JPH05152676A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH05152676A
JPH05152676A JP33567291A JP33567291A JPH05152676A JP H05152676 A JPH05152676 A JP H05152676A JP 33567291 A JP33567291 A JP 33567291A JP 33567291 A JP33567291 A JP 33567291A JP H05152676 A JPH05152676 A JP H05152676A
Authority
JP
Japan
Prior art keywords
semiconductor laser
active layer
stripe
layer
algainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33567291A
Other languages
Japanese (ja)
Inventor
Hitoshi Hotta
等 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33567291A priority Critical patent/JPH05152676A/en
Publication of JPH05152676A publication Critical patent/JPH05152676A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To lower the oscillation threshold value in the title refractive index waveguide type lateral mode controlled AlGaInP base semiconductor laser using a natural superlattice. CONSTITUTION:The title semiconductor laser is provided with the double hetero structure wherein the first conductivity type clad layer 2, an active layer 3 formed of a natural super lattice comprising GaInP or AlGaInP and the second conductivity type clad layer 4 successively laminated while the region beside stripe different from the region inside the stripe out of the active layer 3 containing impurity atoms has larger band gap energy than that of the stripe inside. In such a construction, the face orientation of the first conductivity type GaAs substrate 1 is inclined in the face orientation exceeding 0 deg. and not exceeding 10' in the direction from (001) to (-110) or (1-10). Furthermore, the energy difference and the refractive index difference between the inside and the side of stripe of the active layer 3 can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低閾値AlGaInP
系半導体レーザに関する。
BACKGROUND OF THE INVENTION The present invention relates to a low threshold AlGaInP
System semiconductor laser.

【0002】[0002]

【従来の技術】近年、AlGaInP系半導体レーザは
有機金属気相結晶成長法(以下MOVPE法と略す)に
より形成され、長寿命可視光半導体レーザが実現してい
る(五明ら、エレクトロニクス レターズ23巻(19
87年)85ページ:A.Gomyo et al.E
lectronics Letters Vol.2
3,(1987),pp.85参照)。MOVPE法は
トリメチルアルミニウム(TMAI)、トリエチルガリ
ウム(TEGa)、トリメチルインジウム(TMIn)
などの有機金属蒸気及びホスフィン(PH3 )などの水
素化物ガスを原料とした気相成長法であり、例えば、A
lGaInPの成長はこれらTMAI、TEGa、TM
In蒸気及びPH3 ガスをGaAs基板の上に導入・加
熱してエピタキシャル成長を行なうものである。ほとん
どの場合GaAs基板の面方位は、(001)傾斜無
し、または、(001)から[110]方向に2°傾斜
した面である。最近、短波長化のために(001)から
(110)方向に傾斜した面方位が用いられることもあ
る。
2. Description of the Related Art Recently, an AlGaInP semiconductor laser is formed by a metal organic chemical vapor deposition method (hereinafter abbreviated as MOVPE method), and a long-life visible light semiconductor laser has been realized (Gomei et al., Electronic Letters, Vol. 23). (19
87) Page 85: A. Gomyo et al. E
electronics Letters Vol. Two
3, (1987), pp. 85). The MOVPE method is trimethylaluminum (TMAI), triethylgallium (TEGa), trimethylindium (TMIn).
Is a vapor-phase growth method using an organic metal vapor such as and a hydride gas such as phosphine (PH 3 ) as a raw material.
The growth of lGaInP depends on TMAI, TEGa, TM
Epitaxial growth is performed by introducing and heating In vapor and PH 3 gas on the GaAs substrate. In most cases, the plane orientation of a GaAs substrate is a plane without (001) tilt or a plane tilted by 2 ° in the [110] direction from (001). Recently, in order to shorten the wavelength, a plane orientation inclined from the (001) direction to the (110) direction may be used.

