JPH05148681A - Solid phase plating method - Google Patents

Solid phase plating method

Info

Publication number
JPH05148681A
JPH05148681A JP4138917A JP13891792A JPH05148681A JP H05148681 A JPH05148681 A JP H05148681A JP 4138917 A JP4138917 A JP 4138917A JP 13891792 A JP13891792 A JP 13891792A JP H05148681 A JPH05148681 A JP H05148681A
Authority
JP
Japan
Prior art keywords
plating
plated
solid electrolyte
voltage
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4138917A
Other languages
Japanese (ja)
Other versions
JP2671714B2 (en
Inventor
Mamoru Onda
護 御田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13891792A priority Critical patent/JP2671714B2/en
Publication of JPH05148681A publication Critical patent/JPH05148681A/en
Application granted granted Critical
Publication of JP2671714B2 publication Critical patent/JP2671714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • C25D5/06Brush or pad plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor

Abstract

PURPOSE:To provide a solid phase plating method which is good in productivity by pressing a solid electrolyte which exhibits a high ion conductivity to plating metal ions to a body to be plated and energizing this body via the electrolyte. CONSTITUTION:Silver ion conductive glass which is amorphous and has a high electric conductivity is used for the solid electrolyte 3. A pure silver anode rod of 2mmphi having 99.99% purity is used as the source for supplying the conductive silver ions of an anode 4. The silver ions move in the solid electrolyte 3 when a degreased and pickled copper plate having 1mm thickness is used as the anode of the body 1 to be plated and a current is specified to 0.35A with 10V impressed voltage. Electricity is then discharged on the surface of the copper plate which is the body 1 to be plated of the cathode and metal silver is deposited. The film forming speed of the silver plating is 1.75m/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固相でめっきを行なう
ことのできる全く新規な固相電気めっき方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel solid phase electroplating method capable of performing solid phase plating.

【0002】[0002]

【従来の技術】従来、めっき方法には水溶液電気めっき
法、気相めっき法(蒸着、イオンプレーティング)、溶
融塩電気めっき法等が知られており、また、水溶液の無
電解めっき法等が知られている。しかしこの従来のめっ
き方法は、古くからの技術であるが近年の電子部品の微
細めっき加工に応用する場合に、以下の様な問題点があ
り、電子部品の高信頼性化、量産化および微細加工化に
限界をきたしている。
2. Description of the Related Art Conventionally known plating methods include an aqueous solution electroplating method, a vapor phase plating method (vapor deposition, ion plating), a molten salt electroplating method, and an aqueous solution electroless plating method. Are known. However, although this conventional plating method is an old technique, it has the following problems when it is applied to the fine plating of electronic parts in recent years. There is a limit to processing.

【0003】(1) 水溶液を用いるめっき方法は、電子部
品(リードフレーム等)に部分めっきを施す場合、めっ
きを必要とする部分以外を、軟質のゴム等で押さえ(め
っきマスクと言う)、マスク開口部にめっき液を噴射さ
せ、直流電圧を印加してめっきする方法が広く採用され
ている。
(1) When a plating method using an aqueous solution is used for partial plating of electronic parts (lead frame, etc.), a soft rubber or the like is used to hold parts other than those requiring plating (referred to as a plating mask) and a mask. A method of spraying a plating solution on the opening and applying a DC voltage to perform plating is widely adopted.

【0004】この方法はめっき液のにじみ出し等で位置
精度の高いめっきが不可能である。また、機械的なマス
クのため微細めっき加工に限界がある。
In this method, it is impossible to perform plating with high positional accuracy due to bleeding of the plating solution. Further, there is a limit to the fine plating process due to the mechanical mask.

【0005】(2) 水溶液めっき法は、排水処理施設の高
額な設備投資が必要であり、これに伴う公害上の問題が
大きな社会問題となっている。
(2) The aqueous solution plating method requires a large amount of equipment investment for wastewater treatment facilities, and the pollution problem associated with this is a major social problem.

【0006】(3) 蒸着法、イオンプレーティング法、ス
パッタリング法などの気相めっき方法は公害上の問題は
少ないが、真空中のめっきのため真空ポンプ、高耐圧ベ
ルジャおよび蒸発源加熱設備等の高額の設備投資が必要
である。また、これらの気相めっき方法は成膜速度(め
っき膜の成長速度)が遅いこと並びに真空引きの長い所
要時間等のため量産性が著しく悪いという欠点をを持っ
ている。
(3) Vapor plating methods such as the vapor deposition method, the ion plating method, and the sputtering method have few pollution problems, but because of plating in a vacuum, such as a vacuum pump, a high pressure resistant bell jar and an evaporation source heating facility. A large amount of capital investment is required. Further, these vapor phase plating methods have a drawback that the productivity is extremely poor due to a low film forming rate (growth rate of a plated film) and a long required time for vacuuming.

【0007】(4) 溶融塩電気めっき法は、カセイソーダ
等の高温の溶融塩を用いるため、作業環境の悪化、高温
浴のため作業性が悪く危険等の問題があり、また、電子
部品用の微細加工めっきや部分めっき等への応用が不可
能である。
(4) The molten salt electroplating method uses a high temperature molten salt such as caustic soda, which causes problems such as deterioration of working environment and poor workability due to high temperature bath, and also for electronic parts. It cannot be applied to fine processing plating or partial plating.

【0008】[0008]

【発明が解決しようとする問題点】本発明は、上記従来
技術の問題点を解消しようとするものであって、めっき
液を用いず、多額の設備投資を要せず、まったく新規な
めっき方法である固相でめっきができる方法を工業的に
実用化することが可能な固相めっき方法を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention is intended to solve the above-mentioned problems of the prior art, does not use a plating solution, does not require a large capital investment, and is a completely novel plating method. It is an object of the present invention to provide a solid phase plating method capable of industrially putting a method capable of plating with a solid phase which is

【0009】[0009]

【問題点を解決するための手段】上記目的を達成するた
めに、本発明者らは、めっきの媒体として固体電解質を
用いることにより、めっき液等を用いず、また、多額の
設備投資を要しないまったく新しいめっき法である固相
でめっきができる方式(以下、固相めっき方法と呼ぶ)
を発見し、工業的な実用化を可能とすることにより、本
発明に至ったものである。
In order to achieve the above object, the inventors of the present invention use a solid electrolyte as a plating medium, do not use a plating solution, etc., and require a large capital investment. A completely new plating method that allows solid-phase plating (hereinafter referred to as solid-phase plating method)
The present invention was accomplished by discovering the above and enabling industrial practical application.

