JPH05148273A - Copper complex and its production - Google Patents

Copper complex and its production

Info

Publication number
JPH05148273A
JPH05148273A JP3314943A JP31494391A JPH05148273A JP H05148273 A JPH05148273 A JP H05148273A JP 3314943 A JP3314943 A JP 3314943A JP 31494391 A JP31494391 A JP 31494391A JP H05148273 A JPH05148273 A JP H05148273A
Authority
JP
Japan
Prior art keywords
copper
synthesis
copper complex
solution
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3314943A
Other languages
Japanese (ja)
Other versions
JP2591873B2 (en
Inventor
Shinichi Koriyama
慎一 郡山
Takaaki Ikemachi
隆明 池町
Hisao Yamauchi
尚雄 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kyocera Corp
Sanyo Electric Co Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kyocera Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Kyocera Corp, Sanyo Electric Co Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP3314943A priority Critical patent/JP2591873B2/en
Priority to EP92310918A priority patent/EP0549148B1/en
Priority to DE69224605T priority patent/DE69224605T2/en
Publication of JPH05148273A publication Critical patent/JPH05148273A/en
Priority to US08/344,741 priority patent/US5504226A/en
Priority to US08/345,229 priority patent/US5578553A/en
Priority to US08/357,100 priority patent/US5563117A/en
Application granted granted Critical
Publication of JP2591873B2 publication Critical patent/JP2591873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a copper raw material for a sol-gel method to realize low- temperature synthesis or to give a desired shape both of which are original characteristics of the sol-gel method in synthesis of copper oxide superconductor by the sol-gel method. CONSTITUTION:A copper complex in which a copper atom is coordinated with a secondary butoxy group and a hydroxy group. The copper complex is produced by using an introduction group-exchanging reaction of a copper compound in a liquid phase with a secondary butoxide of other metal and a hydroxide of other metal or by using a partial hydrolysis reaction of secondary butoxide of copper.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅錯体及びその製造方
法に関し、特に、銅酸化物超電導体の製造に用いられる
銅錯体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper complex and a method for producing the same, and more particularly to a copper complex used for producing a copper oxide superconductor.

【0002】[0002]

【従来の技術】銅酸化物超電導体の合成には主として固
相反応法、液相反応法(ゾルゲル法、共沈法)、気相反
応法(スパッタ法、蒸着法、CVD法)の3つがある。
固相反応法は、プロセスが単純で合成が容易であり、液
相反応法は低温での合成、バルク、フィルム、ファイバ
ー等への形状付与の可能性を有している。また、気相反
応法は薄膜の形成が可能である。このように3つの合成
方法はそれぞれに特徴を有しており、目的に応じて使い
分けられている。
2. Description of the Related Art There are three main methods for synthesizing a copper oxide superconductor: a solid phase reaction method, a liquid phase reaction method (sol-gel method, coprecipitation method) and a gas phase reaction method (sputtering method, vapor deposition method, CVD method). is there.
The solid-phase reaction method has a simple process and is easy to synthesize, and the liquid-phase reaction method has a possibility of synthesizing at low temperature and giving shape to bulk, film, fiber and the like. Further, the gas phase reaction method can form a thin film. As described above, each of the three synthesizing methods has its own characteristics, and is properly used according to the purpose.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、液相反
応法においては、その特徴である低温合成あるいは形状
付与が充分には実現されていない。例えば、低温合成に
ついては、銅酸化物超電導体の1つである124型超電
導体(YBa2Cu48)の合成が挙げられている。こ
の124型超電導体(YBa2Cu48)(Natur
e Vol.336(1988) p660)は80K
級の高温超電導体であるが、そのYの一部をCaで置換
することによりTcが90Kまで上昇する(Natur
eVol.341(1989) p660)ことが報告
されている。このCaを含む124型超電導体は、高圧
酸素下で合成されたものであるが、Tcが比較的高く、
熱的にも安定であり、実用上重要な材料であると考えら
れる。しかし、その合成は高圧酸素下での処理を必要と
し、合成上の困難があった。最近、共沈法を用いてCa
を含む124型超電導体を常圧下で、比較的低温(82
0℃)で合成した例(Physica C Vol.1
73(1991) p208)が報告された。しかしな
がら、そのTcは85KとCaドーブによるTcの上昇
は小さく、超電導転移もブロードであった。この原因
は、820℃という温度がCaを含む124型超電導体
の合成には高すぎたためと考えられる。
However, in the liquid phase reaction method, the characteristic low temperature synthesis or shape imparting has not been sufficiently realized. For example, regarding low temperature synthesis, synthesis of a 124 type superconductor (YBa 2 Cu 4 O 8 ) which is one of copper oxide superconductors is mentioned. This 124 type superconductor (YBa 2 Cu 4 O 8 ) (Natur
e Vol. 336 (1988) p660) is 80K
Although it is a high temperature superconductor of the class, Tc rises up to 90K by substituting a part of Y for Ca (Natur
eVol. 341 (1989) p660). The 124-type superconductor containing Ca was synthesized under high pressure oxygen, but had a relatively high Tc,
It is considered to be a material that is thermally stable and practically important. However, the synthesis requires treatment under high pressure oxygen, and there are difficulties in the synthesis. Recently, using the coprecipitation method, Ca
124 type superconductor including
Example synthesized at 0 ° C. (Physica C Vol. 1)
73 (1991) p208). However, the Tc was 85K, and the increase in Tc due to Ca dove was small, and the superconducting transition was broad. It is considered that this is because the temperature of 820 ° C. was too high for the synthesis of the 124-type superconductor containing Ca.