【0003】この半導体レーザをバーコードリーダや光
ディスクの読み取り装置などに応用する上で低い閾電流
値で単一横モード発振をすることが望ましい。そのため
に従来のAlGaInP系半導体レーザは、図3に示す
ように(001)−n型GaAs基板11上に、n型A
lGaInPからなるクラッド層2と、AlGaInP
またはGaInPからなる活性層3、p型AlGaIn
Pからなるメサストライプ状に厚いクラッド層4が形成
され、この層のメサ上部以外の部分にn型GaAs電流
狭窄層11が設けられていた[例えば、藤井ら、エレク
トロニクス レターズ23巻(1987年)938ペー
ジ;H.FUJII et al.ELECTORON
ICS LETTERS23(1987)938参
照]。このn型電流狭窄層11と活性層3との間の距離
は0.3μmで、n型GaAs電流狭窄層11は光吸収
層として働き、その結果単一横モード発振する。
In applying this semiconductor laser to a bar code reader, an optical disk reader, etc., it is desirable to perform single transverse mode oscillation with a low threshold current value. Therefore, the conventional AlGaInP-based semiconductor laser has an n-type A-type on a (001) -n-type GaAs substrate 11 as shown in FIG.
clad layer 2 made of 1GaInP and AlGaInP
Alternatively, the active layer 3 made of GaInP, p-type AlGaIn
A thick clad layer 4 made of P was formed in a mesa stripe shape, and an n-type GaAs current confinement layer 11 was provided on a portion other than the upper portion of the mesa of this layer [eg, Fujii et al., Electronics Letters, Vol. 23 (1987)]. 938 page; FUJII et al. ELECTRONON
ICS LETTERS 23 (1987) 938]. The distance between the n-type current confinement layer 11 and the active layer 3 is 0.3 μm, and the n-type GaAs current confinement layer 11 functions as a light absorption layer, resulting in single transverse mode oscillation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来のA
lGaInP系半導体レーザには、横モード制御のため
に電流狭窄層での光の吸収を用いているために、発振閾
電流値が上昇してしまう欠点があった。
However, the conventional A
The 1GaInP-based semiconductor laser has a drawback that the oscillation threshold current value is increased because light absorption in the current confinement layer is used for transverse mode control.

【0005】[0005]

【課題を解決するための手段】前述課題を解決するため
の本発明の半導体レーザは、第1伝導型GaAs基板上
に、第1伝導型クラッド層と、GaInPまたはAlG
aInPからなる自然超格子を形成した活性層と、第2
伝導型クラッド層とが順次に積層されたダブルヘテロ構
造を備え、前記活性層では、ストライプ内部に比べ該ス
トライプの脇の領域が、不純物原子を含み、バンドギャ
ップエネルギが大きい構造において、前記第1伝導型G
aAs基板の面方位が、(001)から[−110]ま
たは[1−10]方向に0°以上10°以下傾斜してい
ることを特徴としている。
A semiconductor laser of the present invention for solving the above-mentioned problems is a first-conductivity-type GaAs substrate, a first-conductivity-type clad layer, and GaInP or AlG.
an active layer in which a natural superlattice made of aInP is formed;
In the active layer, a double heterostructure in which a conductive clad layer is sequentially stacked is provided, and in the active layer, a region beside the stripe contains impurity atoms and has a large bandgap energy, compared to the inside of the stripe. Conductive type G
The surface orientation of the aAs substrate is characterized in that it is inclined from (001) to the [−110] or [1-10] direction by 0 ° or more and 10 ° or less.

【0006】[0006]

【作用】GaInPまたはAlGaInPからなる自然
超格子が形成された活性層のストライプの脇に不純物を
拡散して自然超格子を無秩序化し、バンドギャップエネ
ルギを大きく屈折率を小さくすると、前記ストライプ内
と脇とのバンドギャップエネルギ差や屈折率差が生じ、
電流狭窄や横モード制御のための屈折率差に寄与する。
この寄与の分、従来の電流狭窄層での光吸収を用いた実
効屈折率への寄与を小さくすることが可能となり、すな
わち電流狭窄層を活性層から離し光吸収を小さくするこ
とができる。
When the natural superlattice is disordered by diffusing impurities to the side of the stripe of the active layer in which the natural superlattice made of GaInP or AlGaInP is formed, the bandgap energy is increased and the refractive index is reduced, the inside and the side of the stripe are reduced. Band gap energy difference and refractive index difference between
It contributes to the current constriction and the refractive index difference for controlling the transverse mode.
By this contribution, it is possible to reduce the contribution to the effective refractive index using the conventional light absorption in the current constriction layer, that is, it is possible to separate the current confinement layer from the active layer and reduce the light absorption.

