JPH05148383A - Polysulfone-based porous film and its preparation - Google Patents

Polysulfone-based porous film and its preparation

Info

Publication number
JPH05148383A
JPH05148383A JP5825892A JP5825892A JPH05148383A JP H05148383 A JPH05148383 A JP H05148383A JP 5825892 A JP5825892 A JP 5825892A JP 5825892 A JP5825892 A JP 5825892A JP H05148383 A JPH05148383 A JP H05148383A
Authority
JP
Japan
Prior art keywords
polysulfone
film
porous membrane
pore diameter
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5825892A
Other languages
Japanese (ja)
Inventor
Koji Takehata
幸治 竹端
Hiroshi Takahashi
洋 高橋
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5825892A priority Critical patent/JPH05148383A/en
Publication of JPH05148383A publication Critical patent/JPH05148383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To prepare the subject film excellent in the resistances to heat, acid, and alkali and suitable for a filtration membrane a separator of a cell, etc., by dissolving a polysulfone polymer in a specific solvent and forming the resulting soln. into a film in a coagulating bath. CONSTITUTION:A polysulfone polymer (pref. one having repeating units of the formula) is dissolved in gamma-butyrolactone or sulfonate in a concn. of 5-15wt.%. The resulting soln. is formed into a film a coagulating liq. consisting mainly of water in a coagulating bath. The obtd. film has a pore diameter (d) calculated from the means pore diameter pressure of 0.5mum or lower, a thickness (D) of the dense layer of 20mum or lower, an air passability expressed by a Gurley value (A) of 100sec/50cc or lower, and a void content (phi) of 40-95vol%, is excellent in the resistances to heat, acid, and alkali, and effectively prevents the formation of dendrite when used as a separator of a cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濾過膜、電池用セパレ
ータ、徐放性担体、特に好適な耐熱性、耐酸性、耐アル
カリ性、耐薬品性に優れた新規なポリスルホン系多孔質
膜及びその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a filtration membrane, a battery separator, a sustained release carrier, and a novel polysulfone-based porous membrane having excellent heat resistance, acid resistance, alkali resistance and chemical resistance, which are particularly suitable. Manufacturing method

【0002】[0002]

【従来の技術】従来よりポリスルホン樹脂とノニオン界
面活性剤を親水性有機溶剤に溶解した重合体溶液を、水
等の非溶剤中に浸漬してノニオン活性剤で処理されたポ
リスルホン樹脂の微孔性膜を再生してアルカリ電池用セ
パレータを製造することが特開平2−276153号公
報に提案されている。
2. Description of the Related Art Conventionally, a polymer solution prepared by dissolving a polysulfone resin and a nonionic surfactant in a hydrophilic organic solvent is soaked in a non-solvent such as water, and treated with the nonionic surfactant to give a microporous property. Japanese Unexamined Patent Publication (Kokai) No. 2-276153 proposes that a membrane is regenerated to produce an alkaline battery separator.

【0003】[0003]

【発明が解決しようとする課題】前記の方法によって得
られるアルカリ電池用セパレータは、電池用セパレータ
としてのセパレータフィルムの界面抵抗は小さい。しか
しながらアルカリ電池、特にニッケル−亜鉛電池等の樹
枝状電析(デンドライト)が発生する系のセパレータと
して用いた場合は、緻密層(微細孔層)厚みDが20μ
mより薄いためにデンドライト発生の抑制が充分ではな
く、サイクル寿命が数百回と短く、実用上電池寿命が短
いという問題があった。
In the alkaline battery separator obtained by the above method, the interface resistance of the separator film as the battery separator is small. However, when it is used as a separator of a system in which dendritic electrodeposition (dendrites) occurs in alkaline batteries, especially nickel-zinc batteries, etc., the dense layer (micropore layer) thickness D is 20 μm.
Since the thickness is thinner than m, the dendrite generation is not sufficiently suppressed, and the cycle life is short, such as several hundreds of cycles, and there is a problem that the battery life is short in practical use.

【0004】デンドライトの発生を抑えるためには、多
孔質膜の孔径を小さくし、あるいは膜厚を厚くすること
が望ましいと考えられるが、そうすると逆に膜の抵抗が
増大し、イオンの伝導度やガスの移動度が低下してしま
うため、この両者を満足する高性能セパレータの出現が
期待されている。
In order to suppress the generation of dendrites, it is considered desirable to reduce the pore diameter of the porous membrane or to increase the membrane thickness, but on the contrary, the resistance of the membrane increases and the conductivity of ions and Since the mobility of gas decreases, it is expected that a high-performance separator satisfying both of them will appear.

