is 98% by weight.
【請求項17】 該キシレン異性体混合物にメタキシレ
ン、オルトキシレン、パラキシレン及びエチルベンゼン
を含まれる請求項15の方法。
17. The method of claim 15 wherein said xylene isomer mixture comprises metaxylene, orthoxylene, paraxylene and ethylbenzene.
【請求項18】 該キシレン異性体混合物の重量組成が
エチルベンゼン:パラキシレン:メタキシレン:オルト
キシレン=5−75重量%:10−45重量%:5−4
5重量%:5−25重量%である請求項17の方法。
18. The weight composition of the xylene isomer mixture is ethylbenzene: paraxylene: metaxylene: orthoxylene = 5-75% by weight: 10-45% by weight: 5-4.
The method of claim 17, wherein 5% by weight: 5-25% by weight.
JP3348259A 1991-12-04 1991-12-04 Method for separating ethylbenzene or a mixture of ethylbenzene and para-xylene from a mixture of xylene isomers Expired - Lifetime JPH0811163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3348259A JPH0811163B2 (en) 1991-12-04 1991-12-04 Method for separating ethylbenzene or a mixture of ethylbenzene and para-xylene from a mixture of xylene isomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3348259A JPH0811163B2 (en) 1991-12-04 1991-12-04 Method for separating ethylbenzene or a mixture of ethylbenzene and para-xylene from a mixture of xylene isomers

Publications (2)

Publication Number Publication Date
JPH05154303A true JPH05154303A (en) 1993-06-22
JPH0811163B2 JPH0811163B2 (en) 1996-02-07

Family

ID=18395830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3348259A Expired - Lifetime JPH0811163B2 (en) 1991-12-04 1991-12-04 Method for separating ethylbenzene or a mixture of ethylbenzene and para-xylene from a mixture of xylene isomers

Country Status (1)

Country Link
JP (1) JPH0811163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066623A1 (en) * 2004-01-05 2005-07-21 Daicel Chemical Industries, Ltd. Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
KR101037225B1 (en) * 2010-03-23 2011-05-25 호남석유화학 주식회사 Method for high purity mixed xylene by selective separation ethylbenzene from mixed xylene with extracting distillation
CN106478364A (en) * 2016-12-09 2017-03-08 永平县泰达废渣开发利用有限公司 One kind is used for white residue detached tribromoethane solution recovery system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287855A (en) * 1985-10-12 1987-04-22 Idemitsu Petrochem Co Ltd Method for separating specific component from mixture by supercritical fluid
JPS62148855A (en) * 1985-12-24 1987-07-02 Japan Spectroscopic Co Supercritical fluid chromatography device
JPS6490140A (en) * 1987-07-27 1989-04-06 Mobil Oil Corp Selective separation of paraxylene from c8 aromatic mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287855A (en) * 1985-10-12 1987-04-22 Idemitsu Petrochem Co Ltd Method for separating specific component from mixture by supercritical fluid
JPS62148855A (en) * 1985-12-24 1987-07-02 Japan Spectroscopic Co Supercritical fluid chromatography device
JPS6490140A (en) * 1987-07-27 1989-04-06 Mobil Oil Corp Selective separation of paraxylene from c8 aromatic mixture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066623A1 (en) * 2004-01-05 2005-07-21 Daicel Chemical Industries, Ltd. Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
CN100419421C (en) * 2004-01-05 2008-09-17 大赛璐化学工业株式会社 Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
US7678276B2 (en) 2004-01-05 2010-03-16 Daicel Chemical Industries, Ltd. Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
US8591734B2 (en) 2004-01-05 2013-11-26 Daicel Chemical Industries, Ltd. Method of substance separation by supercritical fluid chromatography and vapor liquid separator for use therein
KR101037225B1 (en) * 2010-03-23 2011-05-25 호남석유화학 주식회사 Method for high purity mixed xylene by selective separation ethylbenzene from mixed xylene with extracting distillation
CN106478364A (en) * 2016-12-09 2017-03-08 永平县泰达废渣开发利用有限公司 One kind is used for white residue detached tribromoethane solution recovery system

Also Published As

Publication number Publication date
JPH0811163B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US5227570A (en) Process for separation of ethylbenzene or ethylbenzene/p-xylene from a xylene isomers mixture
US20100076243A1 (en) Binderless adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US7270792B2 (en) Process for producing para-xylene
EP0205582B1 (en) Bulk removal of water from organic liquids
RU2193021C2 (en) Method of separation of paraxylene including adsorption stage with injection of water and crystallization stage
JP5414664B2 (en) Technology to separate olefin from olefin / paraffin mixed gas
US20090326309A1 (en) Binderless adsprbents and their use in the adsorptive separation of para-xylene
US6723155B2 (en) Purification of gas streams
US8609925B2 (en) Adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US3712027A (en) Vapor adsorption process for recovering selected components from a multi-component gas stream
KR20060007047A (en) Method of obtaining para-xylene
CN110508240B (en) Preparation method of coalescence type adsorbent
US7683233B2 (en) Process for producing para-xylene
US4433195A (en) Separation of trans- and cis-olefins
US4791235A (en) Process for separating 2,6-dimethylnaphthalene
JPH03240749A (en) Separation of hydroxyparaffin dicarboxylic acid from olefin dicarboxylic acid
US4467126A (en) Process for the separation of di-substituted benzene
JPH05154303A (en) Method for separating ethylbenzene or mixture of ethylbenzene and paraxylene from mixture of xylene isomers
US6137024A (en) Process for separating meta-xylene
CN105085136B (en) Method for producing paraxylene and ethylbenzene
TWI785027B (en) Simulated moving bed xylenes separation process, and optimized operating conditions for units treating paraxylene-rich feeds
JP2650862B2 (en) Adsorption separation of meta-xylene from aromatic hydrocarbons
US5336837A (en) Separation of diethylbenzene isomers on silicalite in the presence of high pressure carbon dioxide and propane
US3662014A (en) Adsorbing compositions,their manufacture and use in a process for separating alkylbenzenes from mixtures thereof
CN114425297B (en) Para-disubstituted benzene adsorbent and preparation method thereof