【0007】一方GaInPまたはAlGaInPの自
然超格子の秩序度は、成長温度や(V族原料供給量)/
(III族原料供給量)比(V/III比)の他に、基
板の面方位に依存している(例えば1991年春季第3
8回応用物理学関係連合講演会予稿集第1分冊、講演番
号30a−ZG−5)。つまりGaAs基板の面方位
が、(001)から[−110]または[1−10]方
向に0°以上10°以下傾斜していると自然超格子が形
成され易くなり、バンドギャップエネルギは小さくな
る。然るに、不純物による自然超格子の無秩序化によっ
て得られるバンドギャップエネルギは、無秩序化前の自
然超格子の秩序度すなわちバンドギャップエネルギに殆
ど依存せず、その活性層中の不純物濃度できまる。従っ
て、傾斜していない基板を用いたときに比べ、面方位が
(001)から[−110]または[1−10]方向に
0°以上10°以下傾斜しているGaAs基板上に結晶
成長を行い、活性層の内、ストライプの脇に不純物を拡
散して自然超格子を無秩序化し、バンドギャップエネル
ギを大きく屈折率を小さくする構造をとると、前記スト
ライプ内と脇とのバンドギャップエネルギ差や屈折率差
を大きくできる。この効果により電流狭窄層を活性層か
らさらに離し光吸収を小さくすることができ、結局、低
い閾値で発振する横モード半導体レーザができる。
On the other hand, the order of the natural superlattice of GaInP or AlGaInP depends on the growth temperature and (the amount of V group raw material supply) /
In addition to the (group III raw material supply amount) ratio (V / III ratio), it depends on the plane orientation of the substrate (for example, spring 1991 third
Proceedings of the 8th Joint Lecture on Applied Physics, 1st Volume, Lecture No. 30a-ZG-5). That is, if the plane orientation of the GaAs substrate is tilted from (001) in the [-110] or [1-10] direction by 0 ° or more and 10 ° or less, a natural superlattice is easily formed and the bandgap energy is reduced. .. However, the bandgap energy obtained by disordering the natural superlattice by impurities hardly depends on the order of the natural superlattice before disordering, that is, the bandgap energy, and can be determined by the impurity concentration in the active layer. Therefore, compared with the case of using a non-tilted substrate, crystal growth is performed on a GaAs substrate in which the plane orientation is tilted from 0 ° to 10 ° in the [-110] or [1-10] direction. Then, in the active layer, impurities are diffused to the sides of the stripes to disorder the natural superlattice to increase the bandgap energy and reduce the refractive index. The difference in refractive index can be increased. Due to this effect, the current confinement layer can be further separated from the active layer to reduce the light absorption, and eventually a lateral mode semiconductor laser that oscillates at a low threshold value can be obtained.

【0008】[0008]

【実施例】次に、本発明について図面を用いて説明す
る。図1は本発明の一実施例を示す半導体レーザの断面
図(切断面を示すハッチングは省略)であり、図2はこ
の半導体レーザの製作行程図である。図1は、実施例の
半導体レーザを共振器軸に垂直な面で切断して示してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a semiconductor laser showing one embodiment of the present invention (hatching showing a cut surface is omitted), and FIG. 2 is a manufacturing process diagram of this semiconductor laser. FIG. 1 shows the semiconductor laser of the embodiment cut along a plane perpendicular to the cavity axis.