【0005】本発明者等は、これらの問題点を解決せん
と鋭意検討した結果、新規なポリスルホン系多孔質膜及
びその製造方法を見い出し、本発明を完成するに至っ
た。
As a result of intensive investigations aimed at solving these problems, the present inventors have found a novel polysulfone-based porous membrane and a method for producing the same, and completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、ポリス
ルホン系重合体からなり、平均孔径圧力からの換算孔径
d、緻密層の厚みD、透気度を示すガーレー値A、空孔
率φが次式を満足するポリスルホン系多孔質膜にある。 d≦0.5 (μm) …(1) 20≦D (μm) …(2) A≦100 (sec/50cc) …(3) 40≦φ≦95 (体積%) …(4)
Means for Solving the Problems The gist of the present invention is composed of a polysulfone-based polymer and has a pore diameter d converted from an average pore diameter pressure, a dense layer thickness D, a Gurley value A indicating air permeability, and a porosity φ. Is in a polysulfone-based porous membrane satisfying the following formula. d ≦ 0.5 (μm) (1) 20 ≦ D (μm) (2) A ≦ 100 (sec / 50cc) (3) 40 ≦ φ ≦ 95 (volume%) (4)

【0007】更に、ポリスルホン系重合体を5〜15重
量%γ−ブチロラクトン又はスルホランに溶解後、水を
主成分とする凝固浴中で製膜してポリスルホン系多孔質
膜を製造することにある。
Further, the polysulfone-based polymer is dissolved in 5 to 15% by weight of γ-butyrolactone or sulfolane and then formed into a film in a coagulation bath containing water as a main component to produce a polysulfone-based porous film.

【0008】本発明のポリスルホン系重合体は、繰り返
し単位構造の中に
The polysulfone polymer of the present invention has a repeating unit structure

【化1】 を持つものであれば使用可能であり、中でも下記一般式
で表されるものが好適に用いられる。
[Chemical 1] Any compound having the formula can be used, and among them, those represented by the following general formula are preferably used.

【化2】 本発明の多孔質膜は、網目状の空隙が三次元的に、相互
に連通した構造を有している。
[Chemical 2] The porous membrane of the present invention has a structure in which mesh-like voids are three-dimensionally communicated with each other.

【0009】本発明において平均孔径圧力からの換算孔
径dが、0.5μmを超える場合は、バッテリーセパレ
ータとして用いたときにデンドライトの阻止が充分でな
くなるという問題があり好ましくない。dは、0.5μ
m以下であることが好ましく、0.3μm以下であるこ
とがより好ましく、0.1μm以下であることが特に好
ましい。
In the present invention, when the pore size d converted from the average pore size pressure exceeds 0.5 μm, there is a problem that dendrites are not sufficiently blocked when used as a battery separator, which is not preferable. d is 0.5μ
It is preferably m or less, more preferably 0.3 μm or less, and particularly preferably 0.1 μm or less.

【0010】本発明において緻密層(微細孔層)とは、
三次元網目構造が連続的に形成された層のうち、網目の
空隙についてこれを円に近似した場合の換算直径をD0
として0.1μmの単位で求めた際、D0 が0.5μm
以下である部分が少なくとも一方の膜表面から内部に連
続的に形成された層をいう。
In the present invention, the dense layer (microporous layer) means
Of the layers in which the three-dimensional network structure is continuously formed, the converted diameter when the network void is approximated to a circle is D 0
As a unit of 0.1 μm, D 0 is 0.5 μm
The following part refers to a layer in which at least one film surface is continuously formed inside.

【0011】緻密層(微細孔層)の厚みDが20μm未
満の場合は、バッテリーセパレータとして用いたときに
デンドライトの阻止が充分でなく、電池寿命の一つの指
標であるサイクル寿命が実用上不充分であるという問題
があり好ましくない。
When the thickness D of the dense layer (micropore layer) is less than 20 μm, dendrites are not sufficiently blocked when used as a battery separator, and the cycle life which is one of the battery life is practically insufficient. It is not preferable because there is a problem that

【0012】Dは20μm以上であることが好ましく、
60μm以上であることがより好ましく、100μm以
上であることが特に好ましい。
D is preferably 20 μm or more,
The thickness is more preferably 60 μm or more, and particularly preferably 100 μm or more.

【0013】膜の構造としては、全体が緻密層(微細孔
層)のもの又は機械的強度の保持、電解液の保液能など
を満足させるために、緻密層(微細孔層)に隣接した孔
径の大きな部分(支持層)とからなるものでもよい。
The structure of the membrane is a dense layer (microporous layer) as a whole or adjacent to the dense layer (microporous layer) in order to maintain mechanical strength and retain electrolyte. It may be composed of a portion having a large pore diameter (support layer).

【0014】全体の膜厚が厚くなれば、ガーレー値Aの
値が増加するという問題があるものの、緻密層(微細孔
層)の厚みDより厚く、100sec/50cc以下の条件を
満足する膜厚であれば良い。
Although there is a problem that the Gurley value A increases as the overall film thickness increases, the film thickness is greater than the thickness D of the dense layer (micropore layer) and satisfies the condition of 100 sec / 50 cc or less. If it is good.