【0004】また、形状付与については、これまでに、
アルコキシド原料からの加水分解、重縮合反応による銅
酸化物超電導体のバルク、フィルム、ファイバー等の前
駆体は合成されていない。
Regarding the shape imparting, so far,
Precursors such as bulk, film and fiber of copper oxide superconductor by hydrolysis and polycondensation reaction from alkoxide raw material have not been synthesized.

【0005】アルコキシドを用いたゾルゲル法は、加水
分解、重縮合反応により原子レベルで均質な前駆体を合
成することにより、低温合成あるいは形状付与を可能に
する優れた手法である。しかしながら、従来、銅酸化物
超電導体の合成においては、必須元素である銅の適切な
アルコキシド原料がなく、適切な加水分解、重縮合反応
を起こさせることができずに低温合成あるいは形状付与
が実現できなかった。例えば、村上らの、Caを含まな
い124型超電導体を常圧下、低温での合成方法(Ja
pan J.Appl.Phys. Vol.29(1
990) p2720)をCaを含む124型超電導体
の合成に適用した場合、Cu以外の元素についてはアル
コキシド原料を用いるが、Cuについては硝酸塩原料を
用いることになり、この結晶水が他のアルコキシド原料
を一瞬にして加水分解して粉末として析出させ、また、
硝酸基はBaと選択的に結合して析出し、Cuの硝酸塩
原料を混合した瞬間に全ての金属成分は粉末状になり、
ファイバー等にすることができず、また、Caドーブの
効果を充分には実現できないこと(Tcon=85K)
を本発明者らは見いだした。またメトキサイド、エトキ
サイド、ブロボキサイド、ブトキサイド等の一般的なC
uのアルコキシド原料は、実用的レベルの溶解度を有し
ないことも見いだした。
The sol-gel method using an alkoxide is an excellent method that enables low-temperature synthesis or shape formation by synthesizing a homogeneous precursor at the atomic level by hydrolysis and polycondensation reaction. However, conventionally, in the synthesis of copper oxide superconductors, there is no appropriate alkoxide raw material of copper, which is an essential element, and appropriate hydrolysis and polycondensation reactions cannot be caused, so low temperature synthesis or shape imparting is realized. could not. For example, a method of synthesizing a Ca-free 124 type superconductor by Murakami et al.
pan J.P. Appl. Phys. Vol. 29 (1
990) When p2720) is applied to the synthesis of a 124-type superconductor containing Ca, alkoxide raw materials are used for elements other than Cu, but nitrate raw materials are used for Cu, and this crystal water is used as another alkoxide raw material. Is instantly hydrolyzed to precipitate as powder,
The nitrate group is selectively combined with Ba to be precipitated, and at the moment when the Cu nitrate raw material is mixed, all the metal components become powdery,
It cannot be made into fiber, etc., and the effect of Ca dove cannot be fully realized (Tcon = 85K).
The present inventors have found out. In addition, general C such as methoxide, ethoxide, broxide, butoxide, etc.
It was also found that the u alkoxide raw material does not have a practical level of solubility.

【0006】本発明は、この問題を解決するためになさ
れたものである。
The present invention has been made to solve this problem.

【0007】本発明の目的は、ゾルゲル法による銅酸化
物超電導体の合成において、本来のゾルゲル法の特徴で
ある低温合成あるいは形状付与を実現させるためのゾル
ゲル法用銅原料を提供することにある。
An object of the present invention is to provide a copper raw material for the sol-gel method for realizing the low-temperature synthesis or shape imparting which is the characteristic of the original sol-gel method in the synthesis of the copper oxide superconductor by the sol-gel method. ..

【0008】前記ならびにその他の目的及び新規な特徴
は、本明細書の記述及び添付図面によって明らかにす
る。
The above and other objects and novel features will become apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の銅錯体は、銅原子にセカンダリーブトキシ
基と水酸基の2つが配位していることを最も主要な特徴
とする。
In order to achieve the above object, the copper complex of the present invention is most characterized in that a copper atom is coordinated with two of a secondary butoxy group and a hydroxyl group.

【0010】本発明の前記銅錯体の製造方法において、
液相中での銅化合物と他の金属のセカンダリーブトキサ
イド及び他の金属の水酸化物との誘導基交換反応を用い
ることを特徴とする。
In the method for producing the copper complex of the present invention,
It is characterized by using a derivatization group exchange reaction between a copper compound and a secondary butoxide of another metal and a hydroxide of another metal in a liquid phase.

【0011】本発明の前記銅錯体の製造方法において、
銅のセカンダリーブトキサイドの部分加水分解反応を用
いることを特徴とする。
In the method for producing the copper complex of the present invention,
It is characterized by using a partial hydrolysis reaction of copper secondary butoxide.

【0012】[0012]