【0010】すなわち、本発明の第1の態様は、イオン
導電性の無機化合物またはイオン導電性の高分子化合物
からなる固体電解質を被めっき体に当接し、前記被めっ
き体を陰極に、かつ前記固体電解質にめっき金属と同じ
材質からなる陽極を接続し、前記陰極と前記陽極との間
に電圧を印加することを特徴とする固相めっき方法を提
供するものである。
That is, according to the first aspect of the present invention, a solid electrolyte composed of an ion-conductive inorganic compound or an ion-conductive polymer compound is brought into contact with an object to be plated, the object to be plated is used as a cathode, and The solid-phase plating method is characterized in that an anode made of the same material as the plating metal is connected to the solid electrolyte and a voltage is applied between the cathode and the anode.

【0011】前記被めっき体は、金属、プラスチック、
およびセラミックスであるのが好ましい。
The object to be plated is made of metal, plastic,
And ceramics are preferred.

【0012】また、前記電圧は、直流電圧、パルス電圧
または矩形波電圧であるのが好ましい。
The voltage is preferably a DC voltage, a pulse voltage or a rectangular wave voltage.

【0013】また、前記電圧は、外部電源電圧であるの
が好ましい。
Further, the voltage is preferably an external power supply voltage.

【0014】また、固体電解質の被めっき体への当接
は、前記固体電解質に荷重または圧力を負荷してなされ
るものであるのが好ましい。
The solid electrolyte is preferably brought into contact with the object to be plated by applying a load or pressure to the solid electrolyte.

【0015】以下に、本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0016】本発明に用いられる固体電解質は、めっき
金属イオンに対して固体のまま高いイオン導電性を示す
ものであれば、いかなるものでもよく、無機化合物でも
高分子化合物でもよい。すなわち、前記固体電解質は、
イオン導電性固体結晶、イオン導電性ガラス(セラミッ
クス)あるいはイオン導電性固化ペーストであってもよ
い。
The solid electrolyte used in the present invention may be any one as long as it shows high ionic conductivity as a solid with respect to the plating metal ion, and may be an inorganic compound or a polymer compound. That is, the solid electrolyte is
It may be an ion conductive solid crystal, an ion conductive glass (ceramics) or an ion conductive solidified paste.

【0017】このような固体電解質はイオン選択透過機
能を有するものであって、前記固体電解質の導電がただ
一種類のイオンによって行なわれるものである。
Such a solid electrolyte has a function of selectively permeating ions, and the conductivity of the solid electrolyte is carried out by only one kind of ion.

【0018】このようなイオンのうちめっきとして使う
ことのできる金属イオンであれば何でもよいが、例え
ば、Ag+ (銀イオン)およびCu+ (第一銅イオン)
などが挙げられる。
Of these ions, any metal ion can be used as long as it can be used for plating. For example, Ag + (silver ion) and Cu + (cuprous ion) can be used.
And so on.

【0019】Ag+ (銀イオン)に対して高イオン導電
性を示す固体電解質としては、Ag1-x x 1-y y
(0≦x<1、0≦y<1)と表わすことができ、例え
ば、Ag3 SI、Ag1915(P2 7 )、Ag6 4
(WO4 )、RbAg4 5 、KAg4 5 、(N
4 )Ag4 5 、Q2 Ag1315、QAg5 6 (こ
こでQはオニウムイオンである)、HgAg8
2 6 、Ag1.80.46Se0.7 1.3 、RbAg4
NI4 およびα AgI類似構造を有し、AgIの一部
のI- あるいはAg+ を陰イオン、陽イオンで置換した
ものなどを挙げることができる。特にRbAg4 5
導電率2.7×10-1Ω-1cm-1(25℃)と高く、ま
た、Ag6 4 (WO4 )は導電率4.7×10-3Ω-1
cm-1(25℃)とそれほど高くないが、コスト的に有利
であり安定性にも優れているので好ましい。
As the solid electrolyte showing high ionic conductivity with respect to Ag + (silver ion), Ag 1-x M x I 1-y X y
(0 ≦ x <1, 0 ≦ y <1), and for example, Ag 3 SI, Ag 19 I 15 (P 2 O 7 ), Ag 6 I 4
(WO 4 ), RbAg 4 I 5 , KAg 4 I 5 , (N
H 4 ) Ag 4 I 5 , Q 2 Ag 13 I 15 , QAg 5 I 6 (where Q is an onium ion), HgAg 8 S
2 I 6 , Ag 1.8 H 0.46 Se 0.7 I 1.3 , RbAg 4 C
Examples thereof include those having a structure similar to NI 4 and α AgI, in which a part of I or Ag + of AgI is substituted with an anion or a cation. Particularly RbAg 4 I 5 is conductivity 2.7 × 10 -1 Ω -1 cm -1 (25 ℃) and higher, also, Ag 6 I 4 (WO 4 ) is conductivity 4.7 × 10 -3 Ω - 1
Although it is not so high as cm -1 (25 ° C), it is preferable because it is advantageous in cost and excellent in stability.

【0020】Cu+ (第一銅イオン)に対して高イオン
導電性を示す固体電解質としては、ハロゲン化第一銅の
陽イオン置換体、あるいは陰イオンおよび陽イオン置換
体などがあり、例えば、RbCu3 Cl4 ,CuI・C
10SCH3 I,Rb4 Cu16Cl137 ,7CuBr
6 124 CH3 Br,17CuI・3C6 12 4
CH3 I,およびRbCu4 Cl3 2 などが挙げら
れ、さらにCuTeX(X=Cl,Br,I)などが挙
げられる。特に、RbCu4 Cl3 2 は導電率が4.
7×10-1Ω-1cm-1(25℃)と高いので好ましい。
Cu+High ion for (cuprous ion)
As the solid electrolyte showing conductivity, cuprous halide
Cation substitute, or anion and cation substitution
There is a body, for example, RbCu3ClFour, CuI ・ C
HTenSCH3I, RbFourCu16Cl13I7, 7CuBr
C6H12NFourCH3Br, 17CuI / 3C6H12N Four
CH3I, and RbCuFourCl3I2Etc.
In addition, CuTeX (X = Cl, Br, I)
You can Especially RbCuFourCl3I2Has a conductivity of 4.
7 x 10-1Ω-1cm-1Since it is as high as (25 ° C), it is preferable.

【0021】以上、本発明に用いられる固体電解質につ
いて詳細に説明したけれども、本発明においては、一般
に、固体電解質の導電率は温度依存性を有するものであ
り、導電率を上げ、めっき効率を上げるため、固体電解
質を加熱してもよいことは勿論である。
Although the solid electrolyte used in the present invention has been described above in detail, in the present invention, the conductivity of the solid electrolyte generally has temperature dependence, and thus the conductivity and the plating efficiency are increased. Therefore, it goes without saying that the solid electrolyte may be heated.