【0015】本発明のガーレー値Aは膜の平均孔径圧力
からの換算孔径d、緻密層(微細孔層)厚みD、空孔率
φ等に依存する。ガーレー値Aが100sec/50ccより
大きいと膜中の物質移動の際の抵抗が大きいため好まし
くない。
The Gurley value A of the present invention depends on the pore diameter d converted from the average pore diameter pressure of the membrane, the dense layer (fine pore layer) thickness D, the porosity φ and the like. When the Gurley value A is larger than 100 sec / 50 cc, resistance during mass transfer in the film is large, which is not preferable.

【0016】本発明の空孔率φは多孔質膜の見かけの体
積に占める空孔体積の割合を、百分率で表したものであ
る。
The porosity φ of the present invention is a ratio of the volume of pores to the apparent volume of the porous membrane, expressed as a percentage.

【0017】本発明の空孔率φは40〜95体積%であ
り、40体積%より小さいと種々の物質移動の際に抵抗
が著しく大きいため好ましくなく、95体積%より大き
いと機械的強度が極端に低下するため好ましくない。よ
り好ましい空孔率は通常60〜80容積%程度である。
The porosity φ of the present invention is 40 to 95% by volume. If it is less than 40% by volume, the resistance is remarkably large during various mass transfer, which is not preferable, and if it is more than 95% by volume, the mechanical strength is large. It is not preferable because it extremely decreases. A more preferable porosity is usually about 60 to 80% by volume.

【0018】以下、本発明のポリスルホン系多孔質膜の
製造方法を説明する。まずポリスルホン系重合体を溶媒
に溶解して重合体溶液を調整する。この場合のポリスル
ホン系重合体の良溶媒としては、凝固浴に浸漬した場合
に凝固液と置換されるもの、すなわち凝固液と相溶性の
ある極性溶媒を使用することが好ましい。
The method for producing the polysulfone type porous membrane of the present invention will be described below. First, a polysulfone-based polymer is dissolved in a solvent to prepare a polymer solution. In this case, it is preferable to use, as the good solvent for the polysulfone-based polymer, a solvent that is replaced with the coagulating liquid when immersed in the coagulating bath, that is, a polar solvent that is compatible with the coagulating liquid.

【0019】例えば、ジオキサン、ジメチルホルムアミ
ド、ジメチルアセトアミド、N−メチル−2−ピロリド
ン、モルホリン、γ−ブチロラクトン、スルホランが挙
げられるが、本発明の多孔質膜を得る場合は、γ−ブチ
ロラクトンがより好ましく、スルホランが特に好まし
い。
Examples thereof include dioxane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, morpholine, γ-butyrolactone and sulfolane, but γ-butyrolactone is more preferable for obtaining the porous membrane of the present invention. , Sulfolane is particularly preferred.

【0020】又本発明の構造を維持する範囲内であれ
ば、重合体溶液に第3成分を適宜加えてもよい。重合体
溶液のポリスルホン系重合体濃度は5〜15重量%が好
適であり、15重量%を超えると得られる多孔質膜中の
物質移動の抵抗が実用的な意味を持たない程大きくな
り、また5重量%未満の濃度では、十分な機械的強度を
持った多孔質膜が得られない。
Further, the third component may be appropriately added to the polymer solution as long as the structure of the present invention is maintained. The polysulfone-based polymer concentration of the polymer solution is preferably 5 to 15% by weight, and if it exceeds 15% by weight, the resistance to mass transfer in the obtained porous membrane becomes so large that it has no practical meaning. If the concentration is less than 5% by weight, a porous film having sufficient mechanical strength cannot be obtained.

【0021】凝固浴の組成としては、水、メタノール、
エタノール、ブタノールなどのアルコール類、エチレン
グリコール、ジエチレングリコールなどのグリコール
類、エーテル、n−ヘキサン、n−ヘプタン等の脂肪族
炭化水素類、グリセリン等のグリセロール類などポリマ
ーを溶解しないものなら何でも用いることができるが、
本発明の多孔質膜を得る場合の凝固浴は水がより好まし
く、水とグリセリンを混合したものが、特に好ましい。
又本発明の凝固の作用を阻害しない範囲であれば、第3
成分を適宜加えてもよい。
The composition of the coagulation bath is water, methanol,
Any alcohol, such as ethanol and butanol, glycols such as ethylene glycol and diethylene glycol, ethers, aliphatic hydrocarbons such as n-hexane and n-heptane, glycerols such as glycerin, can be used as long as it does not dissolve the polymer. I can, but
Water is more preferable as the coagulation bath for obtaining the porous membrane of the present invention, and a mixture of water and glycerin is particularly preferable.
If it is within the range that does not inhibit the coagulation action of the present invention,
You may add a component suitably.

【0022】本発明の多孔質膜は単独で用いても、複数
枚積層して用いてもよい。また、不織布やフィルム等他
の多孔質体を支持層あるいは活性層として積層してもよ
い。
The porous membrane of the present invention may be used alone or as a laminate of a plurality of sheets. Further, another porous material such as a nonwoven fabric or a film may be laminated as a support layer or an active layer.