【作用】前述した手段によれば、本発明の銅錯体は、ブ
タノール溶媒中で0.05M程度の溶解度を有し、他の
アルコキシドを分解せず、しかも、水を添加することに
より加水分解反応を起こし、ゾルゲル法による合成にお
いて有用であることが確認された。これをCaを含む1
24型超電導体の合成に適用した場合、常圧下で750
℃という低温でしかも40時間という124型超電導体
の合成としては、比較的短時間でほぼ単一相の(Y0.95
Ca0.05)Ba2Cu4y(y〜8)超電導体が合成さ
れた。この超電導体は、124相によるシャープなX線
回折ピークを示し、電気抵抗での超電導転移開始温度T
c(on)が89K、ゼロ抵抗温度Tc(R=0)が84Kとい
う高い温度でのシャープな超電導転移を示し、また、磁
化測定でも超電導転移開始温度Tcmag(on)が90K
からのシャープな超電導転移を示した。超電導体積分率
もCaをドーブしていない試料と同等の値を示し、Ca
ドーブによる結晶性の劣化も小さいと考えられた。
According to the above-mentioned means, the copper complex of the present invention has a solubility of about 0.05 M in a butanol solvent, does not decompose other alkoxides, and, by adding water, a hydrolysis reaction. And was confirmed to be useful in the synthesis by the sol-gel method. This contains Ca 1
750 under normal pressure when applied to the synthesis of 24 type superconductor
As a synthesis of a 124 type superconductor at a low temperature of 40 ° C. for 40 hours, it is possible to obtain an almost single phase (Y 0.95
Ca 0.05) Ba 2 Cu 4 O y (y~8) superconductor was synthesized. This superconductor shows a sharp X-ray diffraction peak due to the 124 phase, and has a superconducting transition start temperature T due to electric resistance.
c (on) is 89K, zero resistance temperature Tc (R = 0) is 84K, and it shows sharp superconducting transition at high temperature. Moreover, superconducting transition start temperature Tcmag (on) is 90K in magnetization measurement.
Showed a sharp superconducting transition. The superconductor integration ratio also shows the same value as the sample without Ca dosing,
The deterioration of crystallinity due to the dove was considered to be small.

【0013】従って、本発明の銅錯体は、ゾルゲル法に
用いた場合、Caを含む124型超電導体のような低温
でなければ合成されないような銅酸化物超電導体を合成
することができる。
Therefore, when the copper complex of the present invention is used in the sol-gel method, it is possible to synthesize a copper oxide superconductor which cannot be synthesized at a low temperature, such as a Ca-containing 124 type superconductor.

【0014】また、前述のCaを含む124型超電導体
の合成で使用した混合溶液をチタン酸ストロンチウム基
板上にスピンコートし、空気中で加水分解させた後75
0℃、酸素気流中で10時間熱処理した結果、Tc(on)
=79K、Tc(R=0)=70Kのc軸配向膜を得た。
The mixed solution used in the synthesis of the 124 type superconductor containing Ca is spin-coated on a strontium titanate substrate, hydrolyzed in air, and then 75
As a result of heat treatment at 0 ° C in an oxygen stream for 10 hours, Tc (on)
= 79K, Tc (R = 0) = 70K c-axis oriented film was obtained.

【0015】従って、本発明の銅錯体はゾルゲル法に用
いた場合、フィルム状に形状付与できる。
Therefore, when the copper complex of the present invention is used in the sol-gel method, it can be shaped into a film.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面を用いて、具
体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings.

【0017】(実施例1)本発明の銅錯体の合成方法実
施例1及びその実施例1の方法による銅錯体の化学的性
質及び化学組成について説明する。実施例1の銅錯体合
成は、セカンダリーブタノール中での塩化第二銅とナト
リウム・セカンダリーブトキサイド、水酸化ナトリウム
との誘導基交換反応を用いた。その反応式を以下に示
す。
(Example 1) Method for synthesizing copper complex of the present invention Example 1 and the chemical properties and chemical composition of the copper complex according to the method of Example 1 will be described. The synthesis of the copper complex of Example 1 used the derivatization group exchange reaction of cupric chloride with sodium secondary butoxide and sodium hydroxide in secondary butanol. The reaction formula is shown below.

【0018】 CuCl2+Na(OBu)+NaOH→(BuO)・Cu・OH+2NaCl↓ 得られた懸濁液をNaCl除去のため遠心分離し、銅錯
体のブタノール溶液を得た。除去した固形物中にはNa
Clが存在することがX線回折により確認され、塩化第
二銅の塩素とセカンダリーブトキシ基あるいは水酸基と
の交換反応が起こったことがわかった。溶液は濃緑色を
呈しており、誘導結合プラズマ発光(ICP)分析の結
果、銅としての濃度は0.05Mであった。この溶液が
他種のアルコキシドを分解してしまうかどうかを調べる
ために、Y、Ca、Baの3つのブトキサイドが溶解し
たブタノール溶液に銅錯体溶液を添加した。混合溶液は
濁ることなく、本実施例1の合成方法による銅錯体は、
他のアルコキシドを分解しないことがわかった。
CuCl 2 + Na (OBu) + NaOH → (BuO) .Cu.OH + 2NaCl ↓ The obtained suspension was centrifuged to remove NaCl to obtain a butanol solution of a copper complex. Na is contained in the removed solid matter.
The presence of Cl was confirmed by X-ray diffraction, and it was found that an exchange reaction between chlorine in cupric chloride and a secondary butoxy group or a hydroxyl group occurred. The solution had a deep green color, and as a result of inductively coupled plasma emission (ICP) analysis, the concentration as copper was 0.05M. In order to investigate whether this solution decomposes other alkoxides, a copper complex solution was added to a butanol solution in which three butoxides of Y, Ca and Ba were dissolved. The copper complex prepared by the synthesis method of Example 1 was
It was found to not decompose other alkoxides.

【0019】また、銅錯体溶液に水を添加すると一瞬に
して懸濁し、遠心分離すると濃緑色固形物と透明溶媒と
に分離した。透明溶媒中には、銅成分は存在しないこと
がICP分析によりわかった。
Further, when water was added to the copper complex solution, it was suspended in an instant, and when it was centrifuged, it was separated into a dark green solid matter and a transparent solvent. It was found by ICP analysis that no copper component was present in the transparent solvent.