【0022】本発明は、上述の固体電解質を介して、被
めっき体側を陰極とし、前記固体電解質側を陽極として
電気めっきを行なうものであるので、前記固体電解質に
めっき金属イオンを供給する必要がある。前記固体電解
質にめっき金属イオンを供給する方法としては、めっき
に必要な量のめっき金属イオンを供給できればいかなる
方法を用いてもよいが、例えば、AgI粉末などを用い
ることができるが、好ましくは、前記固体電解質に接続
する陽極をめっき金属を含む材料で構成するのがよい。
陽極をめっき金属だけで構成してもよいし、まためっき
金属を容器に入れ、該容器を陽極としてもよい。
In the present invention, electroplating is performed through the above-described solid electrolyte with the side to be plated as a cathode and the solid electrolyte side as an anode. Therefore, it is necessary to supply plating metal ions to the solid electrolyte. is there. As a method for supplying the plating metal ions to the solid electrolyte, any method may be used as long as it can supply the plating metal ions in an amount necessary for plating. For example, AgI powder or the like can be used, but preferably, The anode connected to the solid electrolyte is preferably made of a material containing a plating metal.
The anode may be composed only of the plated metal, or the plated metal may be put in a container and the container may be used as the anode.

【0023】本発明に用いられる被めっき体は、めっき
可能なものならなんでもよいが、例えば、金属、プラス
チックおよびセラミックスなどが好ましい。
The object to be plated used in the present invention may be anything as long as it can be plated, but for example, metal, plastic and ceramics are preferred.

【0024】本発明においては、電気めっきを行なう際
に、被めっき体と固体電解質を当接させるが、接触状態
を密にするため、被めっき体と固体電解質との一方にあ
るいは両方に荷重を加えるかあるいは両方との間にバネ
等により圧力を加えるのが好ましい。
In the present invention, the object to be plated and the solid electrolyte are brought into contact with each other during electroplating. However, in order to make the contact state dense, a load is applied to one or both of the object to be plated and the solid electrolyte. It is preferable to apply pressure by a spring or the like between them or both.

【0025】被めっき体に固体電解質を当接させる際に
加える当接圧力は完全に密着させるためには、300g
/cm2 〜1000g/cm2 とするのが好適である。
The contact pressure applied when the solid electrolyte is brought into contact with the object to be plated is 300 g in order to completely bring it into close contact.
/ Cm 2 to 1000 g / cm 2 is preferable.

【0026】本発明に用いられる印加電圧は、めっきが
できるものならなんでもよいが外部電源電圧であり、直
流電圧、パルス電圧、矩形波電圧のいずれかが好まし
い。
The applied voltage used in the present invention may be any voltage capable of plating, but is an external power supply voltage, and is preferably DC voltage, pulse voltage or rectangular wave voltage.

【0027】本発明の固相めっき方法においては、上記
被めっき体には陰極を接続し、上記固体電解質には陽極
を接続し、前記陰極と前記陽極との間に上記電圧を印加
して、前記被めっき体に当接された前記固体電解質を介
して、前記固体電解質にめっき金属を供給しながら前記
被めっき体にめっき金属をめっきするものである。
In the solid phase plating method of the present invention, a cathode is connected to the object to be plated, an anode is connected to the solid electrolyte, and the voltage is applied between the cathode and the anode, The plated metal is plated on the object to be plated while supplying the plated metal to the solid electrolyte via the solid electrolyte contacted with the object to be plated.

【0028】本発明の固相めっき方法においては、めっ
きの結晶粒を微細し、めっき電流効率を上げるために、
固体電解質と被めっき体とのいずれか一方あるいは両方
に超音波を負荷してもよい。
In the solid phase plating method of the present invention, in order to make the crystal grains of the plating finer and increase the plating current efficiency,
Ultrasonic waves may be applied to either or both of the solid electrolyte and the object to be plated.

【0029】ここで、超音波を負荷する方法としては、
超音波振動子を固体電解質または被めっき体に当てて照
射する方法がよい。
Here, as a method of applying ultrasonic waves,
A method in which an ultrasonic vibrator is applied to the solid electrolyte or the object to be plated for irradiation is preferable.

【0030】超音波の負荷によるめっきの結晶粒が微細
となりかつめっき電流が上がる理由は、主に、超音波エ
ネルギーにより被めっき体のめっき表面の薄い酸化膜が
破壊されるため、めっき膜の密着性が高まるからであ
る。
The reason why the crystal grains of the plating become fine due to the load of ultrasonic waves and the plating current increases is that the ultrasonic energy destroys the thin oxide film on the plating surface of the object to be plated. This is because the nature is enhanced.

【0031】以下に、本発明の固相めっき方法を実施す
る装置構成を添付の図面に示す好適な実施例に基づいて
さらに詳細に説明する。
The apparatus configuration for carrying out the solid phase plating method of the present invention will be described below in more detail with reference to the preferred embodiments shown in the accompanying drawings.

【0032】図1は、本発明の固相めっき方法を実施す
る装置(以下、固相めっき装置という)の一実施例であ
る。
FIG. 1 shows an embodiment of an apparatus for carrying out the solid phase plating method of the present invention (hereinafter referred to as a solid phase plating apparatus).

【0033】図1に示すように、被めっき体1に保護用
筒体2で保護された固体電解質3を当接する。固体電解
質3に陽極4を埋め込んで、外部電源(図示せず)の陰
極−と被めっき体1とを接続し、前記外部電源の陽極+
と陽極4とを接続する。
As shown in FIG. 1, the solid electrolyte 3 protected by the protective cylinder 2 is brought into contact with the object to be plated 1. An anode 4 is embedded in the solid electrolyte 3 to connect a cathode − of an external power source (not shown) to the object to be plated 1 and an anode + of the external power source.
And the anode 4 are connected.

【0034】ここで、保護用筒体2は固体電解質3を保
護でき、めっきに障害にならないものであれば、いかな
る形状あるいはいかなる材質のものでもよいが、絶縁性
があるものがよく、例えば、硬質のポリエチレン製筒
体、テフロン製筒体、ナイロン製筒体などが好ましい。
Here, the protective cylinder 2 may be of any shape or of any material as long as it can protect the solid electrolyte 3 and does not hinder plating, but an insulating material such as, for example, A rigid polyethylene cylinder, a Teflon cylinder, a nylon cylinder and the like are preferable.

【0035】また、固体電解質3の形状は、いかなる形
状でもよいが、当接部の形状は被めっき体1のめっき部
分の形状と全く同じあるいは少し大きめで略同一の形状
であるのが好ましい。
The shape of the solid electrolyte 3 may be any shape, but the shape of the contact portion is preferably the same as the shape of the plated portion of the object to be plated 1 or slightly larger and substantially the same.

【0036】前述したように、陽極4はめっき金属イオ
ンの補給源とするのがよく、めっき金属またはめっき金
属を含有するものがよく、その形状に特に制限はないが
棒状のものが好ましい。
As described above, the anode 4 is preferably used as a supplementary source of the plating metal ions, preferably the plating metal or the one containing the plating metal, and the shape thereof is not particularly limited, but the rod-shaped one is preferable.

【0037】また、図2に示すように、固体電解質3の
温度を高温に保持するため、図2に示すめっき装置の保
護用筒体2に加熱装置を設けてもよい。図2において
は、固体電解質3の加熱は保護用筒体2の外側に加熱筒
5を配設し、高温流体を加熱筒5の下方に設けられた入
口6から流入させ、固体電解質3を加熱した前記高温流
体を加熱筒5の上方に設けられた出口7から排出させて
行なうことができる。もちろん、本発明に用いられる加
熱装置は図2に示す例に限定されない。
Further, as shown in FIG. 2, in order to keep the temperature of the solid electrolyte 3 at a high temperature, a heating device may be provided in the protective cylinder 2 of the plating device shown in FIG. In FIG. 2, the solid electrolyte 3 is heated by arranging the heating cylinder 5 on the outside of the protective cylinder 2 and allowing the high temperature fluid to flow from the inlet 6 provided below the heating cylinder 5 to heat the solid electrolyte 3. The high temperature fluid can be discharged from the outlet 7 provided above the heating cylinder 5. Of course, the heating device used in the present invention is not limited to the example shown in FIG.

【0038】図1および図2に示す固相めっき装置にお
いて、被めっき体1および固体電解質3のいずれか一方
あるいは両方に超音波を負荷する時は、被めっき体1の
下側からあるいは固体電解質3の上側から負荷するのが
よい。
In the solid-phase plating apparatus shown in FIGS. 1 and 2, when ultrasonic waves are applied to either or both of the object to be plated 1 and the solid electrolyte 3, the object to be plated 1 or the solid electrolyte 3 is subjected to ultrasonic waves. It is better to load from the upper side of 3.

【0039】以上、本発明の固相めっき方法を実施する
装置について説明したが、本発明はこれに限定されるわ
けではなく、本発明の要旨を逸脱しない範囲において、
種々の改良ならびに設計の変更が可能なことは勿論であ
る。
The apparatus for carrying out the solid phase plating method of the present invention has been described above, but the present invention is not limited to this, and is within the scope not departing from the gist of the present invention.
Of course, various improvements and design changes are possible.

【0040】[0040]

【実施例】以下に、本発明を実施例に基づいて詳細に説
明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0041】(実施例1)図1に示す固相めっき装置を
用いて、本発明の固相めっき方法を実施した。
Example 1 The solid phase plating method of the present invention was carried out using the solid phase plating apparatus shown in FIG.

【0042】ここで、固体電解質3には非晶質で高導電
率の銀イオン導電性ガラス(Ag6 4 (WO4 ))を
使用した。固体電解質の保護体である筒体2は硬質のポ
リエチレン製筒体とした。陽極4には導電性銀イオンの
補給源である99.99%の純度の2mmφの純銀陽極
棒を使用した。
Here, as the solid electrolyte 3, an amorphous and highly conductive silver ion conductive glass (Ag 6 I 4 (WO 4 )) was used. The cylinder 2 which is a protective body of the solid electrolyte was a hard polyethylene cylinder. As the anode 4, a 2 mmφ pure silver anode rod having a purity of 99.99%, which is a supply source of conductive silver ions, was used.

【0043】次に、めっきの手順を説明すると、まず、
被めっき体1として用いた厚さ1.0mmの銅板(10
0×100mm)を脱脂酸洗して乾燥させ表面を清浄な
状態とした。次に、固体電解質3を約500g/cm2
の荷重で当接させ、単相全波の直流電流を印加した。固
体電解質3である棒状の銀イオン導電性ガラスの断面積
は5mmφ=約20mm2 であり、先端部は0.06μ
mの平均粗さに研磨加工した。
Next, the plating procedure will be described.
A 1.0 mm thick copper plate used as the object to be plated 1 (10
(0 × 100 mm) was degreased and washed to dry the surface. Next, the solid electrolyte 3 is added to about 500 g / cm 2
A single-phase full-wave DC current was applied by bringing them into contact with each other. The cross-sectional area of the rod-shaped silver ion conductive glass that is the solid electrolyte 3 is 5 mmφ = about 20 mm 2 , and the tip is 0.06 μm.
Polished to an average roughness of m.

【0044】この実施例1における部分めっきの電流電
圧曲線(常温25℃の時)を図3に示す。電圧を印加す
るとまず約0.5Vの分極電圧(A領域)があり、すな
わちこれは活性化エネルギーに相当する活性化過電圧で
あった。この分極電圧(A領域)を過ぎると電流の立ち
上がり領域Bに移りめっきが開始された。電流が流れ始
めると陽極4である純銀陽極棒から銀イオンの注入がお
こなわれ、固体電解質3であるAg6 4 (WO4 )中
を銀イオンが移動して陰極の被めっき体1である銅板の
表面で放電して金属銀として折出した。10Vの印加電
圧の時の電流値は0.35A=1.75A/cm2 =1
75A/dm2 (固体電解質3の断面積当り)であっ
た。銀めっきの成膜速度は1A/dm2 の電流密度の
時、ファラデーの法則により0.01μm/秒であるか
ら、実施例1における成膜速度は0.01×175=
1.75μm/秒の値となった。この成膜速度は従来の
電気めっきの50〜100倍の速度であり、最新の高速
噴流式水溶液めっき法の2〜5倍の速度であった。
FIG. 3 shows the current-voltage curve of partial plating in this Example 1 (at room temperature of 25 ° C.). When a voltage was applied, there was first a polarization voltage (area A) of about 0.5 V, ie, this was an activation overvoltage corresponding to activation energy. When the polarization voltage (area A) was exceeded, the current moved to the rising area B and plating was started. When a current starts flowing, silver ions are injected from a pure silver anode rod which is the anode 4, and the silver ions move through Ag 6 I 4 (WO 4 ) which is the solid electrolyte 3 to form the cathode plated object 1. Discharged on the surface of the copper plate and extruded as metallic silver. The current value when an applied voltage of 10 V is 0.35 A = 1.75 A / cm 2 = 1
It was 75 A / dm 2 (per cross-sectional area of solid electrolyte 3). The film formation rate of silver plating is 0.01 μm / sec according to Faraday's law when the current density is 1 A / dm 2 , and therefore the film formation rate in Example 1 is 0.01 × 175 =
The value was 1.75 μm / sec. The film formation rate was 50 to 100 times that of conventional electroplating, and 2 to 5 times that of the latest high-speed jet aqueous solution plating method.