【0023】[0023]

【実施例】以下実施例により本発明を具体的に説明す
る。
The present invention will be specifically described with reference to the following examples.

【0024】「平均孔径圧力からの換算孔径d」はAS
TM F316に記載されているエアーフロー法によっ
て測定したものであり、膜面を貫通した流路のうちの最
小孔径の平均値を与えるものである。具体的には直径2
5mmに打ち抜いた多孔質膜をミネラルオイルに5分間浸
漬し、次いでメンブランフィルターホルダーに組み込
み、多孔質膜の片側に20℃の清浄空気を毎分1kg/cm
2 で直線的に圧力を増加させながら加圧供給して、多孔
質膜の反対側にエアーが透過しはじめ、その後エアー透
過量が増加してミネラルオイルに浸漬しない状態でのエ
アー透過量の1/2に達した時の差圧を平均孔径圧力と
した。
"Converted pore size d from average pore size pressure" is AS
It is measured by the air flow method described in TMF316 and gives the average value of the minimum pore diameters of the channels penetrating the membrane surface. Specifically, diameter 2
A 5 mm punched porous membrane is dipped in mineral oil for 5 minutes, then installed in a membrane filter holder, and one side of the porous membrane is filled with clean air at 20 ° C per minute 1 kg / cm.
By supplying pressure while increasing the pressure linearly in 2 , the air starts to permeate to the opposite side of the porous membrane, then the amount of air permeation increases and the amount of air permeation is 1 when it is not immersed in mineral oil. The differential pressure when it reached / 2 was defined as the average pore diameter pressure.

【0025】そして次式から平均孔径dを得た。The average pore diameter d was obtained from the following equation.

【数1】 ただしγは液体の表面張力(ミネラルオイルでは34dy
ne/cm)、θは接触角、ΔPは平均孔径圧力であり、co
s θ=1とした。
[Equation 1] However, γ is the surface tension of liquid (34dy for mineral oil)
ne / cm), θ is the contact angle, ΔP is the average pore diameter pressure, co
s θ = 1.

【0026】「緻密層の厚みD」は、走査型電子顕微鏡
により観察測定することにより求めた。
The "dense layer thickness D" was determined by observing and measuring with a scanning electron microscope.

【0027】「透気度を示すガーレー値A」は、JIS
P8117に記載されている透気度試験法によって測
定される値であって、直径47mmに打ち抜いた多孔質膜
を透気度試験器(B型)に組み込み、面積645mm2
空気50ccが通過する時間(sec )を測定することによ
って求めた。
"Gurley value A indicating air permeability" is based on JIS
A value measured by the air permeability test method described in P8117, in which a porous membrane punched out to a diameter of 47 mm is installed in an air permeability tester (B type), and an area of 645 mm 2 is passed by 50 cc of air. It was determined by measuring the time (sec).

【0028】「空孔率」は水銀ポロシメータ法によって
測定した。「電池のサイクル寿命」の測定は次の方法に
よった。公知の水酸化ニッケルを活物質とする焼結式ニ
ッケルの正極と亜鉛を活物質とする亜鉛負極との間に、
多孔質膜を配してアルカリ亜鉛電池を作製した。尚電解
液としては9規定の水酸化カリウム溶液に1モル濃度の
酸化亜鉛粉末を加えたものを用いた。
The "porosity" was measured by the mercury porosimeter method. The "battery cycle life" was measured by the following method. Between a known sintered nickel positive electrode having nickel hydroxide as an active material and a zinc negative electrode having zinc as an active material,
An alkaline zinc battery was prepared by arranging a porous membrane. The electrolytic solution used was a 9N potassium hydroxide solution to which 1 molar zinc oxide powder was added.

【0029】アルカリ亜鉛蓄電池のサイクル寿命の測定
は、上述の蓄電池を0.17Cで4時間充電した後、
0.3Cで放電し、電池電圧が1.3Vに達した時点で
放電を停止するという充放電条件の下で連続サイクル試
験を行い、放電容量が初期容量の75%に達した時点で
のサイクル数で示した。「部」は「重量部」を示す。
The cycle life of the alkaline zinc battery was measured by charging the above battery at 0.17 C for 4 hours,
A continuous cycle test was performed under the charge and discharge conditions of discharging at 0.3C and stopping the discharge when the battery voltage reached 1.3V, and the cycle when the discharge capacity reached 75% of the initial capacity. It is shown by the number. "Part" means "part by weight".

【0030】実施例1 ポリスルホン重合体(日産化学工業(株)社製、Ude
l P−3500)7部をγ−ブチロラクトン93部に
溶解することによって重合体溶液を調整し、続いてフィ
ルム作製用アプリケータを用いてガラス板上に厚み18
0μmに流延し、重合体溶液の薄膜状物を形成させた。
Example 1 Polysulfone polymer (manufactured by Nissan Chemical Industries, Ltd., Ude
l P-3500) 7 parts in γ-butyrolactone 93 parts to prepare a polymer solution, followed by a film-making applicator to give a thickness of 18
It was casted to 0 μm to form a thin film of the polymer solution.