【0020】以上の結果から、本実施例1の合成方法に
よる銅錯体は、ブタノール溶媒中に0.05モル(M)
程度溶解し、他のアルコキシドを分解せず、また、アル
コキシドと同様に加水分解することがわかり、ゾルゲル
法に有用であることがわかる。
From the above results, the copper complex prepared by the synthesis method of Example 1 was added to 0.05 mol (M) in a butanol solvent.
It can be seen that the sol-gel method dissolves to some extent, does not decompose other alkoxides, and hydrolyzes like alkoxides, and is useful for the sol-gel method.

【0021】前述の合成方法で、Cul原子に対しナト
リウム・セカンダリーブトキサイドと水酸化ナトリウム
の合計が2原子になるようにしてそのナトリウム・セカ
ンダリーブトキサイドと水酸化ナトリウムの比率を変化
させて合成した結果、水酸化ナトリウムの比率が0で
は、溶液中のCu濃度はほとんど0(検出限界以下)
で、水酸化ナトリウムの比率が0から0.5までは、溶
液中のCu濃度は水酸化ナトリウムの当量にほぼ一致し
て直線的に増加し、0.5から1の間ではナトリウム・
セカンダリーブトキサイド(1−水酸化ナトリウムの比
率)の当量にほぼ一致して直線的に減少し、水酸化ナト
リウムの比率が1では、溶液中のCu濃度はほとんど0
となった。このことから、合成に用いた反応において
は、塩化第二銅とナトリウム・セカンダリーブトキサイ
ド、水酸化ナトリウムとの誘導基交換反応は、前述の反
応式のとおりに進行することがわかった。従って、本実
施例1の合成方法による銅錯体は、銅原子にセカンダリ
ーブトキシ基と水酸基が配位しているものと考えられ
る。
According to the above-mentioned synthesis method, the ratio of sodium secondary butoxide and sodium hydroxide is changed so that the total of sodium secondary butoxide and sodium hydroxide is 2 atoms per Cul atom. As a result of synthesis, when the ratio of sodium hydroxide is 0, the Cu concentration in the solution is almost 0 (below the detection limit).
Then, when the ratio of sodium hydroxide was 0 to 0.5, the Cu concentration in the solution increased linearly almost in accordance with the equivalent amount of sodium hydroxide.
Almost equal to the equivalent of secondary butoxide (ratio of 1-sodium hydroxide), decreases linearly, and when the ratio of sodium hydroxide is 1, the Cu concentration in the solution is almost 0.
Became. From this, it was found that in the reaction used for the synthesis, the derivatization group exchange reaction of cupric chloride with sodium secondary butoxide and sodium hydroxide proceeds according to the above reaction formula. Therefore, the copper complex prepared by the synthesis method of Example 1 is considered to have a secondary butoxy group and a hydroxyl group coordinated to the copper atom.

【0022】(実施例2)本発明の銅錯体を別の方法で
合成した実施例2を説明する。
Example 2 Example 2 in which the copper complex of the present invention was synthesized by another method will be described.

【0023】(1)様々な銅化合物からの合成 硝酸銅 硝酸銅の3水塩の結晶水の一部を取り除き、約1水塩と
してセカンダリーブタノールに溶解させた。明るい青色
を呈した溶液に、銅に対し同当量のナトリウム・セカン
ダリーブトキサイドが溶解したブタノール溶液を投入
し、撹拌混合した。溶液は混合の瞬間に青色から濃緑色
に変化し懸濁した。遠心分離後の溶液は、濃緑色で、I
CP分析の結果、銅成分の濃度は0.02Mであること
がわかった。この溶液に水を添加したら、透明溶媒と濃
緑色固形物に分離した。
(1) Synthesis from Various Copper Compounds Copper Nitrate A part of the crystal water of trihydrate of copper nitrate was removed and dissolved in secondary butanol as about monohydrate. A butanol solution in which an equivalent amount of sodium secondary butoxide was dissolved with respect to copper was added to the bright blue solution, and the mixture was stirred and mixed. At the moment of mixing, the solution changed from blue to dark green and was suspended. The solution after centrifugation was dark green and
As a result of CP analysis, it was found that the concentration of the copper component was 0.02M. Once water was added to this solution, it separated into a clear solvent and a dark green solid.

【0024】酢酸銅の1水塩 酢酸銅の1水塩をセカンダリーブタノールに溶解させ
た。溶解度は小さかったが、一部が溶解し青色を呈した
溶液が得られた。この溶液に、銅に対し同当量のナトリ
ウム・セカンダリーブトキサイドが溶解したブタノール
溶液を投入し、撹拌混合した。溶液は混合の瞬間に青色
から茶色に変化し懸濁した。遠心分離後の溶液は茶色
で、ICP分析の結果、銅成分の濃度は0.005Mで
あることがわかった。この溶液に水を添加したら、透明
溶媒と茶色固形物に分離した。
Copper acetate monohydrate The copper acetate monohydrate was dissolved in secondary butanol. Although the solubility was low, a part of it was dissolved and a blue solution was obtained. A butanol solution in which an equivalent amount of sodium secondary butoxide was dissolved in copper was added to this solution and mixed with stirring. The solution changed from blue to brown at the moment of mixing and suspended. The solution after centrifugation was brown and as a result of ICP analysis, it was found that the concentration of the copper component was 0.005M. Once water was added to this solution, it separated into a clear solvent and a brown solid.