【0045】(実施例2)図2に示す固相めっき装置を
用いて、実施例1と同様にして本発明の固相めっき方法
を実施した。実施例2では固体電解質3の温度を高温に
保持するために、実施例1の固相めっき装置に加熱筒5
を筒体3の外側に配設し、沸湯水入口6より100℃の
熱水を注入し沸湯水出口7より排出させた。このことに
より固体電解質3の内部平均温度は100℃に保持する
ことができた。また、印加電圧10Vの最大電流は図4
に示すように0.42A=2.1A/cm2 =210A
/dm2 となった。この電流密度における成膜速度は
0.01×210=2.1μm/秒で高速噴流式めっき
法の2.4〜6倍の速度となった。ICリードフレーム
等の銀めっきの必要めっき厚さは約2〜4μmであり、
本発明法では10Vの印加電圧の時、約1秒間でこの厚
さを達成することができた。
Example 2 The solid phase plating method of the present invention was carried out in the same manner as in Example 1 using the solid phase plating apparatus shown in FIG. In the second embodiment, in order to maintain the temperature of the solid electrolyte 3 at a high temperature, the heating cylinder 5 is added to the solid-state plating apparatus of the first embodiment.
Was placed outside the cylindrical body 3, hot water of 100 ° C. was injected from the boiling water inlet 6 and discharged from the boiling water outlet 7. This allowed the internal average temperature of the solid electrolyte 3 to be maintained at 100 ° C. The maximum current of the applied voltage of 10 V is shown in FIG.
As shown in 0.42A = 2.1A / cm 2 = 210A
/ Dm 2 . The film forming rate at this current density was 0.01 × 210 = 2.1 μm / sec, which was 2.4 to 6 times that of the high-speed jet plating method. The required plating thickness of silver plating of IC lead frame etc. is about 2-4 μm,
With the method of the present invention, it was possible to achieve this thickness in about 1 second when the applied voltage was 10V.

【0046】以上のように、Ag6 4 (WO4 )固体
電解質の導電率は約4.7×10-2Ω-1cm-1(25
℃)であり、これは通常の電導体と考えた場合10Vの
電圧では0.47A(at25℃)が最大であるが実施
例2では約0.42A、実施例1では約0.35Aの電
流が達成できた。導電率より計算した電流よりも実際の
電流が小さくなるのは、被めっき体1と固体電解質3と
の接触抵抗による電圧成分と銀電極4の固体電解質3へ
の溶解と被めっき体1への銀イオンの折出の活性化過電
圧成分が含まれるためである。
As described above, the conductivity of Ag 6 I 4 (WO 4 ) solid electrolyte is about 4.7 × 10 -2 Ω -1 cm -1 (25
C)), which is 0.47 A (at 25 ° C.) at a voltage of 10 V when it is considered as a normal electric conductor, but a current of about 0.42 A in Example 2 and about 0.35 A in Example 1. Was achieved. The actual current becomes smaller than the current calculated from the conductivity because the voltage component due to the contact resistance between the object to be plated 1 and the solid electrolyte 3 and the dissolution of the silver electrode 4 into the solid electrolyte 3 and the object to be plated 1 This is because the activation overvoltage component of silver ion protrusion is included.

【0047】(実施例3)固体電解質としてRbAg4
5 を用い、実施例1および2と同様にして、本発明の
固相めっき方法を実施した。この場合、導電率はAg6
4 (WO4 )の約5.7倍であり、低い電圧で高いめ
っき電流が得られた。実施例3では印加電圧10Vの最
大電流密度は、加熱なしで1.9A、100℃に加熱す
ると3.85Aの電流値よりそれぞれ950A/d
2 、1925A/dm2 となった。この場合の成膜速
度は加熱なしで0.01×950=9.5μm/秒、加
熱すると0.01×1925=19.25μm/秒が得
られた。このため、4μmの必要めっき厚さに要する時
間は加熱なしで4÷9.5=0.42秒、100℃に加
熱すると4÷19.25=0.20秒で、瞬時にして部
分めっきを終了させることができた。
(Example 3) RbAg 4 as a solid electrolyte
The solid phase plating method of the present invention was carried out in the same manner as in Examples 1 and 2 using I 5 . In this case, the conductivity is Ag 6
It was about 5.7 times that of I 4 (WO 4 ), and a high plating current was obtained at a low voltage. In Example 3, the maximum current density with an applied voltage of 10 V is 1.9 A without heating and 950 A / d from the current value of 3.85 A when heated to 100 ° C., respectively.
m 2 , 1925 A / dm 2 . In this case, the film formation rate was 0.01 × 950 = 9.5 μm / sec without heating, and 0.01 × 1925 = 19.25 μm / sec with heating. Therefore, the time required for the required plating thickness of 4 μm is 4 ÷ 9.5 = 0.42 seconds without heating, and 4 ÷ 19.25 = 0.20 seconds when heated to 100 ° C. I was able to finish.

【0048】電圧を10V以上に上げて電流値を上げれ
ばさらに高速のめっきが可能であるが、めっき時間が短
すぎてめっき厚の制御が不可能となり、実用上適さな
い。
If the voltage is increased to 10 V or more and the current value is increased, higher speed plating can be performed, but the plating time is too short to control the plating thickness, which is not practically suitable.

【0049】(実施例4)固体電解質としてイオン導電
性高分子材料を用い、実施例1および2と同様にして、
本発明の固相めっき方法を実施した。このイオン導電性
高分子材料はPEO(ポリエチレンオキシド)にAgI
を反応させ作った。
(Example 4) An ion conductive polymer material was used as the solid electrolyte and the same procedure as in Examples 1 and 2 was repeated.
The solid phase plating method of the present invention was carried out. This ionic conductive polymer material is PEO (polyethylene oxide) with AgI
Made to react.

【0050】このイオン導電性高分子材料の導電率は、
無機固体電解質のそれと比較して一般に小さく、PEO
−AgI反応生成物の場合約100℃で10-1Ω-1cm
-1であるが、高分子材料では軟質なため被めっき体1へ
の表面なじみが良く、被めっき体に当接させるに都合が
良いので表面凹凸の被めっき材の場合の固相めっきに適
した。PEO−AgI中への陽極純銀棒の埋め込みは、
PEO−AgIに陽極純銀棒の直径より小さい穴を研削
により設け純銀棒の陽極4を取付けた。これは無機固体
電解質の場合と同様の方法であった。このPEO−Ag
Iを固体電解質として用い、実施例2と同様に固相めっ
き方法を実施した場合の電流電圧曲線を図5に示す。
The conductivity of this ion-conductive polymer material is
Generally smaller than that of inorganic solid electrolytes, PEO
-In case of AgI reaction product, 10 -1 Ω -1 cm at about 100 ° C.
It is -1 , but it is suitable for solid-phase plating in the case of a material to be plated with uneven surface because it is soft with a polymeric material and has good surface familiarity with the material to be plated 1 It was Embedding an anode pure silver rod in PEO-AgI
A hole smaller than the diameter of the anode pure silver rod was provided in PEO-AgI by grinding, and the anode 4 of the pure silver rod was attached. This was the same method as in the case of the inorganic solid electrolyte. This PEO-Ag
FIG. 5 shows a current-voltage curve when I was used as the solid electrolyte and the solid-phase plating method was carried out in the same manner as in Example 2.