【0031】次いで凝固浴中の25℃の水に300秒間
浸漬して重合体を凝固させた。次に80℃の温水に浸漬
し洗浄することにより残存溶媒等を除去した後、60℃
で1時間熱風乾燥して多孔質膜を得た。物性を表1に示
した。
Then, the polymer was coagulated by immersing it in water at 25 ° C. in a coagulation bath for 300 seconds. Next, after removing the residual solvent by immersing in warm water of 80 ° C and washing, 60 ° C
And dried with hot air for 1 hour to obtain a porous membrane. The physical properties are shown in Table 1.

【0032】実施例2〜8 ポリスルホン重合体とγ−ブチロラクトンの組成比を
〔8/92〕(実施例2)、〔9/91〕(実施例
3)、〔10/90〕(実施例4)、〔11/89〕
(実施例5)、〔12/88〕(実施例6)、〔13/
87〕(実施例7)、〔14/86〕(実施例8)とし
たことを除き、実施例1と全く同様にして多孔質膜を製
造した。物性を表1に示した。
Examples 2 to 8 The composition ratio of the polysulfone polymer and γ-butyrolactone was [8/92] (Example 2), [9/91] (Example 3), [10/90] (Example 4). ), [11/89]
(Example 5), [12/88] (Example 6), [13 /
87] (Example 7) and [14/86] (Example 8), except that the same procedure as in Example 1 was carried out to produce a porous membrane. The physical properties are shown in Table 1.

【0033】実施例9〜11 凝固浴中の水温を〔0℃〕(実施例9)、〔60℃〕
(実施例10)、〔90℃〕(実施例11)としたこと
を除き、実施例4と全く同様にして多孔質膜を製造し
た。物性を表1に示した。
Examples 9 to 11 The water temperature in the coagulation bath was [0 ° C] (Example 9), [60 ° C].
A porous membrane was produced in exactly the same manner as in Example 4, except that (Example 10) and [90 ° C] (Example 11) were used. The physical properties are shown in Table 1.

【0034】実施例12 ポリスルホン重合体(日産化学工業(株)社製、Ude
l P−3500)8部をスルホラン92部に溶解する
ことによって重合体溶液を調整し、続いてフィルム作製
用アプリケータを用いてガラス板上に厚み250μmに
流延し、重合体溶液の薄膜状物を形成させた。
Example 12 Polysulfone polymer (manufactured by Nissan Chemical Industries, Ltd., Ude
The polymer solution was prepared by dissolving 8 parts of 1 P-3500) in 92 parts of sulfolane, and then cast on a glass plate to a thickness of 250 μm using an applicator for making a film to form a thin film of the polymer solution. An object was formed.

【0035】次いで凝固浴中の25℃の水に300秒間
浸漬して重合体を凝固させた。次に80℃の温水に浸漬
し洗浄することにより残存溶媒等を除去した後、60℃
で1時間熱風乾燥して多孔質膜を得た。物性を表1に示
した。
Then, the polymer was coagulated by immersing it in water at 25 ° C. in a coagulation bath for 300 seconds. Next, after removing the residual solvent by immersing in warm water of 80 ° C and washing, 60 ° C
And dried with hot air for 1 hour to obtain a porous membrane. The physical properties are shown in Table 1.

【0036】実施例13〜14 ポリスルホン重合体とスルホランの組成比を〔10/9
0〕(実施例13)、〔12/88〕(実施例14)と
したことを除き、実施例12と全く同様にして多孔質膜
を製造した。物性を表1に示した。
Examples 13 to 14 The composition ratio of polysulfone polymer and sulfolane was set to [10/9].
0] (Example 13) and [12/88] (Example 14), and a porous membrane was produced in exactly the same manner as in Example 12. The physical properties are shown in Table 1.

【0037】実施例15 ポリスルホン重合体(日産化学工業(株)社製、Ude
l P−3500)10部をスルホラン90部に溶解す
ることによって重合体溶液を調整し、続いてフィルム作
製用アプリケータを用いてガラス板上に厚み250μm
に流延し、重合体溶液の薄膜状物を形成させた。
Example 15 Polysulfone polymer (manufactured by Nissan Chemical Industries, Ltd., Ude
A polymer solution was prepared by dissolving 10 parts of 1P-3500) in 90 parts of sulfolane, and subsequently using a film-making applicator, a thickness of 250 μm on a glass plate.
To form a thin film of the polymer solution.