【0025】酢酸銅の無水塩 酢酸銅の1水塩を100℃で乾燥させ、青緑色から黒色
に変化した粉末をセカンダリーブタノールに溶解させ
た。溶解度は小さかったが、一部が溶解し緑色を呈した
溶液が得られた。この溶液に、銅に対し同当量のナトリ
ウム・セカンダリーブトキサイドと同当量の水酸化ナト
リウムが溶解したブタノール溶液を投入し、撹拌混合し
た。溶液は混合の瞬間に緑色から茶色に変化し懸濁し
た。遠心分離後の溶液は茶色で、ICP分析の結果、銅
成分の濃度は0.004Mであることがわかった。この
溶液に水を添加したら、透明溶媒と茶色固形物に分離し
た。
Anhydrous Salt of Copper Acetate Copper acetate monohydrate was dried at 100 ° C., and the powder changed from blue green to black was dissolved in secondary butanol. Although the solubility was low, a part of it was dissolved to give a greenish solution. A butanol solution in which an equivalent amount of sodium secondary butoxide and an equivalent amount of sodium hydroxide were dissolved in copper was added to this solution and mixed with stirring. The solution changed from green to brown at the moment of mixing and suspended. The solution after centrifugation was brown, and as a result of ICP analysis, it was found that the concentration of the copper component was 0.004M. Once water was added to this solution, it separated into a clear solvent and a brown solid.

【0026】以上の結果から、本発明の銅錯体の合成に
用いる銅化合物としては、溶媒中で誘導基の交換反応を
起こすものであればよいことがわかる。また、結晶水
は、銅に対し同当量程度であれば、銅錯体の形成に役立
つことがわかる。
From the above results, it is understood that the copper compound used in the synthesis of the copper complex of the present invention may be any compound which causes an exchange reaction of a derivative group in a solvent. Further, it can be seen that the water of crystallization is useful for the formation of a copper complex if it is in the same amount as copper.

【0027】(2)様々な金属のセカンダリーブトキサ
イド及び水酸化物を用いた合成 実施例1の合成方法でナトリウムのセカンダリーブトキ
サイド及び水酸化物をリチウム、バリウム、ストロンチ
ウムのセカンダリーブトキサイド及び水酸化物に置き換
えて合成を試みた。いずれの場合も0.05モル(M)
程度の濃度を有する銅錯体の溶液を得た。この溶液に水
を添加したら、透明溶媒と茶色固形物に分離した。
(2) Synthesis Using Secondary Butoxides and Hydroxides of Various Metals Secondary sodium butoxides and hydroxides of sodium, secondary butoxides of lithium, barium and strontium were prepared by the synthesis method of Example 1. And the synthesis was tried by replacing with hydroxide. In either case, 0.05 mol (M)
A solution of the copper complex with a concentration of about 4 was obtained. Once water was added to this solution, it separated into a clear solvent and a brown solid.

【0028】この結果から、本発明の銅錯体の合成に用
いるセカンダリーブトキサイド及び水酸化物としては、
溶媒中で銅化合物と誘導基の交換反応を起こすものであ
ればよいことがわかる。
From these results, the secondary butoxides and hydroxides used in the synthesis of the copper complex of the present invention are as follows:
It will be understood that any substance that causes an exchange reaction between the copper compound and the derivative group in the solvent may be used.

【0029】(3)銅のセカンダリーブトキサイドの部
分加水分解を用いた合成 塩化銅のセカンダリーブタノール溶液とナトリウム・セ
カンダリーブトキサイドのセカンダリーブタノール溶液
を混合して銅のセカンダリーブトキサイドとNaClの
懸濁液を得た。懸濁液の一部を取り出し、遠心分離した
結果、懸濁液は透明溶媒と緑色固体に分離した。透明溶
媒中にはCuはほとんど存在しないことがICP分析に
よりわかった。これに対し、懸濁液に水を添付し撹拌混
合した場合、遠心分離後の溶液中にはCuが0.03M
の濃度で溶解していた。この溶液に水を添加したら、透
明溶媒と茶色固形物に分離した。
(3) Synthesis of copper secondary butoxide by partial hydrolysis: Copper chloride secondary butanol solution and sodium secondary butoxide side butanol solution were mixed to form copper secondary butoxide and NaCl. A suspension was obtained. A part of the suspension was taken out and centrifuged, and as a result, the suspension was separated into a transparent solvent and a green solid. It was found by ICP analysis that almost no Cu was present in the transparent solvent. On the other hand, when water was added to the suspension and mixed by stirring, Cu was 0.03 M in the solution after centrifugation.
Was dissolved at a concentration of. Once water was added to this solution, it separated into a clear solvent and a brown solid.

【0030】この結果より、本発明の銅錯体は、一旦銅
のセカンダリーブトキサイドを合成した後の部分加水分
解反応によっても合成できることがわかる。
From these results, it is understood that the copper complex of the present invention can be synthesized also by the partial hydrolysis reaction after once synthesizing the copper secondary butoxide.

【0031】(実施例3)本発明の銅錯体をCaを含む
124型超電導体の合成に適用した実施例3を説明す
る。
(Example 3) Example 3 in which the copper complex of the present invention is applied to the synthesis of a 124-type superconductor containing Ca will be described.

【0032】図1は、本発明の銅錯体を適用する124
型超電導体(YBa2Cu48)の結晶構造を説明する
ための模式図であり、1はバリウム(Ba)、2は銅
(Cu)、3は格子の交差上にある酸素(O)、4はイ
ットリウム(Y)である。
FIG. 1 illustrates the application of the copper complex of the present invention 124.
3 is a schematic diagram for explaining the crystal structure of a type superconductor (YBa 2 Cu 4 O 8 ), where 1 is barium (Ba), 2 is copper (Cu), and 3 is oxygen (O) on the intersection of lattices. 4 is yttrium (Y).