【0009】本実施例の製作においては、まず一回目の
減圧MOVPE法による成長で、(001)から[11
0]方向に6°傾斜した面方位のn型GaAs基板1上
に、n型(Al0.6Ga0.40.5In0.5P クラッド層
2(厚さ1μm)、Ga0.5In0.5P 活性層3(厚さ
0.07μm)、p型(Al0.6Ga0.40.5In0.5
クラッド層4(厚さ1μm)、p型Ga0.5In0.5P層
5、p型GaAsキャップ層6を順次に形成した(図2
(a))。成長条件は、温度660℃、圧力70tor
r、V/III=200である。原料としては、TMA
I、TEGa、TMIn、ホスフィン、アルシン、n型
ドーパントとしてジシラン、p型ドーパントとしてジメ
チルジンクを用いた。こうして成長したウエハにフォト
リソグラフィにより幅5μmのストライプ状のSiO2
マスク9を形成した(図2(b))。次にこのSiO2
マスク9を用いてp型(Al0.6Ga0.40.5In0.5
クラッド層4の途中、活性層からの距離0.4μmのと
ころまでメサ状にエッチングした。そして、亜鉛(Z
n)と燐(P)の雰囲気の中でマスク9を用いること
で、ストライプ以外の領域の活性層中に選択的にZnの
拡散を行い、自然超格子を無秩序化し、Zn拡散領域1
0を形成した(図2(c))。さらに同じマスク9を用
いた2回目のMOVPE成長によりSiドープGaAs
層8を選択的にメサ部両脇に埋め込んだ(図2
(d))。そしてSiO2 マスク9を除去し(図2
(e))、3回目のMOVPE成長によりp型GaAs
コンタクト層7を形成した。この後、電極を形成し、劈
開してレーザ光放射端面を形成して図1に示す半導体レ
ーザを完成させた。
In the fabrication of this embodiment, first, the growth by the low pressure MOVPE method was performed for the first time, and the growth was performed from (001) to [11].
[0] direction on the n-type GaAs substrate 1 having a plane orientation inclined by 6 °, an n-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer 2 (thickness 1 μm), a Ga 0.5 In 0.5 P active layer 3 (thickness 0.07 μm), p-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P
A clad layer 4 (thickness 1 μm), a p-type Ga 0.5 In 0.5 P layer 5, and a p-type GaAs cap layer 6 were sequentially formed (FIG. 2).
(A)). The growth conditions are a temperature of 660 ° C. and a pressure of 70 torr.
r, V / III = 200. As a raw material, TMA
I, TEGa, TMIn, phosphine, arsine, disilane as an n-type dopant, and dimethyl zinc as a p-type dopant were used. On the wafer thus grown, a stripe-shaped SiO 2 film having a width of 5 μm was formed by photolithography.
A mask 9 was formed (FIG. 2 (b)). Next, this SiO 2
P-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P using mask 9
In the middle of the clad layer 4, etching was performed in a mesa shape up to a distance of 0.4 μm from the active layer. And zinc (Z
By using the mask 9 in the atmosphere of n) and phosphorus (P), Zn is selectively diffused into the active layer in the region other than the stripe to disorder the natural superlattice, and the Zn diffusion region 1
0 was formed (FIG. 2 (c)). Further, Si-doped GaAs was formed by the second MOVPE growth using the same mask 9.
Layer 8 was selectively embedded on both sides of the mesa (Fig. 2).
(D)). Then, the SiO 2 mask 9 is removed (see FIG.
(E)) p-type GaAs by the third MOVPE growth
The contact layer 7 was formed. After that, an electrode was formed and cleaved to form a laser light emitting end face to complete the semiconductor laser shown in FIG.

【0010】このようにして製作した本発明の半導体レ
ーザと従来の半導体レーザの発振閾電流は、それぞれ4
5mAと55mAであり、従来に比べ本発明の半導体レ
ーザは発振閾電流値が低くなった。また、本発明の半導
体レーザは5mW以上まで単一横モートでレーザ発振し
た。
The oscillation threshold currents of the semiconductor laser of the present invention and the conventional semiconductor laser thus produced are each 4
5 mA and 55 mA, the semiconductor laser of the present invention has a lower oscillation threshold current value than the conventional one. Further, the semiconductor laser of the present invention lased at a single lateral moat up to 5 mW or more.

【0011】[0011]

【発明の効果】以上に説明してきたように、本発明によ
り、活性層で発振するレーザ光の吸収が少なく、発振閾
電流値が低い横モード制御AlGaInP系半導体レー
ザ装置が得られた。
As described above, according to the present invention, a transverse mode control AlGaInP-based semiconductor laser device having a low absorption of laser light oscillated in the active layer and a low oscillation threshold current value was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor laser of the present invention.

【図2】図1の半導体レーザの製作行程図である。FIG. 2 is a manufacturing process diagram of the semiconductor laser of FIG.

【図3】従来の半導体レーザの断面図である。FIG. 3 is a sectional view of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

1 (001)から[110]方向へ6°傾斜した面
方位のn型GaAs基板 2 n型AlGaInPクラッド層 3 GaInP活性層 4 p型AlGaInPクラッド層 5 p型GaInP層 6 p型GaAsキャップ層 7 p型GaAsコンタクト層 8 n型GaAs電流狭窄層 9 SiO2 10 Zn拡散領域 11 (001)−n型GaAs基板
1 n-type GaAs substrate having a plane orientation inclined by 6 ° from (001) to [110] 2 n-type AlGaInP clad layer 3 GaInP active layer 4 p-type AlGaInP clad layer 5 p-type GaInP layer 6 p-type GaAs cap layer 7 p Type GaAs contact layer 8 n type GaAs current confinement layer 9 SiO 2 10 Zn diffusion region 11 (001) -n type GaAs substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1伝導型GaAs基板上に、第1伝導
型クラッド層と、GaInPまたはAlGaInPから
なる自然超格子を形成した活性層と、第2伝導型クラッ
ド層とが順次に積層されたダブルヘテロ構造を備え、前
記活性層では、ストライプ内部に比べ該ストライプの脇
の領域が、不純物原子を含み、バンドギャップエネルギ
が大きい構造において、前記第1伝導型GaAs基板の
面方位が、(001)から[−110]または[1−1
0]方向に0°以上10°以下傾斜していることを特徴
とする半導体レーザ。
1. A first-conductivity-type clad layer, an active layer in which a natural superlattice of GaInP or AlGaInP is formed, and a second-conductivity-type clad layer are sequentially laminated on a first-conductivity-type GaAs substrate. In the active layer having a double hetero structure, a region beside the stripe in the active layer contains impurity atoms and has a large bandgap energy, the plane orientation of the first conductivity type GaAs substrate is (001 ) To [-110] or [1-1
A semiconductor laser having an inclination of 0 ° or more and 10 ° or less in the [0] direction.
JP33567291A 1991-11-25 1991-11-25 Semiconductor laser Withdrawn JPH05152676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33567291A JPH05152676A (en) 1991-11-25 1991-11-25 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33567291A JPH05152676A (en) 1991-11-25 1991-11-25 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05152676A true JPH05152676A (en) 1993-06-18

Family

ID=18291223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33567291A Withdrawn JPH05152676A (en) 1991-11-25 1991-11-25 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05152676A (en)

Similar Documents

Publication Publication Date Title
TW490898B (en) Semiconductor laser device
EP0476689B1 (en) Semiconductor laser and manufacturing method of the same
US20050194634A1 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
US5966396A (en) Gallium nitride-based compound semiconductor laser and method of manufacturing the same
US5799027A (en) Stepped substrate semiconductor laser for emitting light at slant portion
US6518159B1 (en) Semiconductor laser device and a method for fabricating the same
US5862166A (en) Semiconductor laser with light emitting slant plane and method of manufacturing the same
JPS61168981A (en) Semiconductor laser device
JPH07162093A (en) Semiconductor laser and its manufacture
JPH05152676A (en) Semiconductor laser
JP2751699B2 (en) Semiconductor laser
EP1580853B1 (en) Semiconductor laser and method of manufacturing the same
JP2780625B2 (en) Manufacturing method of semiconductor laser
JP2611509B2 (en) Semiconductor laser
JPH11112075A (en) Semiconductor laser device and its manufacture
JP3865827B2 (en) Slope-emitting semiconductor laser device and manufacturing method thereof
JP2679358B2 (en) Semiconductor laser device
JP2841599B2 (en) Semiconductor laser device
JP3087285B2 (en) Semiconductor laser
JPH07135374A (en) Semiconductor laser
JP2970797B2 (en) Method of manufacturing semiconductor laser device
JPH0567839A (en) Semiconductor laser device
JPH0923039A (en) Manufacture of semiconductor laser
JP2699671B2 (en) Semiconductor laser
JPH1126884A (en) Semiconductor laser device and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204