【0038】次いで凝固浴中の25℃の水/グリセリン
(75部/25部)に300秒間浸漬して重合体を凝固
させた。次に80℃の温水に浸漬し洗浄することにより
残存溶媒等を除去した後、60℃で1時間熱風乾燥して
多孔質膜を得た。物性を表1に示した。
The polymer was then coagulated by dipping it in water / glycerin (75 parts / 25 parts) at 25 ° C. in a coagulation bath for 300 seconds. Next, the residual solvent and the like were removed by immersing in warm water of 80 ° C and washing, and then dried with hot air at 60 ° C for 1 hour to obtain a porous membrane. The physical properties are shown in Table 1.

【0039】実施例16〜19 ポリスルホン重合体とスルホランの組成比を〔12/8
8〕(実施例16)、〔13/87〕(実施例17)、
〔14/86〕(実施例18)、〔15/85〕(実施
例19)としたことを除き、実施例15と全く同様にし
て多孔質膜を製造した。物性を表1に示した。
Examples 16 to 19 The composition ratio of polysulfone polymer and sulfolane was [12/8].
8] (Example 16), [13/87] (Example 17),
A porous membrane was produced in exactly the same manner as in Example 15, except that [14/86] (Example 18) and [15/85] (Example 19) were used. The physical properties are shown in Table 1.

【0040】実施例1〜19の膜は本発明が特定する式
(1)、(2)、(3)、(4)を総て満たしておりサ
イクル寿命も1000回以上と実用上充分なものであっ
た。
The membranes of Examples 1 to 19 all satisfy the formulas (1), (2), (3) and (4) specified by the present invention and have a cycle life of 1000 times or more, which is practically sufficient. Met.

【0041】比較例1 ポリスルホン重合体10部を、ジオキサン90部に溶解
することによって重合体溶液を調整し、続いてフィルム
作製用アプリケータを用いてガラス板上に厚み300μ
mに流延し、重合体溶液の薄膜状物を形成させた。次い
で凝固浴中の25℃の水に300秒間浸漬して重合体を
形成させた。
Comparative Example 1 A polymer solution was prepared by dissolving 10 parts of a polysulfone polymer in 90 parts of dioxane, and then using a film-making applicator, a glass plate having a thickness of 300 μm was prepared.
Then, it was cast into a thin film of a polymer solution. Then, it was immersed in water at 25 ° C. in a coagulation bath for 300 seconds to form a polymer.

【0042】次に80℃の温水に浸漬し、洗浄すること
により残存溶媒等を除去した後、60℃で1時間熱風乾
燥して多孔質膜を得た。物性を表1に示した。得られた
膜は、ガーレー値Aが高く、膜の抵抗が大きいためにイ
オンの伝導度やガスの移動度が低く、電池としての実用
的な性能が発現されなかった。
Next, the residual solvent and the like were removed by immersing in warm water at 80 ° C. and washing, and then dried with hot air at 60 ° C. for 1 hour to obtain a porous film. The physical properties are shown in Table 1. The obtained membrane had a high Gurley value A and a large resistance of the membrane, so the ion conductivity and the gas mobility were low, and practical performance as a battery was not exhibited.

【0043】比較例2〜5 溶媒を〔ジメチルホルムアミド〕(比較例2)、〔ジメ
チルアセトアミド〕(比較例3)、〔n−メチル−2−
ピロリドン〕(比較例4)、〔モルホリン〕(比較例
5)としたことを除き、比較例1と全く同様にして多孔
質膜を製造した。物性を表1に示した。得られた膜は、
緻密層(微細孔層)厚みDが20μm未満であり、サイ
クル寿命が230回未満と実用上不充分なものであっ
た。
Comparative Examples 2 to 5 The solvents were [dimethylformamide] (Comparative Example 2), [dimethylacetamide] (Comparative Example 3) and [n-methyl-2-].
Pyrrolidone] (Comparative Example 4) and [Morpholine] (Comparative Example 5) were used, and a porous membrane was produced in exactly the same manner as Comparative Example 1. The physical properties are shown in Table 1. The resulting membrane is
The dense layer (micropore layer) thickness D was less than 20 μm, and the cycle life was less than 230 times, which was insufficient for practical use.

【0044】比較例6 ポリスルホン重合体とγ−ブチロラクトンの組成比を
〔16/84〕としたことを除き、実施例1と全く同様
にして多孔質膜を製造した。物性を表1に示した。得ら
れた膜は、比較例1と同様にガーレー値が高く、電池と
しての実用的な性能が発現されなかった。
Comparative Example 6 A porous membrane was produced in exactly the same manner as in Example 1 except that the composition ratio of the polysulfone polymer and γ-butyrolactone was set to [16/84]. The physical properties are shown in Table 1. The obtained membrane had a high Gurley value as in Comparative Example 1, and did not exhibit practical performance as a battery.

【0045】比較例7 重合体溶液の組成を、ポリスルホン重合体/ジメチルホ
ルムアミド/ポリオキシエチレン(20)ソルビタンモ
ノラウレート(和光純薬社製)(15/82/3重量
比)としたことを除き、実施例1と全く同様にして、多
孔質膜を製造した。物性を表1に示した。
Comparative Example 7 The composition of the polymer solution was polysulfone polymer / dimethylformamide / polyoxyethylene (20) sorbitan monolaurate (manufactured by Wako Pure Chemical Industries, Ltd.) (15/82/3 weight ratio). Except for the above, a porous membrane was produced in exactly the same manner as in Example 1. The physical properties are shown in Table 1.

【0046】比較例8〜11 ポリオキシエチレン(20)ソルビタンラウレートを、
〔ポリオキシエチレン(20)ソルビタンモノオレエー
ト〕(比較例8)、〔ポリオキシエチレン(20)ソル
ビタンパルミテート〕(比較例9)、〔ポリオキシエチ
レン(20)ソルビタンモノステアレート〕(比較例1
0)、〔ポリオキシエチレン(20)ソルビタントリオ
レエート〕(比較例11)としたことを除き、比較例7
と全く同様にして多孔質膜を製造した。物性を表1に示
した。
Comparative Examples 8 to 11 Polyoxyethylene (20) sorbitan laurate
[Polyoxyethylene (20) sorbitan monooleate] (Comparative example 8), [Polyoxyethylene (20) sorbitan palmitate] (Comparative example 9), [Polyoxyethylene (20) sorbitan monostearate] (Comparative example 1
0), [polyoxyethylene (20) sorbitan trioleate] (Comparative Example 11), except that Comparative Example 7
A porous membrane was produced in exactly the same manner as in. The physical properties are shown in Table 1.

【0047】比較例7〜10の膜は、緻密層(微細孔
層)厚みDが総て20μm未満であり、サイクル寿命が
300回未満と実用上不充分なものであった。比較例1
1の膜はガーレー値Aが高く、電池としての実用的な性
能が発現されなかった。
The films of Comparative Examples 7 to 10 had a dense layer (microporous layer) thickness D of less than 20 μm in total and a cycle life of less than 300 times, which was not practically sufficient. Comparative Example 1
The film No. 1 had a high Gurley value A, and practical performance as a battery was not exhibited.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】本発明の多孔質膜は、耐熱性、耐酸性、
耐アルカリ性に優れており、電池用セパレータに用いる
場合はデンドライトの発生を効率的に抑制することがで
きる。
The porous membrane of the present invention has heat resistance, acid resistance, and
It has excellent alkali resistance and can effectively suppress the generation of dendrites when used as a battery separator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリスルホン系重合体からなり、平均孔
径圧力からの換算孔径d、緻密層の厚みD、透気度を示
すガーレー値A、空孔率φが次式を満足するポリスルホ
ン系多孔質膜。 d≦0.5 (μm) …(1) 20≦D (μm) …(2) A≦100 (sec/50cc) …(3) 40≦φ≦95 (体積%) …(4)
1. A polysulfone-based porous material comprising a polysulfone-based polymer and having a pore diameter d converted from an average pore diameter pressure, a dense layer thickness D, a Gurley value A indicating air permeability, and a porosity φ satisfying the following expressions: film. d ≦ 0.5 (μm) (1) 20 ≦ D (μm) (2) A ≦ 100 (sec / 50cc) (3) 40 ≦ φ ≦ 95 (volume%) (4)
【請求項2】 緻密層の厚みDがD≧60(μm)であ
ることを特徴とする請求項1のポリスルホン系多孔質
膜。
2. The polysulfone-based porous membrane according to claim 1, wherein the dense layer has a thickness D of D ≧ 60 (μm).
【請求項3】 ポリスルホン系重合体を5〜15重量%
γ−ブチロラクトンに溶解後、水を主成分とする凝固浴
中で製膜することを特徴とするポリスルホン系多孔質膜
の製造方法。
3. A polysulfone-based polymer is contained in an amount of 5 to 15% by weight.
A method for producing a polysulfone-based porous film, which comprises dissolving the film in γ-butyrolactone and then forming the film in a coagulation bath containing water as a main component.
【請求項4】 ポリスルホン系重合体をスルホランに溶
解後、水を主成分とする凝固浴中で製膜することを特徴
とするポリスルホン系多孔質膜の製造方法。
4. A method for producing a polysulfone-based porous membrane, which comprises dissolving the polysulfone-based polymer in sulfolane and then forming the membrane in a coagulation bath containing water as a main component.
JP5825892A 1991-10-03 1992-03-16 Polysulfone-based porous film and its preparation Pending JPH05148383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5825892A JPH05148383A (en) 1991-10-03 1992-03-16 Polysulfone-based porous film and its preparation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-256717 1991-10-03
JP25671791 1991-10-03
JP5825892A JPH05148383A (en) 1991-10-03 1992-03-16 Polysulfone-based porous film and its preparation

Publications (1)

Publication Number Publication Date
JPH05148383A true JPH05148383A (en) 1993-06-15

Family

ID=26399308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5825892A Pending JPH05148383A (en) 1991-10-03 1992-03-16 Polysulfone-based porous film and its preparation