【0033】図2は、Caを含む124型超電導体の合
成のフローチャートである。それぞれY、Ca、Baの
ブトキサイドが溶解した3つの溶液と、本発明の銅錯体
のブタノール溶媒をY:Ca:Ba:Cuが(1−
x):x:2:4(x=0、0.05)となるように計
量し(ステップ101)、70℃、アルゴン気流中で2
0時間混合した(ステップ102)。この溶液に室内の
空気を50ml/minの流量で30分間導入し、加水
分解を起こさせた(ステップ103)。懸濁した液を1
20℃で真空に引きながら蒸発乾燥させてゲル化した
(ステップ104)。得られたゲル粉を真空中500℃
で1時間乾燥させて乾燥粉末とした(ステップ10
5)。そして、乾燥粉末を金型成形し(ステップ10
6)、それぞれの温度で酸素気流中で40時間焼成した
(ステップ107)。図3は、x=0.05のゲル粉と
750℃、800℃でそれぞれ焼成した試料の粉末X線
回折パターンを示す図である。図3から、ゲル粉は残留
物であるNaClの回折ピーク以外に回折ピークはな
く、Caを含む124型超電導体の構成成分であるY、
Ca、Ba、Cuは、アモルファスの形態で存在し、偏
析していないことがわかる。また、焼成した試料はいず
れも、124相によるシャープな回折ピークを示し、不
純物相による回折ピークはほとんど認められない。図4
にx=0.05の750℃、800℃でそれぞれ焼成し
た試料の電気抵抗率の温度依存性を示す。両者はTc(o
n)は同じだが、Tc(R=0)は750℃で焼成した試料の
方が高く超電導転移がシャープであることがわかる。こ
のことよりX線回折パターンではわかりにくいが、Ca
を含む124型超電導体は、常圧下で、800℃では一
部分解が始まり結晶性が劣化し始めていると考えられ
る。図5は、750℃で焼成したx=0とx=0.05
の試料の粉末X線回折パターンを示す図、図6は、75
0℃で焼成したx=0とx=0.05の試料の電気抵抗
率の温度依存性を示す図、図7は、750℃で焼成した
x=0とx=0.05の試料の磁化率の温度依存性を示
す図である。x=0とx=0.05の試料は、両者とも
124相によるシャープな回折ピークのみを示し、ま
た、電気的にも磁気的にもシャープな超電導転移を示
し、特性の良好な124型超電導体あることがわかる。
このように良好な特性を有するCaを含む124型超電
導体を常圧下で合成した例は他になく、本発明の銅錯体
を原料として用いる方法は、低温合成において顕著な効
果があるといえる。
FIG. 2 is a flow chart for synthesizing a 124-type superconductor containing Ca. The three solutions in which butoxides of Y, Ca, and Ba are dissolved and the butanol solvent of the copper complex of the present invention are Y: Ca: Ba: Cu (1-
x): x: 2: 4 (x = 0, 0.05) and weigh it (step 101), and 2 at 70 ° C. in an argon stream.
Mix for 0 hours (step 102). Air in the room was introduced into this solution at a flow rate of 50 ml / min for 30 minutes to cause hydrolysis (step 103). 1 suspended liquid
A gel was formed by evaporating and drying while pulling a vacuum at 20 ° C. (step 104). The obtained gel powder is vacuumed at 500 ° C.
And dried for 1 hour to give a dry powder (step 10
5). Then, the dry powder is molded into a mold (step 10
6) Then, firing was carried out in an oxygen stream at each temperature for 40 hours (step 107). FIG. 3 is a diagram showing a powder X-ray diffraction pattern of a gel powder of x = 0.05 and a sample fired at 750 ° C. and 800 ° C., respectively. From FIG. 3, the gel powder has no diffraction peaks other than the diffraction peak of NaCl, which is the residue, and Y, which is a constituent component of the 124 type superconductor containing Ca
It can be seen that Ca, Ba and Cu exist in an amorphous form and are not segregated. Further, all the fired samples show a sharp diffraction peak due to the 124 phase, and almost no diffraction peak due to the impurity phase is observed. Figure 4
Shows the temperature dependence of the electrical resistivity of the samples fired at x = 0.05 at 750 ° C. and 800 ° C., respectively. Both are Tc (o
Although n) is the same, Tc (R = 0) is higher in the sample fired at 750 ° C., and the superconducting transition is sharper. From this, it is difficult to understand from the X-ray diffraction pattern, but Ca
It is considered that the 124-type superconductor containing C is partially decomposed at 800 ° C. under normal pressure and the crystallinity is beginning to deteriorate. Figure 5 shows x = 0 and x = 0.05 baked at 750 ° C.
Showing the powder X-ray diffraction pattern of the sample of FIG.
FIG. 7 is a graph showing the temperature dependence of the electrical resistivity of the samples of x = 0 and x = 0.05 baked at 0 ° C. FIG. 7 shows the magnetization of the samples of x = 0 and x = 0.05 baked at 750 ° C. It is a figure which shows the temperature dependence of a rate. The samples with x = 0 and x = 0.05 both show only sharp diffraction peaks due to the 124 phase, and also show a sharp superconducting transition both electrically and magnetically, and are 124 type superconducting materials with good characteristics. I know that I have a body.
There is no other example of synthesizing a 124-type superconductor containing Ca having such good characteristics under normal pressure, and it can be said that the method of using the copper complex of the present invention as a raw material has a remarkable effect in low-temperature synthesis.