【0051】電圧10Vの時の最大電流は約0.75×
10-2Aであり、電流密度として3.75A/dm2
相当する。この場合の成膜速度は0.01×3.75=
0.0375μm/秒で2μmの銀めっき厚さを得るに
要しためっき時間は2÷0.0375=53秒であっ
た。
The maximum current when the voltage is 10 V is about 0.75 ×
It is 10 −2 A, which corresponds to a current density of 3.75 A / dm 2 . The film formation rate in this case is 0.01 × 3.75 =
The plating time required to obtain a silver plating thickness of 2 μm at 0.0375 μm / sec was 2 ÷ 0.0375 = 53 seconds.

【0052】(実施例5)印加電圧としてパルス電圧お
よび矩形波電圧を用い、実施例1と同様にして、本発明
の固相めっき方法を実施した。使用した波形を図6およ
び図7に示す。図6および図7の波形はいずれも水溶液
の電気めっきの高電流密度化と密着性の向上およびめっ
き結晶の微細化の目的に使用されているものである。た
だし、電圧の正負の時間の比率パルス波形にするか矩形
波波形にするか等は必要とするめっきの膜質との関係で
多様に選定されている。従って、本発明の代表的な波形
として図6および図7を選定した。めっき電流は図6に
示すパルス波形の場合、印加電圧10Vの時に0.40
A、図7に示す矩形波電圧の場合に、0.44Aに向上
した。また、パルス波形および矩形波では結晶粒が微細
で密着性の良好なめっきが得られた。
(Embodiment 5) The solid phase plating method of the present invention was carried out in the same manner as in Embodiment 1, using pulse voltage and rectangular wave voltage as applied voltage. The waveforms used are shown in FIGS. 6 and 7. The waveforms of FIGS. 6 and 7 are used for the purpose of increasing the electric current density of electroplating of an aqueous solution, improving the adhesiveness, and miniaturizing the plated crystal. However, the ratio of the positive / negative time of the voltage The pulse waveform or the rectangular waveform is variously selected depending on the required plating film quality. Therefore, FIGS. 6 and 7 were selected as typical waveforms of the present invention. In the case of the pulse waveform shown in FIG. 6, the plating current is 0.40 when the applied voltage is 10V.
A, in the case of the rectangular wave voltage shown in FIG. 7, it improved to 0.44A. Further, with the pulse waveform and the rectangular wave, plating with fine crystal grains and good adhesion was obtained.

【0053】(実施例6)被めっき体1に0.5t厚さ
のセラミック基板を用い、その上部に無電解銅めっきを
全面に1.0μm施したものを用い、実施例1と同様に
して固相めっき方法を実施した。銀めっきは実施例1と
同様の条件で同様に行なうことができた。
(Embodiment 6) A ceramic substrate having a thickness of 0.5 t was used as the object to be plated 1 and electroless copper plating was applied to the entire surface thereof at 1.0 μm. A solid phase plating method was carried out. The silver plating could be similarly performed under the same conditions as in Example 1.

【0054】(実施例7)実施例1における固相めっき
方法を実施するに当り、被めっき体1に対して出力75
W、周波数200Hzの超音波を負荷した。超音波の負
荷方法は被めっき体1の下部から超音波振動子を当てて
照射した。
(Embodiment 7) In carrying out the solid phase plating method in Embodiment 1, an output of 75 is applied to the object to be plated 1.
An ultrasonic wave of W and a frequency of 200 Hz was loaded. As an ultrasonic loading method, an ultrasonic vibrator was applied from below the object to be plated 1 for irradiation.

【0055】超音波の効果はめっきの結晶粒が微細とな
りかつめっき電流が10Vの印加電圧の時0.44Aま
で高まった。
The effect of ultrasonic waves was such that the crystal grains of the plating became fine and the plating current increased to 0.44 A when the applied voltage was 10 V.

【0056】超音波エネルギーにより被めっき体1の表
面の薄い酸化膜が破壊されるため、めっき膜の密着性が
高まった。
Since the thin oxide film on the surface of the object to be plated 1 is destroyed by the ultrasonic energy, the adhesion of the plated film is enhanced.

【0057】(実施例8)実施例1における固相めっき
方法を実施するにあたり、固体電解質3にRbCu4
3 2 を用いた。銅めっきのため陽極には99.99
%の純銅棒を用いた。RbCu4 Cl3 2 の導電率は
4.7×10-1Ω-1cm-1であり、10Vの印加電圧の
時、4.0A=2000A/dm2 の電流密度が得られ
た。銅の成膜速度は電流密度1A/dm2 の時0.00
74μm/秒であり、従って2000A/dm2 では1
4.8μm/秒の成膜速度が得られた。めっき膜の粒子
は非常に微細であり密着性も良好であった。
(Embodiment 8) In carrying out the solid phase plating method in Embodiment 1, RbCu 4 C was added to the solid electrolyte 3.
l 3 I 2 was used. 99.99 for the anode due to copper plating
% Pure copper rod was used. The conductivity of RbCu 4 Cl 3 I 2 was 4.7 × 10 −1 Ω −1 cm −1 , and when the applied voltage was 10 V, a current density of 4.0 A = 2000 A / dm 2 was obtained. The deposition rate of copper is 0.00 when the current density is 1 A / dm 2 .
74 μm / sec, and therefore 1 at 2000 A / dm 2.
A film formation rate of 4.8 μm / sec was obtained. The particles of the plating film were very fine and the adhesion was good.

【0058】以上、実施例1〜8において実施した固相
めっき方法により得られた固相めっき膜の性能を試験し
た。その条件および結果を表1に示す。ここで、曲げ密
着性を調べるため、めっき厚さを要求値より高い10μ
mに設定した。
As described above, the performance of the solid-phase plating film obtained by the solid-phase plating method carried out in Examples 1 to 8 was tested. The conditions and results are shown in Table 1. Here, in order to investigate the bending adhesion, the plating thickness is 10 μm, which is higher than the required value.
set to m.

【0059】曲げ密着性試験はめっき面を内側として
0.5Rに90°折り曲げ、次に曲げ戻して表面を10
倍(×10)の顕微鏡で観察した。その結果、素地面ま
で達する微細クラックによるハガレで判定した。
The bending adhesion test was carried out by bending 90 ° to 0.5R with the plated surface inside and then bending back to 10
It was observed with a microscope (× 10). As a result, it was judged by peeling due to fine cracks reaching the bare ground.

【0060】次に、従来法と本発明法との電気めっきに
おける比較をめっき位置精度、可能な最小のめっきエリ
ア、めっき速度およびめっき粒径について行なった。そ
の結果を表2に示す。
Next, a comparison was made between the conventional method and the method of the present invention in electroplating with respect to the plating position accuracy, the minimum possible plating area, the plating speed and the plating grain size. The results are shown in Table 2.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】表1および表2から明らかなように、本発
明の固相めっき方法により、高精度で微細な粒径のめっ
きを高速で行なうことができる。
As is clear from Tables 1 and 2, the solid-phase plating method of the present invention enables high-accuracy plating with a fine grain size to be performed at high speed.