Country Status (1)

Country Link
JP (1) JPH05148383A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029478A1 (en) * 1996-12-31 1998-07-09 Althin Medical, Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
EP0946250A1 (en) * 1996-11-12 1999-10-06 Whatman Inc. Hydrophilic polymeric phase inversion membrane
JPH11310658A (en) * 1998-04-27 1999-11-09 Ube Ind Ltd Polyimide porous membrane and its production
US6218441B1 (en) 1997-09-18 2001-04-17 Timothy B. Meluch Melt-spun polysulfone semipermeable membranes and methods for making the same
WO2004043666A1 (en) * 2002-11-12 2004-05-27 Daicel Chemical Industries, Ltd. Process for producing porous film and porous film
JP2004175104A (en) * 2002-11-12 2004-06-24 Daicel Chem Ind Ltd Producing method for porous film, and porous film
US7144505B2 (en) 1997-09-18 2006-12-05 Baxter International Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
JP2007169661A (en) * 2007-03-22 2007-07-05 Ube Ind Ltd Polyimide porous film
WO2017043233A1 (en) * 2015-09-07 2017-03-16 Nok株式会社 Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
EP4389264A1 (en) * 2022-12-23 2024-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polymer casting solution for ultrafiltration membranes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0946250A1 (en) * 1996-11-12 1999-10-06 Whatman Inc. Hydrophilic polymeric phase inversion membrane
EP0946250A4 (en) * 1996-11-12 2000-01-05 Whatman Inc Hydrophilic polymeric phase inversion membrane
WO1998029478A1 (en) * 1996-12-31 1998-07-09 Althin Medical, Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
US6881337B2 (en) 1997-09-18 2005-04-19 Baxter International Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
US6218441B1 (en) 1997-09-18 2001-04-17 Timothy B. Meluch Melt-spun polysulfone semipermeable membranes and methods for making the same
US7144505B2 (en) 1997-09-18 2006-12-05 Baxter International Inc. Melt-spun polysulfone semipermeable membranes and methods for making the same
JPH11310658A (en) * 1998-04-27 1999-11-09 Ube Ind Ltd Polyimide porous membrane and its production
JP2004175104A (en) * 2002-11-12 2004-06-24 Daicel Chem Ind Ltd Producing method for porous film, and porous film
WO2004043666A1 (en) * 2002-11-12 2004-05-27 Daicel Chemical Industries, Ltd. Process for producing porous film and porous film
JP4530630B2 (en) * 2002-11-12 2010-08-25 ダイセル化学工業株式会社 Method for producing porous film and porous film
US7820281B2 (en) 2002-11-12 2010-10-26 Daicel Chemical Industries, Ltd. Process for producing porous film and porous film
JP2007169661A (en) * 2007-03-22 2007-07-05 Ube Ind Ltd Polyimide porous film
WO2017043233A1 (en) * 2015-09-07 2017-03-16 Nok株式会社 Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
EP4389264A1 (en) * 2022-12-23 2024-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polymer casting solution for ultrafiltration membranes
WO2024133524A1 (en) * 2022-12-23 2024-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Process for obtaining ultrafiltration polysulfone membranes

Similar Documents

Publication Publication Date Title
US8323815B2 (en) Optimized microporous structure of electrochemical cells
JP5424179B1 (en) Battery separator and battery separator manufacturing method
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
KR100525581B1 (en) Process for producing polymeric films for use as fuel cells
WO2013183584A1 (en) Ion permeable diaphragm
JP6030952B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
JP5981751B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
US20100166961A1 (en) Production of high porosity open-cell membranes
CN115029732A (en) Diaphragm for alkaline water electrolysis and preparation method and application thereof
JPH05148383A (en) Polysulfone-based porous film and its preparation
JP2992598B2 (en) Lithium ion battery
JP2004139867A (en) Composite porous film
JPH05262910A (en) Polysulfone foam having fine open-cell structure and its production
JP2013196839A (en) Nonaqueous secondary battery separator
JPH08273653A (en) Separator for alkaline battery and alkaline battery
CN113328202B (en) Honeycomb high-porosity and large-aperture lithium battery diaphragm and preparation method thereof
KR20110076333A (en) Method for manufacturing microfiltration membrane and high flux microfiltration membrane manufactured therefrom
CN114709558A (en) High-heat-resistance polyamide-imide composite diaphragm and preparation method thereof
JP2004204119A (en) Porous film and electrochemical element using the same
JP2981238B2 (en) Battery separator
JPH04239041A (en) Open-microcell fluoropolymer foam
KR102543046B1 (en) Method for preparing hydroxide conductive PBI membrane
CN117305904B (en) Composite slurry, porous diaphragm, preparation method and application thereof
JP2998884B2 (en) Hydrophilic polyolefin porous film and method for producing the same
CN116826312B (en) High-adhesion heat-resistant diaphragm and preparation method and application thereof