【0034】また、本発明の銅錯体を原料として用いる
低温合成法は、他の銅酸化物超電導体の合成においても
効果が認められた。例えば、本発明の銅錯体とY、Ba
のブトキサイドを原料として用いて123型超電導体を
真空下で合成した場合、従来よりも50℃程度低い60
0℃で合成された。
Further, the low temperature synthesis method using the copper complex of the present invention as a raw material has been confirmed to be effective in the synthesis of other copper oxide superconductors. For example, the copper complex of the present invention and Y, Ba
When the 123 type superconductor is synthesized under vacuum using the butoxide of No. 6 as a raw material, it is about 50 ° C. lower than the conventional method.
Synthesized at 0 ° C.

【0035】(実施例4)本発明の銅錯体を124型超
電導体薄膜の形成に適用した実施例4について説明す
る。
(Example 4) Example 4 in which the copper complex of the present invention is applied to the formation of a 124-type superconductor thin film will be described.

【0036】前記実施例3で作製した混合溶液をチタン
酸ストロンチウム基板上にスピンコートした。これを空
気中で加水分解し、真空中、500℃で1時間乾燥させ
た後、酸素気流中、750℃で10時間熱処理した。合
成された膜は、黒色半透明で、約1μmの膜厚を有して
いた。通常のθ−2θスキャンによるX線回折の結果、
124型超電導体の(001)ピークのみが観測され、
合成された膜は124型超電導体のc軸配向膜であるこ
とがわかった。電気抵抗率の温度依存性を測定した結
果、Tc(on)=79K、Tc(R=0)=70Kの超電導転
移を示した。
The mixed solution prepared in Example 3 was spin-coated on a strontium titanate substrate. This was hydrolyzed in air, dried in vacuum at 500 ° C. for 1 hour, and then heat-treated in an oxygen stream at 750 ° C. for 10 hours. The synthesized film was black translucent and had a film thickness of about 1 μm. As a result of X-ray diffraction by a normal θ-2θ scan,
Only the (001) peak of the 124 type superconductor is observed,
It was found that the synthesized film was a c-axis oriented film of 124 type superconductor. As a result of measuring the temperature dependence of the electrical resistivity, a superconducting transition of Tc (on) = 79K and Tc (R = 0) = 70K was shown.

【0037】この結果から、本発明の銅錯体は、銅酸化
物超電導体フィルムの形成に有効であることがわかる。
また、加水分解反応を適切にコントロールすることによ
り、バルク、ファイバー等への形状付与も可能になるも
のと予想される。
From these results, it is understood that the copper complex of the present invention is effective for forming a copper oxide superconductor film.
Further, it is expected that by appropriately controlling the hydrolysis reaction, it is possible to impart a shape to a bulk, a fiber or the like.

【0038】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更可能
なことは言うまでもない。
Although the present invention has been specifically described based on the embodiments, it is needless to say that the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention.

【0039】例えば、本発明は、123型超電導体(Y
Ba2Cu37)やビスマス系超電導体等の合成におい
ても、その前駆体の均質性により通常の固相反応法より
も短い時間で合成できるという効果を有することは、勿
論である。
For example, the present invention relates to a 123 type superconductor (Y
In the synthesis of Ba 2 Cu 3 O 7 ) and bismuth-based superconductors, of course, the homogeneity of the precursor has the effect that it can be synthesized in a shorter time than the usual solid-phase reaction method.

【0040】[0040]

【発明の効果】以上、説明したように、本発明によれ
ば、加水分解反応をコントロールすることにより銅酸化
物超電導体の前駆体を、バルク、フィルム、ファイバー
等の所望の形状に形成することが可能となる。また、低
温でなければ合成されないような銅酸化物超電導体を、
あるいは通常の銅酸化物超電導体であっても従来よりも
低い温度で短時間で合成することができる。
As described above, according to the present invention, a precursor of a copper oxide superconductor can be formed into a desired shape such as a bulk, a film or a fiber by controlling a hydrolysis reaction. Is possible. In addition, a copper oxide superconductor that can be synthesized only at low temperature,
Alternatively, even an ordinary copper oxide superconductor can be synthesized in a short time at a temperature lower than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例3の124型超電導体(YB
2Cu48)の結晶構造を説明するための模式図、
FIG. 1 is a 124-type superconductor (YB of Example 3 of the present invention).
a 2 Cu 4 O 8 ) schematic diagram for explaining the crystal structure of

【図2】 本発明の銅錯体をCaを含む124型超電導
体の合成に適用した実施例3の合成の流れ図、
FIG. 2 is a flow chart of the synthesis of Example 3 in which the copper complex of the present invention is applied to the synthesis of a 124-type superconductor containing Ca,

【図3】 本実施例3に係るx=0.05のゲル粉及び
焼成した試料の粉末X線回折図形、
FIG. 3 is a powder X-ray diffraction pattern of a gel powder of x = 0.05 and a fired sample according to Example 3;

【図4】 本実施例3に係るx=0.05の焼成した試
料の抵抗率−温度特性図、
FIG. 4 is a resistivity-temperature characteristic diagram of a fired sample of x = 0.05 according to Example 3;

【図5】 本実施例3に係るx=0とx=0.05の焼
成した試料の粉末X線回折図形、
FIG. 5 is a powder X-ray diffraction pattern of a fired sample of x = 0 and x = 0.05 according to the third embodiment,

【図6】 本実施例3に係るx=0とx=0.05の焼
成した試料の抵抗率−温度特性図、
FIG. 6 is a resistivity-temperature characteristic diagram of the fired samples of x = 0 and x = 0.05 according to the third embodiment.

【図7】 本実施例3に係るx=0とx=0.05の焼
成した試料の磁化率−温度特性図。
FIG. 7 is a magnetic susceptibility-temperature characteristic diagram of a fired sample of x = 0 and x = 0.05 according to the third embodiment.

