JPH0515193A - Gain regulating method for inverter unit - Google Patents

Gain regulating method for inverter unit

Info

Publication number
JPH0515193A
JPH0515193A JP3162614A JP16261491A JPH0515193A JP H0515193 A JPH0515193 A JP H0515193A JP 3162614 A JP3162614 A JP 3162614A JP 16261491 A JP16261491 A JP 16261491A JP H0515193 A JPH0515193 A JP H0515193A
Authority
JP
Japan
Prior art keywords
calculated
motor
value
detected
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3162614A
Other languages
Japanese (ja)
Inventor
Seiichi Shirai
成一 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3162614A priority Critical patent/JPH0515193A/en
Publication of JPH0515193A publication Critical patent/JPH0515193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To make it possible for any one to set a same gain by automatically calculating the gains of P, I, D for providing a predetermined response based on an inertial moment calculated from an integrated value and a detected value. CONSTITUTION:Maximum allowable rotation and rotary amount are set for a motor movable range input 1. A first motor operating pattern is then calculated based on the motor movable range and a motor is operated according to thus determined pattern. Positive and negative maximum current command values-are detected, at that time, in the region of current command value. Thus detected positive and negative maximum currents are then employed in operating pattern again according to an algorithm, followed by calculation of an inertial moment. Current is then accumulated and a maximum angular speed is detected in order to calculate a load inertial moment which is employed in the calculation of response having no overshoot. Thereafter, gains of final P, I, D are calculated and regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

[発明の目的] [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は、比例積分微分制御(以
下PID制御という)により、モータを可変速制御する
インバータ装置のゲイン調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gain adjusting method for an inverter device which controls a motor at a variable speed by proportional-integral-derivative control (hereinafter referred to as PID control).

【0002】[0002]

【従来の技術】図10に示すように、従来のインバータ
装置におけるPID制御のゲイン調整方法は、インバー
タ装置にステップ状の速度指令を与え、応答を測定し、
人間が比例(以下Pという)、積分(以下Iという)、
微分(以下Dという)ゲインを経験により調整してい
た。
2. Description of the Related Art As shown in FIG. 10, a conventional gain adjusting method for PID control in an inverter device gives a stepwise speed command to the inverter device, measures the response,
Human beings are proportional (hereinafter P), integral (hereinafter I),
The differential (hereinafter referred to as D) gain was adjusted by experience.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のインバ
ータ装置のゲイン調整方法では、P,I,Dのゲインを
人間が経験により、調整していた為、素人の調整が困難
であった。また、調整する人により、調整のバラツキ及
び調整時間の長短があった。
However, in the conventional gain adjusting method of the inverter device, it is difficult for an amateur to adjust the gains of P, I, and D because humans adjust the gains by experience. In addition, there are variations in adjustment and length of adjustment time depending on the person making the adjustment.

【0004】そこで、本発明は、上記問題点を鑑み、負
荷慣性モーメントを推定し、P,I,D各ゲインを所定
の応答になるように、自動的に計算する事で、だれも同
じゲイン設定ができるインバータ装置のゲイン調整方法
を提供することを目的とする。 [発明の構成]
In view of the above problems, the present invention estimates the load moment of inertia and automatically calculates each gain of P, I and D so as to have a predetermined response, so that everyone has the same gain. An object of the present invention is to provide a gain adjusting method of an inverter device that can be set. [Constitution of Invention]

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、モータを可変速制御するインバータ装置
において、前記モータの可動範囲から慣性モーメントを
推定する運転パターンを計算し、前記運転パターンで運
転した時の電流値又は、電流指令値の最大値を検出し、
前記可動範囲、電流値又は電流指令値から再度運転パタ
ーンを計算し、この再計算した運転パターンで運転中の
電流又は、電流指令を積算し、さらに最高角速度を検出
し、前記積算値、検出値から慣性モーメントを計算し、
この計算した慣性モーメントを基に、速度制御の比例,
積分,微分の各ゲインを速度制御系がベッセルローパス
フィルタの形になるように計算し、所定の応答が得られ
るように計算し、所定の応答が得られるようにするイン
バータ装置のゲイン調整方法を提供する。
In order to achieve the above object, the present invention calculates, in an inverter device for variable speed control of a motor, an operation pattern for estimating the moment of inertia from the movable range of the motor, Detects the current value when operating in a pattern or the maximum value of the current command value,
The operating range is calculated again from the movable range, the current value or the current command value, and the current or the current command during operation in this recalculated operation pattern is integrated, and the maximum angular velocity is further detected, the integrated value, the detected value. Calculate the moment of inertia from
Based on the calculated moment of inertia, proportional to speed control,
Integral and derivative gains are calculated so that the speed control system is in the form of a Bessel low-pass filter, and a predetermined response is obtained. provide.

【0006】[0006]

【作用】このように、構成された本発明によれば、慣性
モーメントは図8に示す原理により推定計算する。図8
を式で表わすと、下式(1)となる。 図9において、モータ角速度が角速度ωになるよう運転
すると、電流指令は図9中Iq となる。
According to the present invention thus constructed, the moment of inertia is estimated and calculated according to the principle shown in FIG. Figure 8
When is expressed by an equation, the following equation (1) is obtained. In FIG. 9, when the motor is operated so that the motor angular velocity becomes the angular velocity ω, the current command becomes I q in FIG. 9.

【0007】しかし、Iq には摩擦等の外乱トルク分I
L が含まれているので、慣性モーメントを計算する場
合、このIL 分を除く必要がある。ここで、IL =f
(ω)と仮定すると、下式(2)が成立する。 従って、慣性モーメントは外乱トルク分IL の影響を除
いた下式(3)で計算される。 ゲイン計算は、図6に示す速度制御系のブロックを2次
ベッセルフィルタの伝達関数に一致するようP,I,D
ゲインを決定する。2次ベッセルフィルタは下式(4)
で示され、ωNによりその応答を規定することができ
る。
However, I q is a disturbance torque component I such as friction.
Since L is included, it is necessary to exclude this I L when calculating the moment of inertia. Where I L = f
Assuming (ω), the following expression (2) is established. Therefore, the moment of inertia is calculated by the following equation (3) excluding the influence of the disturbance torque I L. The gain calculation is performed so that the block of the speed control system shown in FIG. 6 matches P, I, and D of the transfer function of the second-order Bessel filter.
Determine the gain. The second-order Bessel filter is expressed by the following equation (4)
, The response can be defined by ωN.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。図1に本実施例のゼネラルフローチャートを示
す。モータ可動範囲入力1では、許容できる最高回転及
び、モータ回転量を設定する。次にモータ可動範囲を基
に、第1のモータ運転パターンを計算する(図中2)。
この処理2について図2を基に詳述する。図2におい
て、許容最高回転はωa に設定され、モータ可動範囲は
θa0に設定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a general flowchart of this embodiment. In the motor movable range input 1, the maximum allowable rotation and the motor rotation amount are set. Next, the first motor operation pattern is calculated based on the motor movable range (2 in the figure).
This processing 2 will be described in detail with reference to FIG. In FIG. 2, the maximum allowable rotation is set to ω a and the motor movable range is set to θ a0 .

【0009】予め、設定されている時間T(図3)と設
定値ωa により、動作量を計算し(図2中20)、この
値が許容動作範囲を越えていないかチェックする(図2
中21)。
The operation amount is calculated in advance from the preset time T (FIG. 3) and the set value ω a (20 in FIG. 2), and it is checked whether this value exceeds the allowable operation range (FIG. 2).
21).

【0010】越えている場合、設定値ω及び時間Tを内
部で予め設定してあるパラメータより計算し(図2中2
2),TがTiを越えないかチェックし(図2中2
3)、越えている場合、T=Tiとする。
If it exceeds, the set value ω and the time T are calculated from the internally set parameters (2 in FIG. 2).
2), check whether T does not exceed Ti (2 in Fig. 2).
3) If it exceeds, T = Ti.

【0011】次に、図1の3では、上記2で決定した運
転パターン(図3)により、モータを動作させる。この
とき、図1中4で用いる電流指令値の正及び負の最大値
を電流指令値(図6中13,14)の領域で検出してお
く。検出した正の最大電流をIqN,負の最大電流をIqP
とすると、図1の4は、このIqN,IqPを用いて図4及
び図5のアルゴリズムに従って、運転パターンを再計算
する。図1の4により、運転パターン再計算後、図1の
処理5により慣性モーメントを計算する。図6における
領域13,14の電流を積算,時間12での角速度を検
出する。この値を上式(3)に代入し、負荷慣性モーメ
ントを計算する。図1の6により、5にて計算された慣
性モーメントを図7のJに代入する。すると、図7の伝
達関数は下式(5)となる。
Next, in 3 of FIG. 1, the motor is operated according to the operation pattern (FIG. 3) determined in 2 above. At this time, the positive and negative maximum values of the current command value used in 4 in FIG. 1 are detected in the area of the current command value (13, 14 in FIG. 6). It detected maximum positive current I qN, the maximum negative current I qP
When, 4 of Figure 1, this I qN, according to the algorithm of FIG. 4 and FIG. 5 using I qP, recalculates the operation pattern. After the operation pattern is recalculated by 4 in FIG. 1, the moment of inertia is calculated by the process 5 in FIG. The currents in the regions 13 and 14 in FIG. 6 are integrated and the angular velocity at time 12 is detected. This value is substituted into the above equation (3) to calculate the load moment of inertia. The moment of inertia calculated in 5 according to 6 in FIG. 1 is substituted into J in FIG. Then, the transfer function of FIG. 7 becomes the following expression (5).

【0012】[0012]

【数1】 上式(7)が上式(4)と一致するように、KP
I ,KA を決定すれば、オーバシュートのない応答と
なる。このとき、応答レベルは上式(4)のωN の値を
変える事で決定される。その後、再度1を実行して、最
終P,I,Dのゲインを算出して、各ゲインを調整する
(図1中7)。
[Equation 1] In order that the above equation (7) agrees with the above equation (4), K P ,
If K I and K A are determined, a response without overshoot is obtained. At this time, the response level is determined by changing the value of ω N in the above equation (4). After that, 1 is executed again to calculate the final P, I, and D gains and adjust each gain (7 in FIG. 1).

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば、P
ID制御によるモータの速度制御のゲイン調整が自動的
に行われ、設定のバラツキがなくなると同時に設定時間
も一定となる。
As described above, according to the present invention, P
The gain of the motor speed control is automatically adjusted by the ID control, so that there is no variation in setting and the setting time is constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体フローチャート。FIG. 1 is an overall flowchart showing an embodiment of the present invention.

【図2】本発明の一実施例における運転パターンの作成
手順を示すフローチャート。
FIG. 2 is a flowchart showing a procedure for creating an operation pattern in one embodiment of the present invention.

【図3】本発明の一実施例における時間Tを示す図。FIG. 3 is a diagram showing a time T in one embodiment of the present invention.

【図4】本発明の一実施例における運転パターンの作成
手順を示すフローチャート。
FIG. 4 is a flowchart showing a procedure for creating an operation pattern in one embodiment of the present invention.

【図5】本発明の一実施例における運転パターンの作成
手順を示すフローチャート。
FIG. 5 is a flowchart showing a procedure for creating an operation pattern in one embodiment of the present invention.

【図6】本発明の一実施例における速度運転パターンと
電流指令との関係を示す図。
FIG. 6 is a diagram showing a relationship between a speed operation pattern and a current command in one embodiment of the present invention.

【図7】本発明の一実施例における速度制御を示すブロ
ック図。
FIG. 7 is a block diagram showing speed control in one embodiment of the present invention.

【図8】本発明におけるモータのモデル図。FIG. 8 is a model diagram of a motor according to the present invention.

【図9】本発明における角速度と電流指令の関係を示す
図。
FIG. 9 is a diagram showing a relationship between an angular velocity and a current command according to the present invention.

【図10】従来のインバータ装置におけるゲイン調整方
法を示すフローチャート。
FIG. 10 is a flowchart showing a gain adjusting method in a conventional inverter device.

【符号の説明】[Explanation of symbols]

1……モータ可動範囲入力,2……第1のモータ運転パ
ターン計算,3……モータ動作,4……正及び負の最大
電流検出,5……慣性モーメント計算,6……PIDゲ
イン算出,7……各ゲインの調整
1 ... Motor movable range input, 2 ... First motor operation pattern calculation, 3 ... Motor operation, 4 ... Positive and negative maximum current detection, 5 ... Inertia moment calculation, 6 ... PID gain calculation, 7 ... Adjustment of each gain

Claims (1)

【特許請求の範囲】 【請求項1】 モータを可変速制御するインバータ装置
において、前記モータの可動範囲から慣性モーメントを
推定する運転パターンを計算し、前記運転パターンで運
転した時の電流値又は、電流指令値の最大値を検出し、
前記可動範囲、電流値又は電流指令値から再度運転パタ
ーンを計算し、この再計算した運転パターンで運転中の
電流値又は、電流指令値を積算し、更に最高角速度を検
出し、前記積算値及び検出値から慣性モーメントを計算
し、この計算した慣性モーメントを基に速度制御の比
例、積分、微分の各ゲインを速度制御系がベッセルロー
パスフィルタの形になるように計算し、所定の応答が得
られるように計算し、所定の応答が得られるようにする
ことを特徴とするインバータ装置のゲイン調整方法。
Claim: What is claimed is: 1. In an inverter device for variable speed control of a motor, an operation pattern for estimating a moment of inertia is calculated from a movable range of the motor, and a current value when operating in the operation pattern, or Detects the maximum current command value,
The operation range is calculated again from the movable range, the current value or the current command value, and the current value during operation or the current command value is integrated by the recalculated operation pattern, and the maximum angular velocity is further detected, and the integrated value and The moment of inertia is calculated from the detected value, and based on the calculated moment of inertia, the proportional, integral, and derivative gains of speed control are calculated so that the speed control system has the shape of a Bessel low-pass filter, and the prescribed response is obtained. A gain adjustment method for an inverter device, characterized in that the gain adjustment is performed so as to obtain a predetermined response.
JP3162614A 1991-07-03 1991-07-03 Gain regulating method for inverter unit Pending JPH0515193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3162614A JPH0515193A (en) 1991-07-03 1991-07-03 Gain regulating method for inverter unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3162614A JPH0515193A (en) 1991-07-03 1991-07-03 Gain regulating method for inverter unit

Publications (1)

Publication Number Publication Date
JPH0515193A true JPH0515193A (en) 1993-01-22

Family

ID=15757950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3162614A Pending JPH0515193A (en) 1991-07-03 1991-07-03 Gain regulating method for inverter unit

Country Status (1)

Country Link
JP (1) JPH0515193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153288A (en) * 2007-12-20 2009-07-09 Hitachi Industrial Equipment Systems Co Ltd Power converter
CN107645267A (en) * 2016-07-20 2018-01-30 日本电产三协株式会社 Electric motor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153288A (en) * 2007-12-20 2009-07-09 Hitachi Industrial Equipment Systems Co Ltd Power converter
CN107645267A (en) * 2016-07-20 2018-01-30 日本电产三协株式会社 Electric motor system
CN107645267B (en) * 2016-07-20 2020-05-26 日本电产三协株式会社 Motor system

Similar Documents

Publication Publication Date Title
FI72016C (en) FOERFARANDE OCH ANORDNING FOER STABILISERING AV EN LIKSTROEMSMOTOR I EN HISS.
EP0474888A1 (en) Method of regulating gain of motor control
JPH0515193A (en) Gain regulating method for inverter unit
JPH0614293B2 (en) Sliding mode control system
JPH11313495A (en) Controller for motor servo system
JP4151401B2 (en) Servo control device
KR0176486B1 (en) An auto gain tunning apparatus of servo driving system
JPH05284771A (en) Automatic tuning method for pi controller
JPH0926801A (en) Overshoot suppression controller
JP3391380B2 (en) Control constant adjustment device
JPH07210205A (en) Parameter adjusting device for pid controller
JPH08116688A (en) Detecting method for oscillation of servomotor and adjusting method for speed gain of servomotor
JP4362762B2 (en) Servo control device and adjustment method thereof
JP3448210B2 (en) Closed loop process controller including PID regulator
JP2517616B2 (en) Parameter adaptation method in fuzzy feedback control.
JPH0833375A (en) Speed control device
JPH07203606A (en) Controlling device of torque of electric vehicle
JPH1082719A (en) Engine torque control device
JP3266391B2 (en) Control device
JPH10337070A (en) Speed controller of motor
JP2626173B2 (en) Speed fluctuation suppression control method for induction motor
JP2855644B2 (en) Controller
JP2850076B2 (en) Control device
JPH11119833A (en) Gain adjustment device for position adjuster
JPH0297291A (en) Automatic controller for motor