【0064】さらに、めっき電圧の波形をパルス電圧あ
るいは矩形波電圧にすること、あるいは超音波を負荷す
ることにより高品質のめっきを得ることができる。ま
た、加熱することにより、より高速なめっきをすること
ができる。
Further, high-quality plating can be obtained by setting the waveform of the plating voltage to a pulse voltage or a rectangular wave voltage or applying an ultrasonic wave. Further, by heating, higher speed plating can be performed.

【0065】[0065]

【発明の効果】以上、詳述したように、本発明には、次
のような効果がある。
As described above in detail, the present invention has the following effects.

【0066】(1) 本発明によれば、めっきに必ず附随し
ていた公害問題の解消を図ることができる。すなわち、
めっきを実施する際に薬品をまったく使わないため、公
害問題が発生しない。
(1) According to the present invention, it is possible to solve the pollution problem that is always associated with plating. That is,
No chemicals are used when plating, so no pollution problems occur.

【0067】(2) 本発明によれば、従来のめっき方法に
比べ、位置精度が高いので、部分めっきがめっきマスク
を用いずに容易にしかも微細に高精度にできる。
(2) According to the present invention, since the positional accuracy is higher than that of the conventional plating method, partial plating can be performed easily and finely with high accuracy without using a plating mask.

【0068】(3) 本発明によれば、従来のめっき方法に
比べ、超高速のめっきができる。従来の約42倍(Ma
x)のスピードが得られる。
(3) According to the present invention, ultrahigh-speed plating can be performed as compared with the conventional plating method. About 42 times (Ma)
x) speed is obtained.

【0069】(4) めっき性能の向上を図ることができ
る。固相めっきによるめっきはめっきの粒界が微細なた
め、密着性が非常に優れる。
(4) The plating performance can be improved. The solid phase plating has very fine adhesion because the grain boundaries of the plating are fine.

【0070】(5) 本発明によれば、めっきの経済性を向
上させることができる。めっき薬品を使用しないため、
めっき費用の低減が図れる。
(5) According to the present invention, the economical efficiency of plating can be improved. Since no plating chemical is used,
The plating cost can be reduced.

【0071】ICリードルーム1個当りのめっき費用は
現行1.20円/pであるがめっき薬品の低減とめっき
スピードの向上による加工費の低減により0.1円/p
までに低減できる。
The plating cost per IC lead room is currently 1.20 yen / p, but it is 0.1 yen / p due to the reduction of the processing cost by reducing the plating chemical and improving the plating speed.
Can be reduced to

【0072】(6) 本発明によれば、めっき設備費が安
い。高価な長いめっき槽を必要としないため、設備費が
安い。例えば次の通りである。
(6) According to the present invention, the cost of plating equipment is low. Equipment cost is low because expensive long plating tank is not required. For example:

【0073】従来のめっき設備(ICリードルーム、1
000万個/月)=70,000,000円。
Conventional plating equipment (IC lead room, 1
(10 million / month) = 70,000,000 yen.

【0074】本発明のめっき設備(ICリードルーム、
1000万個/月)=30,000,000円。
The plating equipment of the present invention (IC lead room,
10 million pieces / month) = 30,000,000 yen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固相めっき方法を実施する装置一実施
例の概略図。
FIG. 1 is a schematic view of an embodiment of an apparatus for carrying out the solid phase plating method of the present invention.

【図2】本発明の固相めっき方法を実施する装置別の実
施例の概略図。
FIG. 2 is a schematic view of another embodiment of the apparatus for carrying out the solid phase plating method of the present invention.

【図3】本発明の固相めっき方法において用いられる直
流電圧の電源電圧に対する電流のグラフ。
FIG. 3 is a graph of a DC voltage used in the solid phase plating method of the present invention with respect to a power supply voltage.

【図4】同本発明の固相めっき方法において用いられる
直流電圧の電源電圧に対する電流のグラフ。
FIG. 4 is a graph of a DC voltage used in the solid phase plating method of the present invention with respect to a power supply voltage.

【図5】同本発明の固相めっき方法において用いられる
直流電圧の電源電圧に対する電流のグラフ。
FIG. 5 is a graph of a DC voltage used in the solid phase plating method of the present invention with respect to a power supply voltage.

【図6】本発明の固相めっき方法において用いられるパ
ルス電圧および矩形波電圧の波形。
FIG. 6 shows waveforms of pulse voltage and rectangular wave voltage used in the solid phase plating method of the present invention.

【図7】同本発明の固相めっき方法において用いられる
パルス電圧および矩形波電圧の波形。
FIG. 7 shows waveforms of a pulse voltage and a rectangular wave voltage used in the solid phase plating method of the present invention.

【符号の説明】[Explanation of symbols]

1 被めっき体 2 保護用筒体 3 固体電解質 4 陽極 5 加熱筒 6 高温流体入口 7 高温流体出口 DESCRIPTION OF SYMBOLS 1 Object to be plated 2 Protective cylinder 3 Solid electrolyte 4 Anode 5 Heating cylinder 6 High temperature fluid inlet 7 High temperature fluid outlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イオン導電性の無機化合物またはイオン導
電性の高分子化合物からなる固体電解質を被めっき体に
当接し、前記被めっき体を陰極に、かつ前記固体電解質
にめっき金属と同じ材質からなる陽極を接続し、前記陰
極と前記陽極との間に電圧を印加することを特徴とする
固相めっき方法。
1. A solid electrolyte comprising an ion-conductive inorganic compound or an ion-conductive polymer compound is brought into contact with an object to be plated, the object to be plated is used as a cathode, and the solid electrolyte is made of the same material as the plating metal. And a voltage is applied between the cathode and the anode.
【請求項2】前記被めっき体は、金属、プラスチック、
およびセラミックスである特許請求の範囲第1項に記載
の固相めっき方法。
2. The object to be plated is metal, plastic,
The solid phase plating method according to claim 1, wherein the solid phase plating method is ceramics.
【請求項3】前記電圧は、直流電圧、パルス電圧または
矩形波電圧である特許請求の範囲第1項ないし第2項の
いずれかに記載の固相めっき方法。
3. The solid phase plating method according to claim 1, wherein the voltage is a DC voltage, a pulse voltage or a rectangular wave voltage.
【請求項4】前記電圧は、外部電源電圧である特許請求
の範囲第1項ないし第3項のいずれかに記載の固相めっ
き方法。
4. The solid phase plating method according to claim 1, wherein the voltage is an external power supply voltage.
【請求項5】前記固体電解質の被めっき体への当接は、
前記固体電解質に荷重または圧力を負荷してなされるも
のである特許請求の範囲第1項ないし第4項のいずれか
に記載の固相めっき方法。
5. The contact of the solid electrolyte with the object to be plated,
The solid phase plating method according to any one of claims 1 to 4, which is performed by applying a load or a pressure to the solid electrolyte.
JP13891792A 1992-05-29 1992-05-29 Solid-phase plating method Expired - Lifetime JP2671714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13891792A JP2671714B2 (en) 1992-05-29 1992-05-29 Solid-phase plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13891792A JP2671714B2 (en) 1992-05-29 1992-05-29 Solid-phase plating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62324720A Division JPH01165786A (en) 1987-12-22 1987-12-22 Solid phase plating method

Publications (2)

Publication Number Publication Date
JPH05148681A true JPH05148681A (en) 1993-06-15
JP2671714B2 JP2671714B2 (en) 1997-10-29

Family

ID=15233168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13891792A Expired - Lifetime JP2671714B2 (en) 1992-05-29 1992-05-29 Solid-phase plating method

Country Status (1)

Country Link
JP (1) JP2671714B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167582A1 (en) * 2014-05-02 2015-11-05 Oceanit Laboratories, Inc. Electrochemical deposition of metal on surfaces
US20160177464A1 (en) * 2013-08-07 2016-06-23 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and film deposition method
US20160201210A1 (en) * 2013-08-20 2016-07-14 Toyota Jidosha Kabushiki Kaisha Film formation system and film formation method for forming metal film
US9677185B2 (en) 2013-03-25 2017-06-13 Toyota Jidosha Kabushiki Kaisha Film formation apparatus and film formation method for forming metal film
US9890464B2 (en) 2012-01-12 2018-02-13 Oceanit Laboratories, Inc. Solid electrolyte/electrode assembly for electrochemical surface finishing applications
US10151042B2 (en) 2015-03-11 2018-12-11 Toyota Jidosha Kabushiki Kaisha Coating forming device and coating forming method for forming metal coating
US10240244B2 (en) 2014-03-12 2019-03-26 Oceanit Laboratories, Inc. Portable, liquid free, electroless, electrochemical deposition of metal on conductive and nonconductive surfaces
US10920331B2 (en) 2013-08-07 2021-02-16 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and metal film deposition method
US11230781B1 (en) 2020-07-29 2022-01-25 Toyota Jidosha Kabushiki Kaisha Method for forming silver film
WO2022122281A1 (en) * 2020-12-11 2022-06-16 Itc Intercircuit Electronic Gmbh Method for filling at least one hole formed in a printed circuit board, printed circuit board filled in this way, and vehicle having such a printed circuit board
US11466355B1 (en) 2016-07-20 2022-10-11 Oceanit Laboratories, Inc. Submerged underwater electroless, electrochemical deposition of metal on conductive and nonconductive surfaces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138892A (en) * 1979-04-16 1980-10-30 Tokyo Shibaura Electric Co Method of forming thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138892A (en) * 1979-04-16 1980-10-30 Tokyo Shibaura Electric Co Method of forming thin film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890464B2 (en) 2012-01-12 2018-02-13 Oceanit Laboratories, Inc. Solid electrolyte/electrode assembly for electrochemical surface finishing applications
US9677185B2 (en) 2013-03-25 2017-06-13 Toyota Jidosha Kabushiki Kaisha Film formation apparatus and film formation method for forming metal film
US10920331B2 (en) 2013-08-07 2021-02-16 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and metal film deposition method
US9840786B2 (en) * 2013-08-07 2017-12-12 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and film deposition method
US20160177464A1 (en) * 2013-08-07 2016-06-23 Toyota Jidosha Kabushiki Kaisha Film deposition device of metal film and film deposition method
US20160201210A1 (en) * 2013-08-20 2016-07-14 Toyota Jidosha Kabushiki Kaisha Film formation system and film formation method for forming metal film
US9909226B2 (en) * 2013-08-20 2018-03-06 Toyota Jidosha Kabushiki Kaisha Film formation system and film formation method for forming metal film
US10240244B2 (en) 2014-03-12 2019-03-26 Oceanit Laboratories, Inc. Portable, liquid free, electroless, electrochemical deposition of metal on conductive and nonconductive surfaces
WO2015167582A1 (en) * 2014-05-02 2015-11-05 Oceanit Laboratories, Inc. Electrochemical deposition of metal on surfaces
US10151042B2 (en) 2015-03-11 2018-12-11 Toyota Jidosha Kabushiki Kaisha Coating forming device and coating forming method for forming metal coating
US11466355B1 (en) 2016-07-20 2022-10-11 Oceanit Laboratories, Inc. Submerged underwater electroless, electrochemical deposition of metal on conductive and nonconductive surfaces
US11230781B1 (en) 2020-07-29 2022-01-25 Toyota Jidosha Kabushiki Kaisha Method for forming silver film
DE102021114445A1 (en) 2020-07-29 2022-02-03 Toyota Jidosha Kabushiki Kaisha METHOD OF FORMING A SILVER FILM
WO2022122281A1 (en) * 2020-12-11 2022-06-16 Itc Intercircuit Electronic Gmbh Method for filling at least one hole formed in a printed circuit board, printed circuit board filled in this way, and vehicle having such a printed circuit board

Also Published As

Publication number Publication date
JP2671714B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
US6197178B1 (en) Method for forming ceramic coatings by micro-arc oxidation of reactive metals
JPH01165786A (en) Solid phase plating method
TW425665B (en) Method and apparatus for planarization of metallized semiconductor wafers using a bipolar electrode assembly
JP2671714B2 (en) Solid-phase plating method
TW592858B (en) Electrolytic processing device and substrate processing apparatus
US8795482B1 (en) Selective electrochemical accelerator removal
CN103521910A (en) Method for target material component welding
US6797135B2 (en) Electroplating apparatus
CN111394771B (en) Method for preparing coating on surface of copper and copper alloy and copper product
US3827953A (en) Process for coating refractory metals with oxidation-resistant metals
US7078340B2 (en) Metal deposit process
US4302316A (en) Non-contacting technique for electroplating X-ray lithography
JPH06507678A (en) Processing of A1 sheet
US2969295A (en) Chemical gold plating
US20100200417A1 (en) Method and Apparatus for Electrodeposition in Metal Acoustic Resonators
KR100465465B1 (en) Electrolytic plating device and method of the same
US5183553A (en) Method of forming a high temperature resistant copper coating on an inorganic dielectric
GB2111530A (en) Selective electro plating or etching process
WO2003010357A1 (en) Electroconductive structure and electroplating method using the structure
US3600294A (en) Electrocrystallizer
JPH04157197A (en) Electrolytic treatment of surface of metallic material and electrode used the same
JPS63317699A (en) Pretreatment of metallic plating
JP3525618B2 (en) Plating method for metal substrate
CN109576766A (en) A kind of electrophoresis-electrodeposited nanocrystalline TiO2Enhance the method for Sn base micro convex point
US7247557B2 (en) Method and composition to minimize dishing