【符号の説明】[Explanation of symbols]

1…バリウム(Ba)、2…銅(Cu)、3…格子の交
差上にある酸素(O)、4…イットリウム(Y)。
1 ... Barium (Ba), 2 ... Copper (Cu), 3 ... Oxygen (O) on the intersection of lattices, 4 ... Yttrium (Y).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 郡山 慎一 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 池町 隆明 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 山内 尚雄 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Koriyama 1-14-3 Shinonome, Koto-ku, Tokyo Inside the Superconducting Engineering Laboratory, Research Center for International Superconductivity Technology (72) Inventor Takaaki Ikemachi Shinonome, Koto-ku, Tokyo 1-14-3 International Superconductivity Industrial Technology Research Center Superconductivity Engineering Laboratory (72) Inventor Nao Yamauchi 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Engineering Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅原子にセカンダリーブトキシ基及び水
酸基が配位したことを特徴とする銅錯体。
1. A copper complex in which a secondary butoxy group and a hydroxyl group are coordinated with a copper atom.
【請求項2】 液相中での銅化合物と他の金属のセカン
ダリーブトキサイド及び他の金属の水酸化物あるいは水
酸基との誘導基交換反応を用いることを特徴とする請求
項1に記載の銅錯体製造方法。
2. The derivatization group exchange reaction between a copper compound and a secondary butoxide of another metal and a hydroxide or a hydroxyl group of another metal in a liquid phase is used. Method for producing copper complex.
【請求項3】 銅のセカンダリーブトキサイドの部分加
水分解反応を用いることを特徴とする請求項1に記載の
銅錯体製造方法。
3. The method for producing a copper complex according to claim 1, wherein a partial hydrolysis reaction of copper secondary butoxide is used.
JP3314943A 1991-11-28 1991-11-28 Copper compound and method for producing the same Expired - Fee Related JP2591873B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3314943A JP2591873B2 (en) 1991-11-28 1991-11-28 Copper compound and method for producing the same
EP92310918A EP0549148B1 (en) 1991-11-28 1992-11-30 A copper oxide superconductor, a process for its production, and a copper complex used therein
DE69224605T DE69224605T2 (en) 1991-11-28 1992-11-30 Copper oxide superconductor, process for its production and copper compound used
US08/344,741 US5504226A (en) 1991-11-28 1994-11-23 Copper oxide superconductor, a process for its production, and a copper complex used therein
US08/345,229 US5578553A (en) 1991-11-28 1994-11-28 1-2-4 copper oxide superconductor, a process for its production, and a copper used therein
US08/357,100 US5563117A (en) 1991-11-28 1994-12-15 Copper oxide superconductor, a process for its production, and a copper used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3314943A JP2591873B2 (en) 1991-11-28 1991-11-28 Copper compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05148273A true JPH05148273A (en) 1993-06-15
JP2591873B2 JP2591873B2 (en) 1997-03-19

Family

ID=18059522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3314943A Expired - Fee Related JP2591873B2 (en) 1991-11-28 1991-11-28 Copper compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2591873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504226A (en) * 1991-11-28 1996-04-02 Kyocera Corporation Copper oxide superconductor, a process for its production, and a copper complex used therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504226A (en) * 1991-11-28 1996-04-02 Kyocera Corporation Copper oxide superconductor, a process for its production, and a copper complex used therein
US5563117A (en) * 1991-11-28 1996-10-08 Kyocera Corporation Copper oxide superconductor, a process for its production, and a copper used therein
US5578553A (en) * 1991-11-28 1996-11-26 Kyocera Corporation 1-2-4 copper oxide superconductor, a process for its production, and a copper used therein

Also Published As

Publication number Publication date
JP2591873B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
Chu et al. Preparation of High‐Tc Superconducting Oxides by the Amorphous Citrate Process
US5304533A (en) Process for producing an oxide superconductor from alkoxides
CN1028390C (en) Improved process for making 90K superconductors
JPH01160829A (en) Method for manufacture of high temperature superconductor
JP3332334B2 (en) Superconductor and method of manufacturing the same
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
US5004720A (en) Process for producing a superconductor of an oxide system from acetylacetonates
Lay Formation of yttrium barium cuprate powder at low temperatures
US5019553A (en) Sr2 (Bi1-a Pba)x Cuy Oz metal oxide material
Liu et al. Synthesis of superconducting Ba1− xKxBiO3 by a modified molten salt process
US5578551A (en) Method for synthesis of high-temperature Hg-Ba-Ca-Cu-O (HBCCO) superconductors
JPH05148273A (en) Copper complex and its production
Cava et al. Superconductivity at High Temperatures Without Copper: Ba1-xKxBiO3
JP3165770B2 (en) Manufacturing method of oxide superconductor
US5504226A (en) Copper oxide superconductor, a process for its production, and a copper complex used therein
Tighezza et al. The oxyflouride Nd2CuO4− xFx: Influence of synthesis routes on the superconducting properties
McHale et al. Simplified preparation of REBa 2 Cu 3 O 7− x via the acetate method
US5304666A (en) Process for making superconductors and their precursors
US5208214A (en) Multiphase superconductor and process for its production
CN114873636B (en) Lead titanate substrate crystal template and preparation method thereof
JP3394297B2 (en) Method for producing superconductive composition
JPH0238359A (en) Production of superconductor
RU2104939C1 (en) METHOD FOR PRODUCTION OF SUPERCONDUCTING MATERIAL MBa2Cu3O7-x
KR970009510B1 (en) Making method of hg high temperature single phase 13ok
EP0357683A1 (en) Improved process for making 90 k superconductors

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees